Investigation of Recent Oceanic Contribution to Instability of the Thwaites and Pine Island Glaciers

<u>Seung-Tae Yoon¹</u>, Won Sang Lee¹, SungHyun Nam², Sukyoung Yun¹, Yeon Choi², and Hyung-Bo Kim²
1 Korea Polar Research Institute, Incheon, Republic of Korea
2 School of Earth and Environmental Sciences, Seoul National University, Seoul, Republic of Korea

Contents

- here way

1. Introduction

2. 2020 Antarctic survey

3. Major findin

4. Future plans

1. Introduction

- The Antarctic ice shelves around the Amundsen Sea has experienced the fastest melting together with the rapid grounding line retreat in recent decades
- The most apparent mass loss occurs in the Thwaites and Pine Island Glaciers

Geothermal Heat Flux

Land-Ice/Ocean Network Exploration using Semiautonomous Systems

• LIONESS-TG is collaborating with ITGC to investigate one of the most unstable glaciers in Antarctica.

2. 2020 Antarctic survey

▶ I.B.R.V. Araon

Information for 2020 Antarctic survey	
Research Vessel	Ice Breaker R.V. Araon
Period	2020. 1. 29 ~ 2. 15 (~ 18 days)
# of full-depth profiles	89 @ 67 stations
PO mooring	Deployment @ 2 locations
	(b)

WW (Winter Water) and CDW (Circumpolar Deep Water) are well observed.

CDW $(r_n > 28.03 \text{ kg/m}^3 \text{ [Wahlin et al., 2010]})$ is found below 500~600 m.

3. Major findings

1) Circumpolar Deep Water (CDW) pathway

Nakayama et al., 2019]

Expected (dashed line) and observed (solid line) CDW pathways into the Thwaites and Pine Island Glaciers.

0.1

0.2

• Pathways of mCDW into the Thwaties and Pine Island Glacier by high resolution ocean model

▼ Temperature and salinity – distance from station 1 (CDW entrance)

- West and north east region temperatures are higher than station 1 (other heat sources?)
- > T&S properties changes as CDW flow into the two ice shelves along troughs

PÍG

2) Pine Island Bay circulation

▲ Arrows = SADCP velocities averaged $30 \sim 300$ m.

Cyclonic gyre (radius ~ 25 km) found in front of the Pine Island Glacier Ice front during the late January 2009.

Investigate impact of the recent Ice front retreat on the ocean circulation

Two-cell circulation in the Pine Island Bay

Hypothesis

Radius of circulation = 17 km in 2020 < 25 km in 2009
 (※ 1st baroclinic Rossby radius of deformation 5 ~ 7 km).

- Decrease ocean heat contents
 - \rightarrow Decrease basal melting and meltwater flux
 - \rightarrow Less Ice Cavity Water transport & Less warmer ambient water
 - \rightarrow Weakening circulation (~ decrease density gradient, speed)
 - → Decrease circulation cell size
- Continuous Ice front retreat after 2013 ice calving event

→ Formation of two cell in the extended horizontal boundaries

3) Spatial variation of meltwater fraction

- The glacial meltwater flowing out from the two glaciers shape spatial and temporal variability of meltwater fraction at the upper (shallower than 500 m) ocean near and off the ice shelves.
- \blacktriangleright Ocean heat contents: 2009 > 2020 > 2014 > 2012 so, expect that a little lower melting rate in 2020 than that in 2009.
- Melting 80 km³/yr of ice within the cavity in 2009; 35 km³/yr in 2012; 40 km³/yr in 2014 [Jacobs et al., 2011; Dutrieux et al., 2014; Heywood et al., 2016].

4. Future plans

- 1) CDW pathway controlled by bed topography
- : Detailed CDW pathways additionally using UTas's AUV data (60 km round-trip)
- : Spatial variations of temperature and salinity of CDW

2) Find meaning of two-cell circulation

- : Heat redistribution by two-cell circulation
- : Need to consider feedback mechanism caused by the extended or reduced ocean boundaries

3) Decadal variability of ocean forcing - return to the warm phase period?

- : OHC in 2020 is much greater than that in 2012 and a little smaller that in 2009
- : Check local atmospheric surface heat loss, heat transport onto the continental shelf break, and wind variability

Thank you all !!!

Qs: Seung-Tae Yoon (styoon@kopri.re.kr)

Acknowledgements

This study was sponsored by a research grant from the Korean Ministry of Oceans and Fisheries (grant no. KIMST20190361)