Thursday, July 11, 2019 REFRACTORY INCLUSIONS 9:00 a.m. Conference Room 1

Chairs: Mutsumi Komatsu and Samuel Ebert

BACK TO TOP

Times	Authors (*Denotes Presenter)	Abstract Title and Summary
9:00 a.m.	Manga V. R. * Zega T. J.	<u>Thermodynamic Modeling of Pyroxene Solid Solutions: Revisiting</u>
	Muralidharan K.	the Condensation Sequence of Refractory Minerals in Calcium-
		and Aluminium-Rich Inclusions [#6226]
		We report the condensation calculations of Al-Ti-rich pyroxene
		solid-solutions and present the revised condensation sequence of
		various refractory mineral phases that are observed within the
		calcium- and aluminium-rich inclusions (CAIs).
9:15 a.m.	Han J. * (Park C.) Keller L. P.	<u>Microstructural Record of Evolving Condensation Processes in</u>
		Fine-Grained Ca-Al-Rich Inclusions from the Reduced
		<u>CV3 Chondrites</u> [#6435]
		We discuss the evolving sequence of high-temperature
		condensation and gas-solid reactions that grew single grains into
		layered nodules based on FIB/TEM analyses of FGIs from the
		reduced CV3 chondrites.
9:30 a.m.	Komatsu M. * Fagan T. J. Krot A. N.	<u>Ultra-Refractory CAI in a Low-Ca Pyroxene- and Silica-Bearing</u>
	Nagashima K. Petaev M. I. Kimura M.	Amoeboid Olivine Aggregate in a CR Chondrite: Formation by
	Yamaguchi A.	Gas-Solid Condensation over a Wide Temperature Range [#6167]
		AOAs have avoided significant melting after the aggregation,
		retaining records of nebular gas-solid interactions. Here we
		describe an AOA from the CR chondrite Y-793261 providing an
		evidence for gas-solid condensation over a wide
0.45 a m	Fukuda K. * Kita N. T. Tenner T. J.	temperature range.
9:45 a.m.	Kimura M.	Mg Isotope Ratios and Minor Element Abundances of AOAs:
	Killiula ivi.	Insights into Their Origins [#6206] Relationships between chemical, textural, and isotopic signatures
		of AOAs were investigated. Compact and porous AOAs
		experienced different nebular histories.
10:00	Liu MC. * Han J. Brearley A. J.	Aluminum-26 Chronology of Dust Coagulation and Early Solar
a.m.	Hertwig A. T.	System Evolution [#6182]
a.iii.		Early solids grew fast / But how fast? / Small inclusions tell you.
10:15	Kawasaki N. * Park C. Sakamoto N.	Variations in Initial ²⁶ Al Abundances among Fine-Grained Ca-Al-
a.m.	Yurimoto H.	Rich Inclusions in the Reduced CV Chondrites [#6021]
		We obtained Al–Mg mineral isochrons of five fine-grained Ca-Al-
		rich inclusions from the reduced CV chondrites. Inferred initial
		26 Al/ 27 Al range from (5.19 ± 0.17) to (3.35 ± 0.21) × 10 ⁻⁵ ,
		corresponds to a formation age spread of 0.44 ± 0.07 Myr.
10:30	Wada S. * Kawasaki N. Yurimoto H.	Oxygen and Al-Mg Isotope Systematics of a Hibonite-Melilite-Rich
a.m.	Trada S. Hawasan H. Harringto H.	Fine-Grained CAI in the Reduced CV Chondrite Northwest
		Africa 8613 [#6028]
		Oxygen and Al-Mg isotope systematics correlated with crystal
		growth sequences for a fine-grained CAI imply the presence of the
		solar nebular gas with variable oxygen isotope compositions 0.16
		± 0.02 Myr after the formation of canonical CAIs.
10:45	Sakamoto N. * Kawasaki N.	Extreme ¹⁶ O-Rich Refractory Inclusions in the
a.m.		Isheyevo Chondrite [#6069]
		Four refractory inclusions consist of grossite rimmed by spinel,
		melilite (+diopside) have extreme ¹⁶ O-rich compositions in the
		Isheyevo chondrite located on the extension of cosmic
		symplectites passing through chondrules.
11:00	Park C. * Sakamoto N. Wakaki S.	Constraints on the Cooling Rate from ¹⁶ O-Rich Perovskite in a
a.m.	Kobayashi S. Kawasaki N. Yurimoto H.	Compact Type A CAI from Allende [#6163]
		We report ¹⁶ O-enriched perovskite enclosed by ¹⁶ O-depleted
		melilite in a compact Type A CAI from Allende. O-isotopic
		· · · · · · · · · · · · · · · · · · ·
		compositions of both minerals are likely primary and the

1 of 2 12/4/2019, 1:30 AM

11:15 a.m.	Krot A. N. * Ma C. Nagashima K. Davis A. M. Beckett J. R. Simon S. B. Komatsu M. Fagan T. J. Genzel P. T. Brenker F. Ivanova M. A. Bischoff A.	Mineralogy, Petrography, and Oxygen Isotopic Compositions of Ultrarefractory Inclusions from Carbonaceous Chondrites [#6109] We report on the mineralogy, petrography and in situ measured O-isotope compositions of 25 CAIs, presumably UR (rare earth elements have not yet measured in most of them), from CR2, CM2, C3.0, CO3.0–3.6, CV3.1–3.6, and CH3.0 carbonaceous chondrites.
11:30 a.m.	Yamamoto D. * Tachibana S. Kawasaki N. Kamibayashi M. Yurimoto H.	Oxygen Isotope Exchange Between CAI Melt and Water Vapor: An Experimental Study [#6095] Oxygen isotope exchange experiments between CAI melt and water vapor show that type B CAIs would be heated for at least a dozen days above the liquidus temperature of melilite.
11:45 a.m.	Park S. Y. * Park C. Kim H. N. Lee S. Y. Lee S. K.	Probing the Oxygen Environments in Melilite Melts Using ¹⁷ O NMR: Implication for Variable Oxygen Isotopic Compositions of Melilite in Type A CAIs [#6119] We report experimental results on the effects of composition on the structure of melilite glasses and melts [åkermanite and gehlenite join] with varying åkermanite content using high-resolution solid-state nuclear magnetic resonance.
12:00 p.m.	Mendybaev R. A. * Savage P. S. Kamibayashi M. Georg R. B. Tachibana S.	Silicon Isotopic Fractionation During Evaporation of CAI-like Melts in Low-Pressure Conditions [#6212] Si isotopes were measured in residues from low-P H ₂ and vacuum evaporation experiments. The experiments show that despite evaporation in low-P H ₂ is faster than in a vacuum, the chemical and isotopic fractionation of Mg and Si remains the same.
12:15 p.m.	Kamibayashi M. * Yamamoto D. Tachibana S. Yurimoto H.	Crystallization of Type B CAI Melt in Low-Pressure Hydrogen Gas and Implications for Formation Conditions of Igneous CAIs [#6254] Crystallization experiments of CAI-like melt in low pressure H ₂ gas showed that melilite crystallizes from the melt rim at H ₂ pressure of 10 Pa due to promoted evaporation of Mg and Si from the surface, suggesting the type B1 CAI formation at >10 Pa.
12:30 p.m.	Dunham E. T. * Liu MC. Hertwig A. T. Desch S. J. Wadhwa M.	CO3 and CH/CB CAIs suggest ¹⁰ Be was Distributed Uniformly in the Solar Nebula [#6346] We find that the short-lived radionuclide ¹⁰ Be was distributed uniformly in the solar nebula by measuring ¹⁰ Be- ¹⁰ B isotope systematics in 11 CO3 and CH/CB CAIs; this indicates that ¹⁰ Be was likely produced in the molecular cloud by GCR irradiation.
12:45 p.m.	Torrano Z. A. * Rai V. K. Wadhwa M.	Chromium Isotope Compositions of Refractory Inclusions: Implications for Isotopic Variability in the Early Solar System [#6104] We report high-precision, mass-independent Cr isotope compositions for several CAIs and discuss the implications for isotopic variability in the CAI-forming region in the early solar system.

2 of 2