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Introduction

= Atmospheric gravity waves (GWSs), which were generated from various sources in
the lower atmosphere, play a major role in determining the spatiotemporal
characteristics of the middle and upper atmosphere by transferring momentum
and energy from the lower to the upper layers.

» GWs in the mesosphere have been observed using

radar (e.g., Vincent and Reid 1983; Vincent and Fritts 1987; Fritts and Vincent 1987)

lidar (e.g., Chanin and Hauchecorne 1981, Wilson et al. 1991, Beatty et al. 1992)

all-sky airglow imager (e.g., Fritts et al. 2002; Brown et al. 2004)

satellite (e.g., Em et al. 2011; Kalish et al. 2016)

= meteor radar (e.g., Mitchell and Beldon 2009; Beldon and Mitchell 2009; Lee et al. 2013; Song et al. 2017)

= Observational studies of GWs in the upper mesosphere using meteor radar have
been primarily conducted in the Arctic and the Antarctic region.

» High latitude region in the southern hemisphere including the Antarctica is one of
the areas where highest GW activities in the middle atmosphere exist. King
Sejong Station (KSS) is in a hot spot of strong GW activity along the Antarctic
Peninsula.



Introduction

= However, the wind variances and the semidiurnal tidal amplitudes have very
similar seasonal variability across the entire height range (Lee et al. 2013). Therefore,
it is required to remove the large-scale wind components including tides properly

to investigate the GW activity in the mesosphere.
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Data and Methodology

* Meteor radar data at KSS

2014-01-15-00UTC

50°S
55°S - ]
60°S A =
65°S
70°S A \
75°S -

_—*‘
80°S T T T T T T

B0°W 75°W 70°W 65°W 60°W 55°W 50°W 45°W

Variables
Period

) Temporal
Resolution ‘
Vertical

Meteor radar at KSS

U, V, U variance, V variance
Mar. 2007—Dec. 2014
1 hour (sampling: every 2 min)
2 km (80—100km, 11 levels)

2014-01-15-00UTC

58°S

60°S

62°S -

64°S

°g

64°W  62°W  B60°W  58°W

56°W  54°W

Y range (km)

80-82 82-84 84-86 86-88 88-90 90-92 9294 9496 9698 98-100 (km)

Meteor echo distribution
2014-01-15 0.00 UTC

______
- -
- -

"H=80km,0=75

H=100km, 6 =75

-400 (] TR | R R I LR T
-400 -300 -200 -100 0 100 200 300 400

X range (km)

* The meteor radar at KSS can automatically monitor approximately 15,000 to 35,000 meteors
per day, regardless of weather conditions

» Using the radial velocity and spatial information (azimuth angle, zenith angle, and distance to
echo) of the meteor echo, we calculated the zonal and meridional winds averaged over an
altitude-time space of 2 km and 1 hour



Data and Methodology

++ Zonal and meridional wind

= Zonal and meridional components of horizontal winds are computed from the meteor radar
echoes and radial velocities using the method by Hocking and Thayaparan (1997), in a time-
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Data and Methodology

+* Large-scale wind components

= The wave components with periods longer than 5.5 hour within a 8-day (192 hrs) window that
moves 1-hour increment is defined as the large-scale wind at KSS (song et al., 2017).

= This includes diurnal (24 h), semidiurnal (12 h), terdiurnal (8 h), and quardiurnal (6 h) tides,

and 2-day and 4-day waves
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The 2-day wave has the largest
amplitude (> 20 m s71), and the
amplitude of 4-day is also
significant (larger than 5 m s™)
The amplitude of the semidiurnal
tide is about of 12 m s71, which is
the largest among the four tidal
components.

Activities of the 2-day waves
observed in the polar regions are
known to be strong in both
summer and winter (Baumgaertner
et al. 2008)
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Data and Methodology

s Extracting GW components
We propose a new methodology to explicitly remove the large-scale wind from each meteor
echo by interpolating the large-scale winds into each meteor echo location and time.

= interpolate 2-dimensional (time and height) wind data
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= project the interpolated winds in the line-of-sight horizontal direction
= subtract the projected large-scale winds from the observed winds

= calculate GW variances
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Horizontal wind variance in the upper mesosphere at KSS
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* GW activity in the upper mesosphere shows a semi-annual variability, with a dominant peak in
winter (June-September), secondary peak in summer, and minimum in the equinoxes.

* Thisis related to the seasonal changes in the background wind, which is the strongest in the
solstices and the weakest in the equinoxes.



Potential Sources of the Observed GWs- Orography

» Percentage of days when rotation of the
horizontal wind vector at the northeast side of
the King George Island is less than 90° in the
altitude range 925-1 hPa.
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» KSS located at King George Island where steep mountains exist.
* Following Yamashita et al. (2009), we calculate percentages of days when rotation of

* Orography can be considered as a major wave source in winter.
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Polar night jet

“* RNBE (residual of nonlinear balance equation (zhang 2004; chun et al. 2013, 2019)
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* Large |RNBE| along the polar vortex in the stratosphere, especially during winter season

Corr. Wind variance (98km) vs | RNBE| (5 hPa)
DJF (Summer) 2012-2014  MAM (Autumn) 2012-2014  JJA (Winter) 2012-2014 SON (Spring) 2012-2014

*  GW activities observed in the upper mesosphere in spring and autumn are associated with

the jet stream in the upper stratosphere
* In winter, there are no areas with significant correlation, due to the critical level filtering and

the Doppler shifting by the strong wind speed and wind shear in wintertime.



Convection

Column-maximum deep Convective Heating rate (DCH)
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* DCHis provided from
CFSR global reanalysis
data (Saha et al. 2010)
and momentum flux of
convective GWs
(CGWMF) is calculated

CGWMEF (1 hPa) A E B using off-line convective
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by Kang et al. (2018, JAS)
using the CFSR data.

* The largest CGWMF
exist in the storm-track
regions in the
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wintertime.
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in storm tracks can be a
possible source of GWs
observed at KSS in
wintertime, although
strong correlation
occurs locally in other
seasons as well.




Meteor radar at KSS in the Antarctic Peninsula are used to analyze winds and wind
variances in the upper mesosphere over an 8-year period (2007-2014).

A semi-annual variation of GW activities in the upper mesosphere with solsticial
maxima and equinoctial minima exists, except above 94 km where maximum GW
variance appears in August—-September.

GWs generated by orography can reach the upper mesosphere without
encountering a critical level due to the strong westerly from the troposphere to the
mesosphere in wintertime.

The RNBE in the upper stratosphere correlated well with observed GWs in the upper
mesosphere, particularly in spring and autumn.

Deep convection in the midlatitude storm-track regions can be considered as a
possible source of GWs in autumn and winter.

In order to understand the source of GWs more accurately, 3-dimensional
propagation of GWs should be considered. To this end, we are now using KSS
meteor radar and airglow all-sky camera data to examine the backward integration
of a 3-dimensional GW ray-tracing model.



THANK YOU.




Large-scale wind components
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Motivation

Wind variance (GWs)
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Research stations in Antarctica
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