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Passive microwave (PM) sea ice concentration (SIC) in summer in Arctic e e (b) Bias=6.7%  « BT and ASI SIC show very large

o gé/l :859:.1202'3% RMSE and SE, possibly due to

the effects of atmospheric
conditions and melt ponds on
the AMSR2 TB observations.
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* A primary data source for climate change prediction and ship navigation
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Typically inaccurate due to similar microwave radiation characteristics of sea ice and open
water, which is attributed to atmospheric effects and ice surface melting
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Objectlves Fig. 3. Comparison of K5 SAR SIC with AMSR2 SIC from (a) Bootstrap (BT) and (b) ARTIST Sea Ice (ASI) algorithms
in summer in the Chukchi Sea

To develop superior summer SIC estimation models for the Chukchi Sea by considering

atmospheric effects on the AMSR2 observations based on four machine learning approaches
— Decision Tree (DT), Random Forest (RF), Multi Layer Perceptron (MLP), and Convolution (8"
Neural Network (CNN)
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 The models were validated by
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* To evaluate the performance of summer SIC estimation of developed machine learning ‘.
models and existing SIC retrieval algorithms i
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Fig. 4. Validation results of summer SIC estimation by (a) DT, (b) RF, (c) MLP, and (d) CNN.
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Fig. 1. Examples of KOMPSAT-5 SAR images obtained for the study area (a mosaic of the images in Aug. 2017).
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KOMPSAT-5 SAR Enhanced Wide swath images
* 339 images obtained in summer (Jul. ~ Sep.) from 2015 to 2017 (6.25 m resolution) Fig. 5. SIC on 6 August 2015 in the Chukchi Sea estimated by (a) DT, (b) RF, (c) MLP, (d) CNN, (e) BT, and (f) ASI
* Used to compute SIC (training and validation data for SIC estimation models) algorithms.
* The performance of DT model is poor (e.g., white circle in (a)) due to simple rule-based learning.
AMSR2 & ERA-Interim reanalysis data | | * The RF model produced similar results to the BT and ASI algorithms.
’ AMSRZ brightness temperature (TB) at 6.9, 10.7, 18.7, 23.8 36.5, and 89.0 GHz (V, H) in a grid * The MLP and CNN models produced different SIC in marginal ice zone compared to BT and ASlI
 ERA-Interim atmospheric parameters — total columnar water vapor, wind speed, 2 m
temperature, 925 hPa temperature, and mean sea level pressure (resampled to 10 km) Assessment of SIC estimation models using MODIS SIC
* Used as input variables for SIC estimation models
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The sun angle-corrected broadband albedo computed from the three bands, from which i | SE=16.9% Lo SE=T11T% § |SE=134%
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Concluding Remarks

Fig. 2. Flowchart of summer SIC estimation using AMSR2 observations and ERA-Interim reanalysis based on

. . * The summer SIC estimation models for the Chukchi Sea were developed using AMSR2 and
machine learning.

ERA-Interim reanalysis data based on machine learning approaches.

* The models (except for DT model) showed smaller error than BT and ASI algorithms compared
to KOMPSATS-5 SAR SIC.

* The performance assessment of summer SIC estimation using the MODIS SIC represented that
the MLP model is superior to other machine learning models and the existing algorithms.
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