Effects of increased temperature and precipitation on soil biogeochemical processes in Cambridge Bay, Canada

J.Y. Jung¹, M.J. Kwon¹, K-S Jang², H Kang², J. Chi¹, S. Nam¹, M. Kim¹ H. Kang³, J Seo³, Y. K. Lee¹

¹ Korea Polar Research Institute
 ² Korea Basic Science Institute

³ Yonsei University

Permafrost soil

Permafrost is rock or soil that remains at or below freezing for at least two consecutive years.

(Schuur et al. 2008)

Distribution of permafrost

22.8 x 10⁶ km²

(23.9% of the Northern hemisphere land mass, Zhang et al. 1999)

SOC storage in permafrost

1035 Pg (billion tons) (Hugelius et al. 2014)

Global surface temperature

Global mean surface temperature change in NH cold season compared with 1951-1980 average GISTEMP Team(2019) https://data.giss.nasa.gov/gistemp/

Climate change and its impacts on permafrost soils

- Temperature increase
- Precipitation change
 - 7.5~18.1% increase by
 2090
- Thawing, increase active layer depth
 - 15~50% degradation of permafrost until 2050
- Change in a type of ecosystem
 - Tundra area -> Boreal shrubs and trees

Time series of annual permafrost temperatures measured from north to south across Alaska in the continuous and discontinuous permafrost zones. [From V. Romanovsky, <u>www.arctic.noaa.gov/report12</u>]

Korea Polar Research Institute

(Reviewed by Jahn et al. 2010)

Effects of climate change on SOM

Changes in SOM

Study site

Town

Climate change projections in Cambridge Bay

CGCM1 (Canadian Global Coupled Model) climate prediction (Bell et al., 2003)

Increased temperature and precipitation

- Since 2012
- Warming by Open Top Chambers (2 m basal diameter)
- Precipitation: 2 L/plot/week
- OTCs & precipitation operation: July ~ early October

Warming & watering

Vaa	r	OTC	отс	Warming	Wataring	Added
rea	ſ	Set up	Removal	period (d)	watering	water (L)
2012	1	7/10	10/6	89	7/27, 8/3, 8/10, 8/17, 8/31, 9/7, 9/21	14
2013	2	7/3	10/8	98	7/20, 7/26, 8/9, 8/15, 9/7, 9/13, 9/27	1/
					* 8/23-9/9 OTC was destroyed due to strong wind	14
2014	3	6/21	9/24	96	6/26, 7/3, 7/10, 7/24, 8/7, 8/14, 8/21, 8/28, 9/11	18
2015	4	6/27	9/24	90	7/3, 7/16, 7/30, 8/6, 8/13, 8/20, 8/27, 9/3, 9/11	18
2016	5	6/20	9/30	103	6/24, 7/1, 7/7, 7/14, 8/4, 8/12, 8/18, 8/25, 9/1, 9/8, 9/15, 9/22	24
2017	6	6/15	9/21	99	6/23, 6/29, 7/7, 7/14, 7/21, 8/4, 8/10, 8/24, 8/31, 9/7	20
2018	7	6/20	9/15	88	6/28, 7/5, 7/12, 7/19, 7/26, 8/2, 8/9, 8/16, 8/23, 8/30, 9/6	22
2019	8	6/22	9/23	94	6/27, 7/4, 7/11, 7/18, 7/25, 8/1, 8/8, 8/15, 8/22, 8/29, 9/5	22

- Main Vegetation: *Carex* spp., *Dryas*
- Soil Type: Orthic Eutric Turbic Cryosol
- Organic layer depth: 5-20 cm
- Active Layer Depth: 1.4 m (Mid August 2018)

Measurements

- **Air and soil environments monitoring** : Air temperature and relative humidity (25 cm), soil temperature and moisture content (5 cm depth)
- **Plant** parameters: Plant species, vegetation coverage, NDVI (normalized difference vegetation index)
- **Soil** properties (Organic, mineral layers)
 - Physical properties: moisture content, bulk density, texture
 - Chemical properties: pH, electrical conductivity, inorganic nitrogen, DOC (quantity and quality)
- **Gas** fluxes: CO₂
- Soil microbial community structure (Pyrosequencing) and microbial biomass (Phospholipid fatty acids (PLFA) analysis)
- Microbial activity: extracelluar enzyme activity

data logger of soil temp/MC sensors

C

NDVI sensors

soil temperature & moisture content sensors (5 cm depth)

Environmental data

Air temp	Warming*Wetting	Warming only
Warming	***	***
Wetting	n.s.	-
W*W	n.s.	-
random	(slope) block, year	(slope) block, year

RH	Warming*Wetting	Warming only
Warming	***	***
Wetting	n.s.	-
W*W	***	-
random	(slope) block, year	(slope) block, year
	•	

Environmental data

Soil temp	Warming*Wetting	Warming only
Warming	* * *	***
Wetting	n.s.	-
W*W	n.s.	-
random	(slope) year	(slope) year

Moisture	Warming*Wetting	Warming only
Warming	n.s.	n.s.
Wetting	n.s.	-
W*W	n.s.	-
random	(slope) block, year	(slope) block, year

Short-term responses

- Effects of warming (after 1.5 year of manipulation)
 - Increased inorganic N content
 - Enzyme activity: increased phenol oxidase activity
 - Vegetation: drought stress

```
(Seo et al., 2015)
```


Short-term responses

Bacterial community

- PERMANOVA results
 Block, treatment, depth showed significant differences
- post hoc pairwise t-test
 Significant difference between control and precipitation plots

Groups	t	P (perm)	Unique perms	P (Monte Carlo)
C vs. P	1.197	0.003	7175	0.1417
C vs. W	1.085	0.048	7093	0.3107
C vs. W+P	1.104	0.007	7106	0.2674
P vs. W	1.140	0.015	7150	0.2152
P vs. W+P	1.163	0.012	7183	0.183

After 7-8 years

Plant responses Normalized Difference Vegetation Index

Soil responses

Soil responses

DOM analysis procedure using 15 Tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry

Soil sampling & hand-shacking

Extraction with ultra pure water

Solid Phase Extraction

15T FT-ICR MS analysis

Chemical composition of DOM (Frequency-based)

Date	Trt	Tot. Peak	СНО	CHON	CHOS	CHONS
6-28	С	1977	69.3	29.4	0.3	0.9
	W	2014 🗸	71.3	27.5	0.2	0.8
7-14	С	1926	69.5	29.7	0.1	0.6
	W	1975 🗸	72.8	26.3	0.0	0.6
7-31	С	1918	66.3	32.8	0.0	0.8
	W	2161 💙	63.6	35.5	0.2	0.8
8-17	С	1547	74.9	23.0	0.8	1.1
	W	1708 🗸	76.9	21.3	0.5	1.0
9-2	С	1821	73.5	24.6	0.4	1.2
	W	1890 🗸	70.7	26.9	0.8	1.4

Chemical composition of DOM (Intensity-based)

Date	Trt	СНО	CHON	CHOS	CHONS	CHNS
6-28	С	80.4	18.4	0.2	1.0	0.0
	W	76.3	15.7	7.2	0.7	0.1
7-14	С	79.6	19.6	0.1	0.6	0.1
	W	82.5	16.9	0.0	0.5	0.1
7-31	С	78.7	20.5	0.0	0.8	0.0
	W	76.9	22.1	0.1	0.9	0.0
8-17	С	82.9	15.3	0.7	1.0	0.1
	W	87.1	11.5	0.4	0.8	0.1
9-2	С	84.2	14.1	0.2	1.3	0.1
	W	84.7	13.0	1.1	1.2	0.1

Molecular class distributions of the assigned formulas

Date	Trt	Lignin	Cond arom	. Tannin atics	Carbo-hyd rate	Unsat. hydroC	Lipids	Protein
6-28	С	84.3	4.5	2.6	0.2	0.5	7.6	0.4
	W	79.2	4.4	4.2	0.1	0.1	11.7	0.3
7-14	С	82.6	5.9	4.1	0.0	0.1	6.1	1.2
	W	81.8	5.7	3.6	0.0	0.0	8.0	0.8
7-31	С	83.2	3.4	2.3	0.0	0.1	9.6	1.3
	W	86.1	2.4	2.7	0.4	0.1	6.5	1.8
8-17	С	84.1	3.9	2.0	0.3	0.1	6.7	2.9
	W	81.4	3.0	2.0	0.2	0.0	12.7	0.6
9-2	С	84.6	4.0	2.0	0.3	0.1	8.0	1.0
	W	89.3	2.3	1.4	0.4	0.1	5.9	0.4

Summary

- In a short term, warming combined with precipitation increased the activity of phenol oxidase
- Warming induced drought stress in vegetation
- After 7-8 years, warming slightly increased the activity of vegetation
- Warming significantly increased DOC contents at the end of growing season
- Chemical compositions of DOM did not significantly vary with either plant phenology or warming treatment

Acknowledgement

- Funding: National Research Foundation of Korea funded by the Korean Government
- Research permit: Nunavut Research Institute
- POLAR (Canadian High Arctic Research Station) staffs
- Lab work: Sujeong Jung

Rick, Aaron, Sandi Johann Wagner & Serguei Ponomarenko Donald McLennan

Soil Organic Matter (SOM)

OTC period

Soil temp	Warming*Wetting	Warming only
Warming	***	***
Wetting	n.s.	-
W*W	n.s.	-
random	(slope) year	(slope) year

Moisture	Warming*Wetting	Warming only
Warming	n.s.	n.s.
Wetting	n.s.	-
W*W	n.s.	-
random	(slope) block, year	(slope) block, year

July

Soil temp	Warming*Wetting	Warming only
Warming	* * *	***
Wetting	***	-
W*W	n.s.	-
random	(slope) year	(slope) year

Moisture	Warming*Wetting	Warming only
Warming	n.s.	n.s.
Wetting	n.s.	-
W*W	n.s.	-
random	(slope) block, year	(slope) block, year

August

Soil temp	Warming*Wetting	Warming only
Warming	* * *	***
Wetting	**	-
W*W	n.s.	-
random	(slope) year	(slope) year

Moisture

Moisture	Warming*Wetting	Warming only
Warming	n.s.	n.s.
Wetting	n.s.	-
W*W	n.s.	-
random	(slope) block, year	(slope) block, year

Wetting \rightarrow soil temp rise in Jul and Aug

Ρ

Wetting \rightarrow soil temp rise in Jul and Aug

- No difference in air temp induced by wetting
- Difference in soil temp induced by wetting, avr 0.3 degC in Jul & Aug
- Sensor accuracy: 0.21 0.25 degC, resolution: 0.02 0.03 degC

OTC, avr	С	Р	W	WP
Air temp	6.96	6.97	7.48	7.43
RH	86.87	86.65	85.61	85.91
Soil temp	6.11	6.28	6.78	6.97
Moi	32.83	34.48	35.22	33.65

July, avr	С	Р	W	WP
Air temp	10.14	10.16	10.81	10.78
RH	82.16	81.98	80.66	80.88
Soil temp	8.68	9.05	9.52	9.88
Moi	35.22	35.60	35.64	34.58

C	Р	W	WP
8.71	8.73	9.20	9.18
86.00	85.71	84.64	84.90
7.47	7.80	8.27	8.44
35.30	35.25	35.38	<i>3</i> 4.98
	C 8.71 86.00 7.47 35.30	C P 8.71 8.73 86.00 85.71 7.47 7.80 35.30 35.25	CP8.718.739.2086.0085.717.477.8035.3035.2535.38

Wetting \rightarrow soil temp, random sampling

Study site

Southeast coast of Victoria Island, Nunavut

Associate Professor Kerrylee Rogers is a coastal ecogeomorphologist and recent ARC Future Fellow in the School of Earth, Atmospheric and Life Sciences at the University of Wollongong (UOW). Between 2005, when she graduated with PhD from UOW, and 2012 she was appointed as an environmental scientist with the New South Wales Government, before returning as a research associate at UOW in 2012. *[full biography]*

1100-1130 Morning Tea & Exhibition | Gallery Level 1

	Concurrent Session A			
Room	Stream 1 <i>Ballroom A</i>	Stream 2 <i>Ballroom B</i>	Stream 3 Ballroom C	
Theme	C sequestration – opportunities, costs, trade-offs	Ecological significance and function of SOM	Blue carbon	
Chair	Mike Beare & Elaine Mitchell	Brian Wilson & Liz Coonan	Di Allen & Christina Asanopoulos	
1130-1144	Full inversion tillage offers opportunity for increased C sequestration, implications and agronomic effects <i>Dr Sam McNally</i>	Abiotic nitrogen immobilization affect organic matter composition and stoichiometry <i>Professor Johannes Lehmann</i>	Investigating the relationship between soil organic carbon and age in temperate blue carbon ecosystems <i>Christina Asanopoulos</i>	
1145-1159	Dynamics of residue 13C and 15N at various depths in diverse soils <i>Dr Monika Gorzelak</i>	Convergence and divergence of carbon pathways by soil organic matter formation <i>Professor Yakov Kuzyakov</i>	Laboratory capacity for the analysis of Soil Organic Matter in Pacific Island Region and the Blue Carbon Initiative <i>Dr Vincent Lal</i>	
1200-1214	Carbon sequestration opportunity in South Australian sandy soils with subsoil clay addition <i>Dr Amanda Schapel</i>	SOM chemistry and its relationship to water retention and hydraulic conductivity in Canadian and Australian peat soils <i>Anne Yusuf</i>	Microbial uptake kinetics of dissolved organic carbon (DOC) compound groups from river water and sediments <i>Dr Helen Glanville</i>	
1215-1229	Intensification of no-till agricultural systems: An opportunity for carbon sequestration <i>Dr Rodrigo Nicoloso</i>	Effects of increased temperature and precipitation on soil biogeochemical processes in Cambridge Bay, Canada <i>Dr JiYoung Jung</i>	Nutrient enrichment induces a shift in dissolved organic carbon (DOC) metabolism in oligotrophic freshwater sediments <i>Francesca Brailsford</i>	
1230-1244	Forest conversion effects on SOM composition: Disentangling effects of parent material and litter input chemistry <i>Olaf Brock</i>	Impacts of residue quality and N input on aggregate turnover using the combined 13C natural abundance and rare earth oxides as tracers <i>Professor Xinhua Peng</i>	Predicting the carbon and nitrogen contents in soil from blue carbon environments using infrared spectroscopy <i>Dr Jeff Baldock</i>	
1245-1259	Cancelled presentation	Is paddy-rice system a better niche for carbon sequestration? <i>Dr Ashim Datta</i>	The crucial role of organic carbon availability in driving geochemical cycles in wetland and floodplain soils	