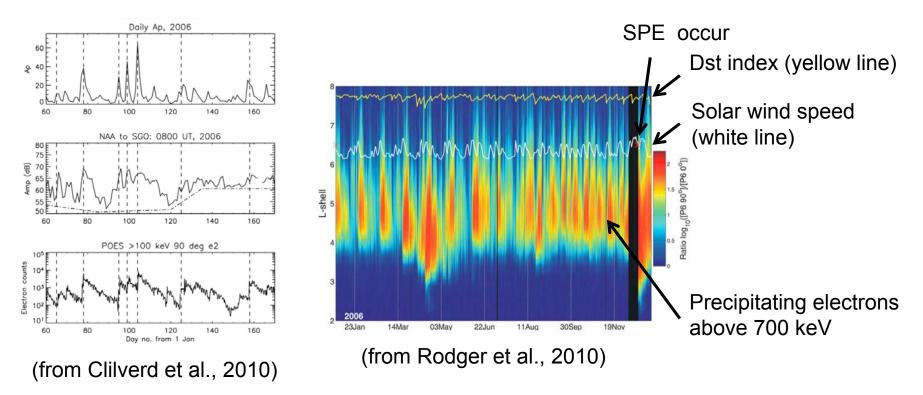

Responses of nitrogen oxide to high-speed solar wind stream in the polar middle atmosphere

Ji-Hee Lee¹, Geonhwa Jee^{1,4}, Young-Sil Kwak^{2,3}, Sang-bum Hong¹, Heejin Hwang¹, In-Sun Song¹, Young-Sook Lee⁵, Esa Turunen⁶, Dae-Young Lee⁷


¹Korea Polar Research Institute, Incheon, Republic of Korea
²Korea Astronomy and Space Science Institute, Daejeon, Republic of Korea
³Department of Astronomy and Space Science, Korea University of Science and Technology, Daejeon, Republic of Korea
⁴Department of Polar Science, Korea University of Science and Technology, Daejeon, Republic of Korea
⁵Department of Astronomy and Space Science, Chungnam National University, Daejeon, Republic of Korea
⁶Sodankylä Geophysical Observatory, University of Oulu, Tähteläntie, Finland
⁷Department of Astronomy and Space Science, Chungbuk National University, Cheongju, Republic of Korea

The impact of particle precipitation on neutral atmosphere

Source of EPP

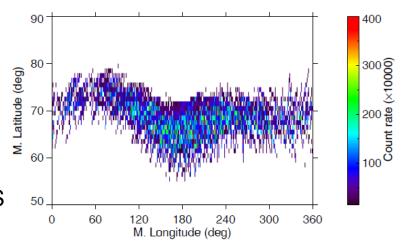
- SPEs largely increase the particle precipitation, but has low occurrence rate.
- EPPs occur more frequently and persistently during HSSs events.
- HSSs can be more important to chemical change in the polar atmosphere by EEP.

Goals

- Where is the depth associated with the direct production of NO_x by HSSs?
- How much the NO_x by the direct effect by HSSs?
- How much the O_3 destruction by NO_x associated with HSSs?

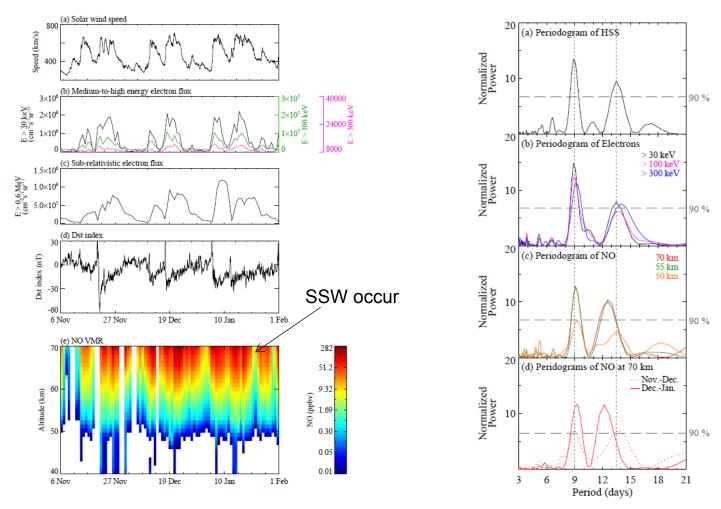
Used data

1. Selected HSS events


- 6 November, 2007 to 1 February, 2008

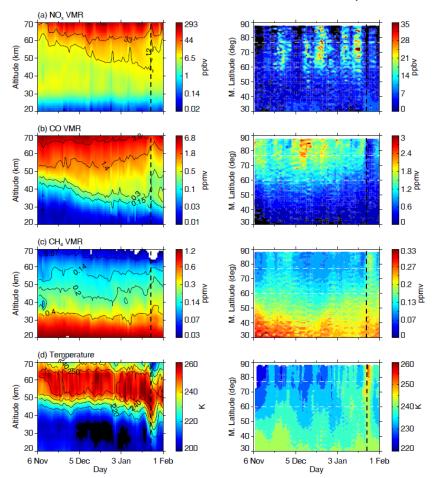
2. Space condition

- Solar wind speed from SWEPAM/ACE
- Precipitating electron flux from MEPED/POES
- Geomagnetic latitude range : 60-77°N


3. Middle atmospheric condition

- NO_x and tracer gases (CO and CH_4) volume mixing ratio from MIPAS/Envisat
- O₃ VMR from MLS/Aura
- Vertical range : 20-70 km

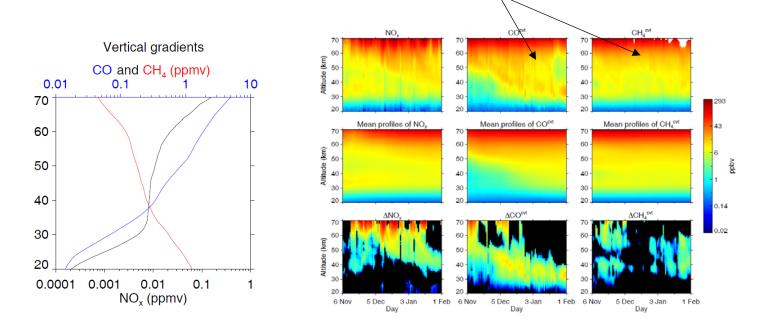
Result 1 : Response of NO by HSSs



• Effect of the HSSs may be reached down to 55 km altitude.

Downward transport of NO_x and vortex dynamics

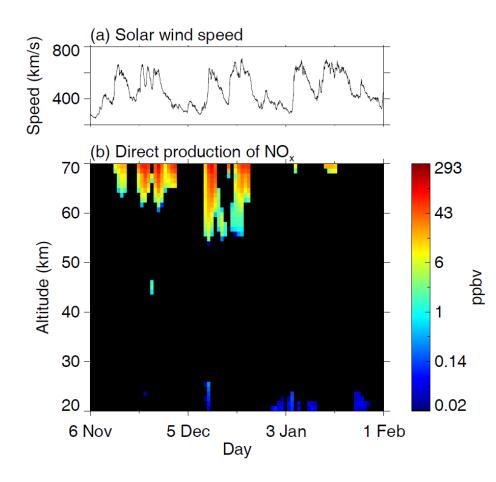
Daily zonal mean (60°N-77°N) VMRs and Temperature vertical mean (40-70 km)



- Tracer is interrupted downward transport and temperature is disturbed in Nov and Jan.
- Strong horizontal mixing may occur in Nov and Jan.
- To estimated the amount of directly produced NO_x, have to remove the horizontal mixing effect.
- Remove the horizontal mixing effect using correlation with NO_x and tracer.

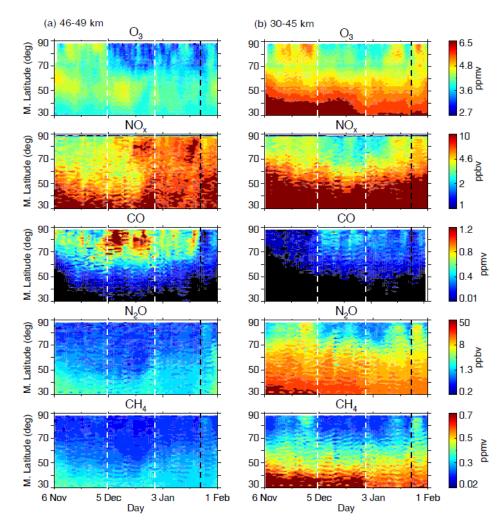
Estimation of amount directly produced NO_x

Converted CO and CH4 seems to similar to NO_x's vertical gradient


To directly compare the NO_x and tracer, we have to convert the vertical gradient of tracer.

$$NOx^{avg} imes \frac{tracer}{tracer^{avg}}$$

$$NO_x^P \approx \Delta NO_x - \Delta CO^{cvt} - \Delta CH_4^{cvt} - \overline{\Delta NO_x} - \overline{\Delta CO^{cvt}} - \overline{\Delta CH_4^{cvt}}$$


Result 2 : Amount of direct production of NO_x

- Estimated that 2 ppbv of NO_x is produced directly at 55 km.
- Our result is largly consistent with the previous studies
 - Direct NO production was about
 2 ppbv at 55 km altitude
 (Smith-Johnsen et al., 2017)
 - Direct production of NO_x was about 3-6 ppbv at the altitude of 40-64 km (Sinnhuber et al., 2014).

Result 3 : Ozone destruction by EEP induced-NO_x

- Strong downward transport appears in December.
- O₃ loss identifies in both altitude region.
- But, O₃ loss in lower altitude region is accompanied by low NO_x.
- O₃ loss by EEP during HSSs may occur in most upper stratosphere alone.

Summary

- Using satellite observations for NO_x, CO, CH₄, and O₃ VMRs during high–speed solar wind streams (HSSs) events from 6 November 2007 to 1 February 2008, we investigated the effects of HSSs on NO_x and O₃ in the polar middle atmosphere.
- The vertical impact range of the high–speed solar wind is estimated to be down to 55 km as a result of the periodical analysis.
- The amount of directly produced NO_x estimated about 2 ppbv at the altitude of 55 km.
- The O₃ may be destroyed by HSSs-induced NO_x in the most upper stratosphere.

Thank you!

CHAMOS meeting 2018

8-12 October, 2018. University of Otago, Dunedin, New Zealand

Monday

Morning (start at 10am)

- Welcome
- CHAMOS updates
- New people
- Ongoing projects
- New and upcoming publications

Afternoon

- Updates on simulation capability
- SIC model
- CESM/WACCM
- EEP model for providing ionisation rates for climate models.
- Evening: CHAMOS welcome dinner in town

Tuesday

Morning (start at 9am)

- Particle precipitation, atmospheric ionisation work, ionosphere
- Update on EEP ionisation rate [MLT model] validation work
- EMIC wave driven electron precipitation energetic, relativistic, ultrarelativistic, or all of the above?
- Intensity and properties of microbursts
- High energy particles and X-rays in middle atmosphere, status of in-situ measurements and planned new observations
- Proton precipitation with a global hybrid-Vlasov magnetospheric model: Vlasiator
- Geoeffectiveness of solar wind high-speed streams during cycles 23 and 24
- Early detection of solar flares using VLF observations

Afternoon

- Particle precipitation, atmospheric ionisation work, ionosphere - continued from morning Evening optional program: Dinner at a restaurant in St Clair by the ocean

Wednesday

Morning (start at 9am)

- Updates on our polar observation networks
- Particles
- Ionisation
- Ionosphere
- Distribution of our EEP ionisation rate datasets (Van de Kamp et al. work, including CMIP6 ionisation rates, etc)
- Funding for CHAMOS work
- Student opportunities

Afternoon - Local excursion

Thursday

Morning (start at 9am)

- Atmospheric chemistry, dynamics and climate change
- Antarctic ozone and Solar Proton Events
- Substorm impacts on the atmosphere from short term toleejihee@kopri.re.kr solar cycle variability
- Atmospheric impact of microbursts
- EMIC impacts on atmosphere
- Can changes on mesospheric ozone levels propagate to the surface?
- Long term climate change in the D-region modelling progress

Thursday

Afternoon

- Updates on our polar observation networks
- Chemistry
 - Mesospheric ozone monitor MOSAIC instrument: development update, data analysis, future plan
- Dynamics (winds, temperatures)

Evening: CHAMOS dinner in town

Friday

Morning (start at 9am)

- Meetings in the next 12-24 months
- Next CHAMOS meeting