Responses of nitrogen oxide
to high-speed solar wind stream
in the polar middle atmosphere
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The impact of particle precipitation on neutral atmosphere
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Source of EPP
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« SPEs largely increase the particle precipitation, but has low occurrence rate.

« EPPs occur more frequently and persistently during HSSs events.

« HSSs can be more important to chemical change in the polar atmosphere
by EEP.

HAOPR\

s Fralar Fraeerch instites



Goals

* Where is the depth associated with the direct production of NO, by HSSs?

* How much the NO, by the direct effect by HSSs?

* How much the O, destruction by NO, associated with HSSs?
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Used data
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1. Selected HSS events
- 6 November, 2007 to 1 February, 2008
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2. Space condition

- Solar wind speed from SWEPAM/ACE
- Precipitating electron flux from MEPED/POES 5o | | | | |

- Geomagnetic latitude range : 60-77°N T Wiogude ey
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3. Middle atmospheric condition

- NO, and tracer gases (CO and CH,) volume mixing ratio from MIPAS/Envisat
- O3 VMR from MLS/Aura

- Vertical range : 20-70 km
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Result 1 : Response of NO by HSSs
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« Effect of the HSSs may be reached down to 55 km altitude.
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Downward transport of NO, and vortex dynamics

Daily zonal mean (60°N-77°N) VMRs and Temperature
vertical mean (40-70 km)

(a) NO, VMR
. § =« Tracer is interrupted downward
g 3 transport and temperature is
= ’ disturbed in Nov and Jan.

>+« Strong horizontal mixing may
occur in Nov and Jan.
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Estimation of amount directly produced NO,

Converted CO and CH4 seems to similar to NO,’s vertical gradient
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To directly compare the NO, and tracer, we have to convert the vertical gradient

of tracer.
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Result 2 : Amount of direct production of NO,

— (a) Solar wind speed
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(b) Direct production of NO,

» Our result is largly consistent with
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Result 3 : Ozone destruction by EEP induced-NO,
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Summary

« Using satellite observations for NO,, CO, CH,, and O3 VMRs during
high—speed solar wind streams (HSSs) events from 6 November 2007
to 1 February 2008, we investigated the effects of HSSs on NO, and O,
in the polar middle atmosphere.

» The vertical impact range of the high—speed solar wind is estimated to be
down to 55 km as a result of the periodical analysis.

« The amount of directly produced NO, estimated about 2 ppbv at the
altitude of 55 km.

* The O; may be destroyed by HSSs-induced NO, in the most upper
stratosphere.
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Thank you!



CHAMOS meeting 2018
8-12 October, 2018. University of Otago, Dunedin, New Zealand

Monday
Morning (start at 10am)
- Welcome
- CHAMOS updates
- New people
- Ongoing projects
- New and upcoming publications
Afternoon
- Updates on simulation capability
- SIC model
- CESM/WACCM
- EEP model for providing ionisation rates for climate models.
Evening: CHAMOS welcome dinner in town

Tuesday

Morning (start at 9am)
- Particle precipitation, atmospheric ionisation work, ionosphere
- Update on EEP ionisation rate [MLT model] validation work
- EMIC wave driven electron precipitation - energetic, relativistic, ultrarelativistic, or all of the
above?
- Intensity and properties of microbursts
- High energy particles and X-rays in middle atmosphere, status of in-situ measurements and
planned new observations
- Proton precipitation with a global hybrid-Vlasov magnetospheric model: Vlasiator
- Geoeffectiveness of solar wind high-speed streams during cycles 23 and 24
- Early detection of solar flares using VLF observations
Afternoon
- Particle precipitation, atmospheric ionisation work, ionosphere - continued from morning
Evening optional program: Dinner at a restaurant in St Clair by the ocean

Wednesday

Morning (start at 9am)

- Updates on our polar observation networks
- Particles
- lonisation
- lonosphere

- Distribution of our EEP ionisation rate datasets (Van de Kamp et al. work, including CMIP6
ionisation rates, etc)

- Funding for CHAMOS work

- Student opportunities

Afternoon - Local excursion

Thursday
Morning (start at 9am)
- Atmospheric chemistry, dynamics and climate change
- Antarctic ozone and Solar Proton Events
- Substorm impacts on the atmosphere - from short term toleejihee@kopri.re.kr solar cycle
variability
- Atmospheric impact of microbursts
- EMIC impacts on atmosphere
- Can changes on mesospheric ozone levels propagate to the surface?
- Long term climate change in the D-region - modelling progress

Thursday
Afternoon
- Updates on our polar observation networks

- Chemistry

- Mesospheric ozone monitor MOSAIC instrument: development update, data analysis,
future plan

- Dynamics (winds, temperatures)

Evening: CHAMOS dinner in town

Friday
Morning (start at 9am)

- Meetings in the next 12-24 months
- Next CHAMOS meeting



