COLLAPSES OF THE NORTHWESTERN SECTOR OF THE LAURENTIDE ICE SHEET DURING THE LAST GLACIATION CONSTRAINED BY RAMPED PYROLYSIS ¹⁴C SEDIMENT DATING IN THE WESTERN ARCTIC OCEAN

Kenta Suzuki

<u>Kenta Suzuki^{1*}</u>, Masanobu Yamamoto^{1,2}, Leonid Polyak³, Seung-Il Nam⁴, Brad Rosenheim⁵, Takayuki Omori⁶, Tomohisa Irino^{1,2}, Toshiro Yamanaka⁷

¹Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
²Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
³Byrd Polar and Climate Research Center, Ohio State University, Columbus, USA
⁴Division of Polar Paleoenvironment, Korea Polar Research Institute, Incheon, Korea
⁵College of Marine Science, University of South Florida, St. Petersburg, USA
⁶The University Museum, The University of Tokyo, Tokyo, Japan
⁷Department of Ocean and Environmental Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan

kenta.suzuki@ees.hokudai.ac.jp

ABSTRACT

Iceberg discharges from the Late Pleistocene Laurentide ice sheet (LIS) to the North Atlantic, known as the Heinrich events (HE), occurred before the abrupt warmings of the Dansgaard– Oeschger (DO) events. However, not all HE corresponded to DO warmings, which could be related to concurrent ice discharges from the northwestern LIS sector to the Arctic Ocean. These iceberg events can be tracked in the Arctic Ocean sediment records, but their relationship with DO events is unclear due to a lack of adequate age control in these mostly carbonate-free sediments. In this study, we develop new age constraints for LIS iceberg discharges to the western Arctic Ocean during the last glaciation by applying both conventional and ramped pyrolysis (RPO) ¹⁴C dating. The latter method was developed by Rosenheim et al. (2008) for age estimation for the most reactive portion of bulk organic matter in carbonate-poor sediments.

Several sediment cores recovered from the western Arctic Ocean by expeditions on the icebreaker RV Araon and Healy were used for this study. Calcareous foraminifers, where available, were used for conventional ¹⁴C dating. Samples for the RPO ¹⁴C dating were pyrolyzed from room temperature to 900 °C, and the CO₂ release fractions separated at different temperatures were measured for Δ^{14} C. Cores were also analyzed for ice rafted debris (IRD) content, mineral composition, grain size and organic matter to investigate sediment provenance and depositional processes. Dolomite-rich IRD layers in glacial/deglacial sediments indicative of the Canadian Arctic Archipelago provenance were used to track LIS icebergs discharge events. Foraminiferal tests picked from two of the older dolomite layers were ¹⁴C dated to 38 ka and 48 ka corresponding to H4 and H5 events, respectively. A distinct kaolinite-rich IRD layer was also recognized in the late MIS2 sediment. To estimate the age of this foraminiferal-barren layer, we applied RPO ¹⁴C dating method. Based on the estimated offsets between the ages of CO₂ in pyrolized organic matter and conventional ¹⁴C datings, the kaolinite-rich layer corresponds to the deglaciation period, possibly in relation to LIS meltwater drainage event.