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ABSTRACT 

Sentinel-1A and 1B operate in Extra Wide swath dual-
polarization mode over the Arctic Seas, and the two-satellite 
constellation provides the most frequent SAR observation of 
the Arctic sea ice ever. However, the use of Sentinel-1 for sea 
ice classification has not been popular because of relatively 
higher level of system noise and radiometric calibration 
issues. By taking advantage of our recent development on 
Sentinel-1 image noise correction, we suggest a fully 
automated SAR image-based sea ice classification scheme 
which can provide a potential near-real time services of sea 
ice charting. The denoised images are processed into texture 
features and a machine learning-based classifier is trained by 
feeding digitized ice charts. The use of ice chart rather than 
manually classified reference image makes enable an 
automated training which minimizes the effects from biased 
human decision. The resulting classifier was tested over the 
Fram Strait area for an extensive dataset of Sentinel-1 
constellation acquired from October 2017 to May 2018. The 
classification results are shown in comparison with the ice 
charts, and the feasibility of the ice chart-feeded automated 
classifier is discussed. 

Index Terms— synthetic aperture radar, Sentinel-1, sea ice, 
classification 

 
1. INTRODUCTION 

Wide swath SAR observation from several spaceborne 
SAR missions played an important role in studying global 
ocean and ice-covered polar region. Sentinel-1A and 1B are 
producing dual-polarization observation data with the highest 
temporal resolution ever. The cross-polarization is known to 
be more sensitive to the difference in scattering from sea ice 
and open water than the co-polarization, and the combination 
of HH- and HV-polarizations has been widely used for ice 
edge detection and ice type classification. However, the 
majority of the recent ice classification algorithms were 
developed using RADARSAT-2 ScanSAR images [1-3] 
which has different sensor characteristics from Sentinel-1 
TOPSAR, and the use of Sentinel-1 for the same purpose is 
very limited in literature. The main drawback of applying 
existing algorithms to Sentiel-1 data is the relatively higher 
level of thermal noise contamination and its propagation to 
image textures.  

For a proper use of dense time-series, radiometric properties 
must be well calibrated. Thermal noise is often neglected in 
many applications but is impacting seriously the utility of 
dual-polarization SAR data. Sentinel-1 TOPSAR image 
intensity is disturbed by the thermal noise particularly in 
cross-polarization channel. Although the European Space 
Agency (ESA) provides calibrated noise vectors for noise 
power subtraction, residual noise contribution is significant 
considering relatively narrow backscattering distribution of 
the cross-polarization channel. In our previous study in [4], a 
new denoising method with azimuth de-scalloping, noise 
scaling, and inter-swath power balancing was developed and 
showed improved performance in various SAR intensity-
based applications. Furthermore, when it came to texture-
based image classification, we suggested a correction method 
for textural noise [5] which distorts local statistics thus 
degrades texture information in Sentinel-1 GRD product. Fig. 
1 shows a comparison between two different denoised images 
and their corresponding textures. The four left panels are 
from the standard ESA denoising which is a simple 
subtraction of the annotated noise vectors. There are notable 
offsets in entropy values between the first and second 
subswaths for both polarizations, while such artifacts are not 
seen in the four right panel images processed with our 
denoising method. Although here we show entropy images 
only, other texture features show similar patterns originated 
from the thermal noise and a potentially systematic fault in 
radiometric calibration. This is probably the reason why the 
first subswath was abandoned in some literatures like [6,7]. 

In this work, we present a fully automated Sentinel-1 
image-based sea ice classification algorithm which takes an 
advantage of our denoising method. The noise corrected dual-
polarization images are processed into image textures that 
capture sea ice features in various spatial scale, and they are 
used for training a machine learning-based classifier by 
relating with ice charts published by operational ice services. 
The use of existing ice charts has dual purposes: i) 
automatization of classifier training, and ii) minimization of 
human error. Once the classifier is generated, the accuracy 
and computational complexity are assessed to see if it enables 
near-real time operation with sufficiently short time delay 
from the image acquisition. 
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2. DATA SET 

The region of interest is the Fram Strait where various sea 
ice types coexists because of the highly strong ice export.  
2.1. Sea ice charts 

For developing a fully automated classifier, the training 
scheme also needs to be automated by feeding periodically 
updated references. At the moment, there are several ice 
charts published by different ice services. Among them, 
AARI (Arctic and Antarctic Research Institute, Russia) and 
NIC (National Ice Center, USA) publishes weekly updated 
ice charts with global coverage. Both ice charts follow the 
WMO standards for sea ice information and are provided in 
the SIGRID-3 format [8]. In this study, we use the AARI ice 
chart only, but the processing scheme can also be applied for 
the NIC ice chart in the same way.  
2.2. Sentinel-1 EW mode imagery 

The Sentinel-1 constellation observes the whole Arctic in 
Extra Wide (EW) swath mode with dual-polarization 
(HH/HV). Effective temporal resolution is less than 1-day 
and the number of daily production is more than 150 scenes. 
In this study, we use GRDM (Ground Range Detected, 
Medium resolution) products which have 400 km swath 
width with 40 m pixel spacing. From October 2017 to May 
2018, nearly two thousand scenes were acquired over the 
study area, and they are freely available from the Copernicus 
Open Access Hub (https://scihub.copernicus.eu). 

 
3. METHODS 

3.1. Ice chart processing 
In ice charts, each polygon contains various attributes 

including ice concentration, ice form, and stage of 
development. The ice type in this study refers to the stage of 
development (SoD). Since the ice characteristics are 

described as a mixture of different ice types with their 
corresponding partial concentrations while our classifier will 
not perform multi-label classification, it is necessary to assign 
each of the polygons to representative specific ice types and 
to reproject them into the SAR image geometry.  

The logic of class assigning is based on comparing the 
partial concentrations; the SoD with the highest partial ice 
concentration becomes the ice type. Polygons with total ice 
concentration lower than 15% are discarded because it has 
been reported that the ice edge determined from passive 
radiometer using 15% concentration matches best the ice 
edge determined from SAR data [9]. Although the WMO 
standards defines 15 ice classes by different SoD codes, we 
use only five classes (Open water, Nilas, Young ice, First-
year ice, and Old ice) as being used in the AARI ice charts. 
Each ice chart has the dates of validity of information, which 
are typically three days backward including the date of 
publication for the AARI ice chart. Thus, the ice charts should 
be reprojected into the SAR geometries of which image 
acquisition time is in the valid time window.  
3.2. SAR processing 
After the noise correction using the methods in [4,5], the 
angular dependencies of sigma nought for sea ice [10] are 
compensated by subtracting the empirically determined 
slopes of -0.24 and -0.07 dB/° for HH and HV polarizations, 
respectively. The incidence angle of 34.5° at swath center 
was used as a reference angle so that the sigma nought 
variations are corrected to this angle. Then each of the images 
is processed into the Haralick texture features [11] and the 
CV (coefficient of variances; i.e., the ratio of standard 
deviation to the mean) which are known to be useful for 
image segmentation problems. We used a sliding window of 
25 by 25 pixels so that the pixel spacing of the texture features 
is equal to 1 km, resulting that each image has approximately 
400 by 400 pixels. In order to capture textures in various 

 
Fig. 1.  Sigma nought and entropy images processed using the denoised results by applying the standard ESA method (left four panels) and the NERSC 
method in [4,5] (right four panels). 
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spatial scales, we calculated grey-level co-occurrence 
matrixes (GLCMs) for multiple co-occurrence distances from 
1 to 12 pixels and then took the averaged GLCM to convert 
them into the 13 Haralick features per each polarization 
channel. Together with CV, the two polarization images are 
processed into 28 features.  
3.3. Classifier training  

Once pairs of rasterized ice chart and texture features are 
set, they are joined to train a classifier using Random Forest 
method [12] with the Scikit-learn [13] implementation. 
Hyperparameters are determined from 85% threshold of the 
maximum values of the fitted curves to the grid search results 
to avoid overfitting. It is important to note that not all samples 
in the rasterized ice charts are qualified for feeding because 
small-sized features are not present in the ice chart. For 
example, refrozen smooth ices between old ice floes have 
very different textures from the surrounding ices while such 
local features are not annotated in the ice chart. Thus, it is 
necessary to exclude such samples by filtering outliers in each 
ice class using class mean and standard deviation. Another 
concern is that since there is certain time difference between 
each image acquisition time and the ice charting time, the 
boundaries between different ice classes does not match 
perfectly. To minimize such mismatch, we used only samples 
away from polygon boundaries by more than 3 pixels, which 
is equivalent to 3 km in space.  

 
4. PRELIMINARY RESULTS 

For training a classifier, it is important to feed good samples 
to a decision model. Since SAR image itself is one of the 
sources of ice charting at ice service facilities, some images 
visually match with the reprojected ice charts quite well. 
From the dataset described in Section 2.2, we selected 81 
images that acquired roughly even in time and space. In total 
of 10,310,655 non-land pixels were split into training and test 
dataset with a ratio of 7:3. For hyperparameter optimization 
of the Random Forest classifier, number of trees, number of 
maximum depth of the tree, and maximum number of features 
are tested and tuned as 11, 9, and 9 in our case. The processing 
time was approximately 15 minutes per scene with a single 
CPU core and 8 GB RAM, but the same processes for 
multiple scenes are easily parallelizable as long as the 
computation source is available.  

Table I shows a normalized confusion matrix evaluated 
using the test dataset. As a quick feasibility test for 
application, 25 scenes acquired for three consecutive days 
were used for evaluating the trained classifier. Fig. 2 shows 
the mean of the HH- and HV-polarization mosaic images. 
Note that visual interpretability of ice/water discrimination is 
better in HV-polarization except for nilas which appears very 
dark in both polarization channel images. Fig. 3 compares the 
mosaic of SAR classification results with the AARI ice chart. 
The overall pattern of the classification result looks similar to 
the reference ice chart. Comparing the normalized confusion 
matrix in Table II with the one from the test set as in Table I, 

the accuracies for open water and old ice are maintained 
while those for nilas, young ice, and first-year ice are slightly 
worse.  

 

TABLE I. NORMALIZED CONFUSION MATRIX FOR TEST DATASET 

𝜅 = 0.737 Predicted class  
OW N YI FYI OI  

A
ct

ua
l c

la
ss

 OW 0.962 0.017 0.011 0.008 0.001  
N 0.058 0.874 0.042 0.015 0.008  
YI 0.076 0.040 0.702 0.102 0.077  

FYI 0.021 0.017 0.111 0.679 0.169  
OI 0.002 0.004 0.089 0.143 0.760  

OW: open water; N: nilas; YI: young ice; FYI: first-year ice; OI: old ice 
 

 
Fig. 2.  Mean of the (top) HH- and (bottom) HV-polarization mosaic images. 
The values in the color bar indicate sigma nought. 
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5. DISCUSSION AND CONCLUSIONS 

The discrimination between open water and ice seems to be 
possible with very high accuracy (>95%) but the separability 
among the ice types except old ice is rather problematic 
(<60%) compared to those reported in the previous works 
(>80%) based on RADARSAT-2 [2] or ENVISAT ASAR 

[14]. This is partly because there is always differences in time 
and resolution between the reference ice charts and the SAR 
acquisitions, while a manual scene-to-scene interpretations 
were used as reference in the conventional works. 

To the best of our knowledge, this is the first time to use the 
operational ice chart directly for training a classifier without 
any manual work. Considering the fact that the ice chart does 
not include small features, the accuracy acquired in this study 
is thought to be negatively biased. Based on the preliminary 
results, it is promising that a fully automated algorithm 
actually can work for generating ice chart-like map 
interpretation in a systematic way. Further investigation with 
more extensive data will be added in order to evaluate the 
performance of the proposed method. 
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Fig. 3.  Comparison between (top) the AARI ice chart and (bottom) the SAR 
classification result. The fast ice coverage in the SAR classification result is 
copied from the AARI ice chart. 
 

TABLE II. NORMALIZED CONFUSION MATRIX FOR DATA IN FIG.3 

𝜅 = 0.663 Predicted class  
OW N YI FYI OI  

A
ct

ua
l c

la
ss

 OW 0.955 0.038 0.005 0.001 0.001  
N 0.592 0.301 0.090 0.013 0.001  
YI 0.144 0.205 0.547 0.090 0.012  

FYI 0.009 0.003 0.297 0.479 0.210  
OI 0.005 0.001 0.039 0.210 0.743  

OW: open water; N: nilas; YI: young ice; FYI: first-year ice; OI: old ice 
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