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Abstract
Recent technologies have allowed researchers to observe animal behaviour and monitor their surrounding environments by 
deploying electronic sensors onto the animals. So-called ‘bio-logging’ (also known as animal telemetry,  biotelemetry, or 
animal-borne sensors) has been widely used to study marine animals that are difficult for humans to observe. In this study, 
we (1) review the types of sensors used, the animal taxa studied, and the study areas in marine bio-logging publications from 
1974 to 2019; (2) introduce the main topics in behavioural and environmental marine bio-logging studies; and (3) discuss 
suggestions for future marine bio-logging studies. We expect that technological advances in new sensors will enhance the 
ability of both behavioural ecologists and oceanographers to explore animal movements, physiology and marine environ-
ments. In addition, we discuss future perspectives of bio-loggers to improve data acquisition and accuracy with longer battery 
life for applying bio-logging techniques to broader species.
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1  Introduction

Modern technologies have allowed us to use small electronic 
devices attached to animals to log data. The attachment of 
biological sensors onto animal bodies has enabled research-
ers to collect behavioural data from free-ranging animals 
in wild conditions. The technique has been widely used to 
study animals that are difficult to observe, such as marine 
species, measuring both movement information and physi-
ological characteristics, such as heart rate and brain waves 
(Ropert-Coudert and Rory 2005; Wilmers et al. 2015; Hey-
len and Nachtsheim 2018). It can also be applied to gather 
environmental information about the animal’s surroundings, 
such as the temperatures and conductivity of marine water 

mass (Boehme et al. 2009; March et al. 2020). With these 
advantages, bio-logging techniques have been a popular and 
useful tool to study environmental science, ecology, ocean-
ography, and zoology (Hussey et al. 2015; Harcourt et al. 
2019).

There are multiple terms used to describe these remote 
observation systems for logging data about an animal’s 
behaviour, physiology, or environment (see Table  1). 
‘Biotelemetry’ was originally used to describe the remote 
observation of marine life in situ (Amlaner and MacDonald 
1980) and then, a new word, ‘bio-logging’ was suggested 
(Naito 2004) and defined as “the use of miniaturised animal-
attached tags for logging and relaying animal movement for 
behaviour ecology, and physiology” (Rutz and Hays 2009). 
In addition, the terms ‘animal telemetry’ (Block et al. 2016) 
and ‘animal-borne instrument/device/sensor’ (McMahon 
et al. 2005; Jones et al. 2013) are often used. Hereafter, we 
will primarily use the term ‘bio-logging’ for these remote 
observation systems throughout the text.

Modern types of bio-logging were initiated after Kooy-
man (1965), when time-depth recording devices were used 
on Weddell seals (Leptonychotes weddelli) (Wilmers et al. 
2015). Bio-logging was further applied to study emperor 
penguins (Kooyman et al. 1971) and fur seals (Kooyman 
et al. 1976). Subsequently, logging duration capacity was 
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improved to record data for more than 3 months (Naito et al. 
1990). After that, heart rate and swim speed recorders were 
deployed alongside time-depth recorders to study emperor 
penguin diving activity (Castellini et al. 1992). In the 1990s, 
satellite positioning technology called ‘Platform Transmit-
ter Terminals (PTTs)’ were developed and used to record 
the location of marine animals, including crabeater seals 
(Lobodon carcinophaga) (Bengtson et al. 1993). In addition 
to collecting location data, video-cameras were attached to 
sea turtles to film their movement (Marshall 1998). Most 
recently, satellite relayed data loggers were combined with 
a multiple sensor (a conductivity, temperature and depth 
sensor, referred to as a ‘CTD’) (Boehme et al. 2009) and 
used to measure physical oceanographic conditions, includ-
ing salinity and temperature in deep water sending the data 
back via satellites.

Here, we review the types of sensors in marine bio-log-
ging studies, outline recent studies, and discuss future direc-
tions. To investigate the research trends in marine bio-log-
ging, we searched for publications through Web of Science 
(www.​webof​knowl​edge.​com) (Fig. 1). For the analysis of 
articles about bio-logging from 1960 to 2019, we searched 
articles containing the keywords “((“biologging”) OR 
(“bio-logging”) OR (“biotelemetry”) OR (“biologger”) OR 
(“bio-logger”) OR (“animal telemetry”) OR (“animal-borne 
telemetry”)) AND (“marine”)”. This search yielded 19,641 
publications. The annual number of publications involving 
bio-logging studies has increased sharply since 1990. In 
2019, more than 300 papers are being produced per year. 
When we included the “marine animal” keyword, the publi-
cation rate has greatly increased since 2000 and reached 600 
publications from 1974 to 2019, across various taxa that are 

Table 1   Terminologies for the logging techniques which are being used to observe remote marine life in situ

Terminology Definition

Bio-logging (biologging) “The use of miniaturised animal-attached tags for logging and relaying animal movement for behaviour ecology and 
physiology”. (Rutz and Hays 2009)

“The investigation of phenomena in or around free-ranging organisms that are beyond the boundary of our visibility 
or experience”. (Boyd et al. 2004)

Animal telemetry “The process of obtaining data remotely (via a tag secured to the animal). It can be conducted in real time with radio 
and acoustic telemetry, or in ‘archival mode’ where logged data are stored, or downloaded from static acoustic 
detectors, tracks and ocean profiles are reconstructed from time-series data that are either transmitted on a time-
delayed basis to satellites, or analysed when the animal is recaptured and the tag physically returned”. (Block et al. 
2016)

Biotelemetry “Assessment or control of biological parameters from animals, subjects and patients with relatively little disturbance 
and restraint of the animal/subject, resulting in undisturbed and noise-free measurement of physiological param-
eters.” (Amlaner and Macdonald 1980)

Animal-borne The dictionary definition of ‘borne’ is “carried or moved by a particular thing” (Cambridge Dictionary). Thus, 
‘animal-borne’ means to be carried or moved by an animal. It is often used with the following words: sensor, 
device, or instruments

Fig. 1   The number of publica-
tions related to bio-logging 
studies (1960–2019)

http://www.webofknowledge.com
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globally distributed along coasts and islands. Recently, over 
50 papers are being annually produced annually.

2 � Data Collecting Methods of Bio‑loggers

Bio-loggers obtain various types of data using different 
methods. We categorised the bio-logging methods into 
two categories, according to the purposes of the sensors: 
‘behavioural bio-logging’ and ‘environmental bio-logging’. 
Behavioural bio-logging includes location, dive depth, 
audio, video, cardiograph, and brain wave data, which could 
contribute to constructing animal behaviour studies. In envi-
ronmental bio-logging, the purpose of animal attachment 
is to collect physical oceanographic variables. The animal-
derived hydrographic data involves recording parameters 
including temperature, conductivity, fluorescence for chlo-
rophyll concentration and dissolved oxygen in the water. We 
summarised the characteristics of each type of sensor com-
monly used for marine research (Table 2).

3 � Behavioural Bio‑logging Technologies

3.1 � Global Positioning System (GPS)

A Global Positioning System (GPS) determines the animal 
positions from satellite signals, which are acquired from the 
three-dimensional positioning system of the United States 
Department of Defense, which achieved 24-h world coverage 
in 1973. GPS receivers deduce location information from 
distances calculated from measured time, using at least four 
satellites (Tomkiewicz et al. 2010). A GPS consists of three 
segments: a space segment, a control segment, and a user 
segment (Rodgers et al. 1996). The space segment consists 
of 24 satellites and several backup satellites circling around 
the earth twice a day. The control segment is run by five 
ground monitoring stations located around the world and a 
master control station at the Consolidated Space Operational 
Center in the United States. This segment maintains the 
standard system time and calculates exact orbital informa-
tion. The user segment is a GPS receiver which measures the 
time of signal arrivals. With the combination of these three 
segments, GPS can obtain the accurate location (< 10 m) of 
the GPS receiver. Furthermore, when GPS was launched, 
the United States precluded civilian users from receiving 
high-resolution location data; however, the United States 
eventually decided to stop degrading public GPS accuracy, 
leading to massive increases in the field of animal tracking 
since 2000 (Kays et al. 2015).

GPS trackers are often applied to light vertebrates, like 
small marine birds (Delord et al. 2020), as well as large 
whales (Mate 2012). GPS receivers consume more power 

than other types of sensors, so power management is a criti-
cal element, along with the weight of the bio-logger and 
the operational period. Even new, low-power GPS receivers 
require solar panels to recharge them for extended-period 
logging (Tomkiewicz et al. 2010). GPSs do not have any 
internal data transmitting systems so bio-loggers using GPS 
often use Very High Frequency (VHF), Global System for 
Mobile Communications (GSM) or Advanced Research and 
Global Observation Satellite (Argos) systems to send the 
data obtained from the GPS receiver (del Villar-Guerra et al. 
2012; Cox et al. 2018).

3.2 � Argos Data Collection and Locating System

Argos Data Collection and Locating Systems (also called 
Collection and Location via Satellites (CLS) systems) use 
Argos satellites to determine the position of the tags. The 
satellites were launched in 1978 by the French Space Agency 
(Centre National D’Etudes Spatiales), the National Aero-
nautics and Space Administration (NASA) and the National 
Oceanic and Atmospheric Administration (NOAA). The 
CLS system obtains the location of transmitters by signals 
emitted from the local transmitters, not from the satellites. 
If a ground-based transmitter sends radio waves at a certain 
frequency and NOAA satellites receive the signals, the sat-
ellites calculate back the doppler shifts of the radio waves, 
which can be exchanged to estimate the location of transmit-
ters by comparing it with their own location. The satellite 
data are sent to tracking stations and transferred to process-
ing centres in Maryland and France (Fancy et al. 1988). 
Obtained locations are classified into one of seven location 
classes (3, 2, 1, 0, A, B, Z in descending order of accuracy). 
Most of the location information of marine animals are in 0, 
A, B, or Z (Costa et al. 2010b; Irvine et al. 2020).

The CLS system is a part of the Argos System, which is a 
worldwide data collecting system. Because it uses the Argos 
system, the CLS system has the advantage of not needing 
to retrieve the tag to obtain the information—unlike GPS. 
Because of this advantage, bio-loggers that collect data from 
various sensors and transmit the data via the Argos system 
are widely developed and used.

Although the CLS system provides less accurate 
(< 150 m: LC3) location information than GPS, the acquired 
location information is directly transmitted online. In the 
CLS system, the local transmitters just send radio waves 
to the satellites and do not calculate the position or save it, 
so bio-loggers using the CLS system are lighter than those 
using satellite GPS (Bridge et al. 2011). Recently, many 
other types of information also can be transferred via Argos 
system within bandwidth limits and recent bio-loggers have 
been produced for transmitting information obtained from 
various sensors via the Argos system.
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Table 2   Categorisation of bio-logging methods and the characteristic and target data of each sensor

Category Sensor Target data Characteristics

Behavioural bio-logging Global Positioning System ( GPS) Location ∙ High spatial accuracy (< 5 m) 
(Bridge et al. 2011)

∙ High sampling rates
∙ High energy consumption (0.15 W 

about every 30 s) (Bridge et al. 
2011)

∙ Receives radio waves from satellites 
(Tomkiewicz et al. 2010)

∙ Heavy (< 22 g) (Bridge et al. 2011)
Collect Localisation satellite ( CLS) Location ∙ High spatial accuracy (< 150 m) 

(Bridge et al. 2011)
∙ High sampling rates
∙ High energy consumption
∙ Receives radio waves from satellites
∙ Can transmit data simultaneously

Geolocation System ( GLS) Location ∙ Low spatial resolution (< 200 km) 
(Bridge et al. 2011)

∙ Low sampling rates
∙ Low energy consumption
∙ Small and light (< 0.5 g) (Bridge 

et al. 2011)
∙ Receives sunlight and calculates 

daily sunrise and sunset time to 
estimate location

Acoustic tag Location ∙ Obtains underwater location
∙ Relaying buoys required

Video-camera Moving images and audio data ∙ Large data storages and battery 
required

∙ Record of behaviour from the per-
spective of the animal (Moll et al. 
2007)

∙ Enables researchers to see what a 
wild animal sees in the field and hear 
what it hears (Moll et al. 2007)

Accelerometer and gyroscope Acceleration and attitude data ∙ Estimate energy expenditure
∙ Track-specific behaviour

Time-Depth Recorder (TDR) Diving depth ∙ Oldest type of bio-logger
∙ High depth resolution
∙ Low energy consumption

Electrocardiogram (ECG) Cardiograph ∙ Estimates physiological state
∙ Electrodes can become bulky (Whit-

ford and Klimley 2019)
Electroencephalogram (EEG) Brain waves ∙ Estimates sleep strategy

∙ Electrodes can become bulky (Whit-
ford and Klimley 2019)

Environmental bio-logging Conductivity Temperature Depth 
(CTD)

Conductivity, temperature, pressure ∙ Evaluates physical oceanographic 
variability of water mass in animal 
habitat conditions

Fluorometer Fluorescence ∙ Evaluates the biogeochemical 
variability of the water column by 
measuring fluorescence, such as 
chlorophyll concentration

Oxygen sensor Dissolved oxygen ∙ Estimates dissolved oxygen in the 
water
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3.3 � Geolocation Systems (Global Location Sensing 
or GLS)

Geolocation is a positioning system which employs a light 
sensor and an accurate real-time clock to check the time of 
sunrise and sunset. Then, longitude and latitude data are 
calculated by the time of solar noon and the length of the 
day, respectively (Bridge et al. 2011). Geolocators obtain 
location only based on data from the light sensor, not from 
satellites. Therefore, it is the smallest and lightest sensor 
(< 0.5 g) among location-determining sensors, so they can 
be attached even to small flying birds. The light sensors con-
sume very little energy, so they can be attached to log long 
periodic movements like migrations. However, geolocators 
can yield large errors with regard to positioning (approxi-
mately under 200 km) (Phillips et al. 2004; Bridge et al. 
2011). In addition, they can only generate up to one location 
per day and are affected by weather conditions (Lisovski 
et al. 2012). To improve spatial accuracy, temperature sen-
sors can be used with GLS for marine bio-logging (Teo et al. 
2004).

Because of these characteristics, geolocators can be used 
to study long-term behaviours, even in small animals. In 
marine animal studies, geolocators have been particularly 
useful when attached to migratory marine birds because 
they usually move for long distances between the breeding 
and non-breeding seasons. Many marine animals have been 
instrumented with geolocators (Hindell et al. 2020), includ-
ing penguins (Barrionuevo et al. 2020), seabirds (Croxall 
et al. 2005; Shaffer et al. 2006), and seals (Staniland et al. 
2018).

3.4 � Video‑Recorders

Video-recorders are filming devices that capture videos 
from the animals. Researchers can obtain detailed visual 
and sound information from the perspective of the animals 
by collecting continuous environmental images and audio 
(Marshall 1998; Marshall et al. 2007; Davis et al. 1999). 

Video-recording devices are relatively large and heavy com-
pared to other sensors with high storage and power consump-
tions. Thus, researchers use these loggers solely for filming 
under specific conditions (Hernandez et al. 2018) and often 
use them for a short period of time (Semmens et al. 2019). 
This approach has been applied to seabirds (Tremblay et al. 
2014), seals (Davis et al. 1999), whales (Goldbogen et al. 
2012), turtles (Heaslip et al. 2012) and sharks (Jewell et al. 
2019) to reveal foraging patterns and environments.

Although we categorised video-recorders into behav-
ioural bio-loggers, they can be also applied to collect envi-
ronmental data about prey availability and oceanic condi-
tions, to provide information regarding conservation efforts 
with respect to endangered species (Parrish et al. 2000; Moll 
et al. 2007).

3.5 � Accelerometers and Gyroscopes

Accelerometers and gyroscopes are used to measure accel-
eration and body posture. Accelerometers can measure 
the acceleration vectors of animal movements and gravity, 
while gyroscopes can measure the rate of rotation of animals 
(Ware et al. 2016). Therefore, only with accelerometers can 
the posture of animals be estimated by extracting the gravi-
tation vector (Yoda et al. 2001). However, only with gyro-
scopes can acceleration signals caused by rotation be added. 
Thus, gyroscopes are commonly used to provide information 
to remove the confounding factor of rotations, allowing the 
posture of the animal to be obtained more accurately (Ware 
et al. 2016). Acceleration information also allows the estima-
tion of energy expenditure. Furthermore, with accelerom-
eters attached to various parts of the body, the movement 
of different parts of the body, like limbs or heads, can be 
assessed. Consequentially data about specific behaviours, 
such as limb or jaw movements, can be acquired (Shepard 
et al. 2008).

Investigating the underwater movements of marine ani-
mals has been problematic as GPS and CLS systems do not 
work underwater. Accelerometers can be used to deduce 

Table 2   (continued)

Category Sensor Target data Characteristics

Hydrophone Ambient underwater sound ∙ Observes underwater ambient mixed 
signals

∙ Measures the marine soundscape 
(Cazau et al. 2017)

Echosounder Acoustic backscattering ∙ Detects prey distribution in under-
water

∙ Active acoustic backscattering data 
from free-ranging animals gives 
(Lawson et al. 2015)

∙ Provides information on predator–
prey interactions (Goulet et al. 2019)
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detailed underwater movement (this process called ‘dead 
reckoning’) (Shepard et al. 2008; Shiomi et al. 2008; Fourati 
et al. 2013; Cianchetti-Benedetti et al. 2017). The perfor-
mance of the accelerometer can reach intervals of 300 Hz, 
but to overcome limitations of battery life and storage, it is 
necessary to measure acceleration at a reasonable frequency 
(Fourati et al. 2011; Cooke et al. 2016).

Accelerometers to the head and jaw of sea mammals 
were applied to record their prey capture rates (Viviant et al. 
2010) and the head and body movements of diving birds 
were used to distinguish the prey items and examine the 
feeding frequency (Watanabe and Takahashi 2013). Thus, it 
can be applied to reconstruct the detailed diving trajectory 
with the prey capture movements of marine predators.

3.6 � Time‑Depth Recorders (TDR)

Time-Depth Recorders (TDRs) measure water pressures and 
use this information to interpret dive depth at specific time 
intervals. Since Kooyman deployed them on seals in Ant-
arctica in 1964 (Kooyman 1965), they have been used as 
a fundamental bio-logger to collect information about the 
vertical movement of marine animals in the water column. 
TDRs consume relatively little energy so they have been 
applied for long-term observations. As early as 1987, they 
were used to cover the post moulting period of seals, which 
lasts up to three months (Naito et al. 1989). However, as 
they are limited to measuring only one-dimensional depth 
information, they are often used in conjunction with other 
sensors, like a GPS or video-camera (Casey et al. 2014; Choi 
et al. 2017; Mallett et al. 2018).

3.7 � Electrocardiograms and Electroencephalograms

Electrocardiogram (ECG) sensors are used to monitor the 
electric activity of the heart. Using two electrodes in differ-
ent body parts, ECGs record the voltages representing the 
depolarisation and repolarisation patterns associated with 
a heartbeat. Heart rate enables the estimation of energy 
expenditure and oxygen consumption (Kooyman et al. 1992) 
because many marine mammals and birds store oxygen and 
minimise oxygen depletion during diving (Kooyman and 
Ponganis 1998). This makes ECGs important in marine 
ecological studies because marine animals, especially air-
breathing animals like whales, dolphins, and turtles, have 
adopted their own specific strategies to optimise diving 
behaviour. In a recent report on blue whales (Balaenoptera 
musculus), the ECG sensors revealed their heart rate changes 
during and after dives (Goldbogen et al. 2019).

Electroencephalogram (EEG) sensors also operate with 
electrodes, like ECGs. The electrodes receive brain waves 
while fixed inside the skull, penetrating the medulla (Whit-
ford and Klimley 2019). The logger directly recognises brain 

waves, tracking sleep and rest activities, and measuring how 
actual behaviour relates to brain activity (Mascetti 2016). 
Despite the technical difficulties involved in inserting the 
electrodes into the brain, EEG signals are very important for 
studying animal sleep behaviours, such as unilateral sleep 
(Rattenborg et al. 1999) or sleep during the flight (Ratten-
borg et al. 2016). Marine mammals and birds usually have 
unique sleep behaviour compared to their terrestrial coun-
terparts and EEGs can help to uncover these sleep patterns. 
Using EEG sleep loggers, it was discovered that northern 
fur seals have the ability to maintain asymmetrical sleep by 
opening one eye for vigilance as an adaption to avoid preda-
tion (Lyamin et al. 2017).

3.8 � Acoustic Positioning System

Acoustic positioning systems provide position information 
for marine animals in the water. An acoustic positioning sys-
tem consists of three components: a transmitter, more than 
three stationary hydrophones, and a base station. The trans-
mitters are attached to target animals and send ultrasonic 
signals to the stationary hydrophones, which are usually 
attached to buoys. Each hydrophone receives the ultrasonic 
signals at different times, according to the position of the 
transmitter. The signals are sent to the base station and the 
information converted into the location of the transmitter 
(Klimley et al. 2001). Acoustic positioning systems can help 
to determine three-dimensional position coordinates under-
water, so they are very useful in marine ecological studies. 
They are often applied to examine the movement patterns 
or habitat use of benthic fish, including white sharks (Car-
charodon carcharias) (Voegeli et al. 2001).

4 � Environmental Bio‑logging Technologies

4.1 � Conductivity‑Temperature‑Depth (CTD) System

Conductivity-Temperature-Depth (CTD) instruments meas-
ure physical oceanographic conditions, such as conductivity 
and temperature with dive depth. Conductivity is used for 
the calculation of salinity according to pressure and tem-
perature. The sensors have an inherent resolution or error 
scales and differ in their technological levels.

CTD tagging surveys have been conducted mainly on pin-
niped species, since capturing and tagging them is also eas-
ier than, for example, cetacean species, as they haul-out on 
land to rest and lactate their pups, making it easier to attach 
CTD tags. Elephant seals (Genus Mirounga) are one of the 
most widely used marine species in bio-logging studies, and 
this is related to their dive capacity. Maximum dive depths 
of 2388 m by a southern elephant seal (M. leonina) (Costa 
et al. 2010a) and 1735 m by a northern elephant seal (M. 
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angustirostris) (Robinson et al. 2012) have been recorded. 
Similar to the ocean glider system, in addition, seal-borne 
CTDs enable researchers to evaluate a broad range of marine 
habitats, from Arctic to Antarctic regions, including polar 
oceans, which are covered by thick sea ice areas and are 
inaccessible to research vessels during the winter (Treasure 
et al. 2017). Compared to physical oceanographic surveys 
by research vessels, seal-borne CTD can be highly cost-
effective as efforts to break sea ice and the inputs of large 
CTD devices (Hussey et al. 2015) are not required. Seal-
borne CTD surveys contribute to international observation 
networks for studying recent oceanographic changes, such 
as the Southern Ocean Observing System (SOOS) (Roquet 
et al. 2013; Newman et al. 2019). Seal-borne CTD data sets 
with satellite data sets, shipboard measurement and mooring 
systems uncovered weaknesses of Sabrina Coast in East Ant-
arctica and the Amundsen Sea in West Antarctica by detect-
ing the reduction of formation Dense Shelf Water (DSW) in 
Cape Darnley polynya (Ohshima et al. 2013; Silvano et al. 
2018). In Antarctica, seal-borne CTD data exhibited frontal 
structure exhibited by seal-borne CTD, sea ice formation 
and sea ice model along the Antarctic Circumpolar Cur-
rent (ACC) region and Polar Front (PF) (Biuw et al. 2007; 
Charrassin et al. 2008; Siegelman et al. 2019; Biddle and 
Swart 2020) and physical processes of nutrients turnover 
and biological aggregation (McGillicuddy and Robinson, 
1997; Lévy et al. 2018).

4.2 � Fluorometer and Oxygen Sensor

In the context of biogeochemical circulation, chlorophyll-a 
concentration indicates primary production in the ocean as 
a key component of global carbon cycling. Because primary 
production is a crucial part of marine species food webs and 
is influenced by the stratification of oceanic water, includ-
ing circumpolar deep water from Antarctica, the device is 
most effective when attached to deep-diving marine mam-
mals. For instance, tagged southern elephant seals distrib-
uted along polar fronts may provide primary production 
values through archival TDR tags and fluorometers which 
are not easily acquired using in-situ measurement techniques 
(Lander et al. 2015).

The development of combination CTD-SRDLs and fluo-
rometer devices (CTDF) occurred earlier than those com-
bined with dissolved oxygen sensors (Roquet et al. 2011). 
The device records fluorescence data at a frequency of 1 Hz 
while it is upward-casting (Boehme et al. 2009). Keates et al. 
(2020) recently deployed CTDFs on nothern elephant seals 
and successfully obtained raw fluorescence data in the north-
eastern Pacific. These brand-new CTDF devices (SMRU, St. 
Andrews, Scotland) detect chlorophyll with a minimum level 
of 0.03 μgL−1 at an excitation wavelength of 465 nm and an 
emission wavelength of 696 nm for detection. Fluorometer 

calibration procedures were also introduced to conduct chlo-
rophyll extraction procedures following a traditional stand-
ard method (Holm-Hansen et al. 1965; Welschmeyer 1994). 
For more detailed calculations, the devices can be calibrated 
region-specifically using satellite ocean surface data and 
may provide researchers with cost-effective measurements 
of primary production near animal habitats.

The combination of CTD-SRDLs and dissolved oxygen 
sensors also provides the possibility of monitoring oceano-
graphic conditions surrounding marine animals. Atlantic 
salmons (Salmo salar) were utilized to monitor incoming 
hypoxic seawater conditions by tagging them with acous-
tic telemetered sensors which nearly simultaneously record 
pressure (0–102 m), temperature (0–25 °C) and dissolved 
oxygen (0–140%) (Stehfest et al. 2017). The continuous 
investigation of oceanic biogeochemical conditions in 
terms of global ocean circulation is crucial to understand-
ing unseen marine ecosystems and collecting more detailed 
information about bottom water formation. A technical revo-
lution leading to the miniaturisation of multi-sensor loggers, 
including the battery, transmitter, and either environmental 
or biological data measuring sensors, would provide oce-
anic information facilitating our understanding of animal 
surroundings of unknown regions and their variability (Hus-
sey et al. 2015).

4.3 � Hydrophone and Echosounder

Underwater ambient noise mainly consists of biophony (by 
marine animal activities), geophony (by physical processes 
of waves or current), and anthrophony sounds (by shipping 
or oil surveys) (Knudsen et al. 1948; Wenz 1962). To collect 
the marine soundscape, hydrophones at the bottom or fixed 
at certain depths had been used. However, recent animal-
borne acoustic recording allowed researchers to acquire 
data from freely moving diving animals (Cazau et al. 2017). 
These methods contribute to observing marine environments 
to better understand regional backgrounds and risks from 
ecosystems, topography, climate and human impact.

Animal-borne echosounders were proposed to detect 
prey distribution using a micro echosounder on marine spe-
cies (Miyamoto et al. 2004). Deployment of echosounders 
was applied to northern elephant seals to identify behaviour 
of echolocation marine mammals and prey distribution by 
acoustic backscattering (Lawson et al. 2015). Although sonar 
tag systems were relatively heavy (4.34 kg in air and 1.7 kg 
in water) and had a short battery life (up to 8–10 days), 
researchers could quantify prey information (Lawson et al. 
2015). Animal-borne echosounders can be also used with 
other sensors, such as accelerometers and GPS (Goulet et al. 
2019). Such combined multisensory systems would provide 
data about fine-scale predator–prey interactions.
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5 � Global Distribution of Marine Animal 
Bio‑logging Studies

Among the 600 publications on marine animal bio-log-
ging studies, which were searched from Web of Science 
(Fig.  1  and Table  3), we excluded 64 publications on 
reviews and methodologies. Then, from the 536 studies, 
we marked the coordinates of the tagging sites published 

and categorised them by animal taxa (Fig. 2). The distribu-
tion is represented by the total numbers of papers (n = 536, 
published from 1974 to 2019) and shown by taxon (indi-
cated by different colours). The pie chart shows the pro-
portion of publications in order of numbers of publications 
about each taxon. Marine mammals were the most studied 
taxa (32.4%). Fish (29.4%), seabirds (21.9%) and reptiles 
(12.95) were the next most studied taxa. Studies on Crus-
tacea (spring Green), Cephalopods (magenta), Bivalve 

Table 3   Number of publications 
using bio-logging in marine 
animals (from 1974 to 2019)

Taxa Classification Number of 
publica-
tions

Marine mammals Pinnipedia (seals) 120
Cetacea (whales and dolphins) 39
Sirenia (manatees) 10
Ursidae (polar bears) 3
Musteloidea (seaotters) 1
Chiroptera (marine fishing bats) 1
Total 174

Seabirds Procellariiformes (albatrosses, petrels and shearwaters) 57
Sphenisciformes (penguins) 24
Suliformes (frigatebirds, boobies, cormorants and darters) 19
Charadriiformes (waders, gulls and auks) 12
Anseriformes (waterfowls) 4
Pelecaniformes (pelicans) 1
Total 117

Marine reptiles Testudines (sea turtles) 64
Squamata (sea snakes) 5
Total 69

Fish Chondrichthyes (cartilaginous fish like sharks and rays) 97
Actinopterygii (ray-finned fish) 60
Total 157

Fig. 2   Global distribution of 
marine animal bio-logging 
studies
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(violet), Gastropods (orange) and Scyphozoa (dark Green) 
comprise 3.4% of the total number of publications. The 
marine bio-logging studies were globally distributed from 
Antarctica to the Arctic, mainly along coastal regions and 
islands. Marine mammals, fish, birds and reptiles domi-
nantly featured in the publications. Bio-logging of marine 
mammals and avian species represented nearly 32% and 
22% of the studies, respectively. To understand marine 
ecosystems, it is important to study the foraging behaviour 
of marine predators. Fine-scale behavioural and oceano-
graphic studies are increasing with revolutionary devel-
opments in sensor technologies. In Antarctic ecosystems, 
the foraging strategies of seals and penguins have been 
examined for mesoscale variance related to ocean frontal 
structures (Bost et al. 2009). As well as behavioural move-
ment, data about physical oceanographic conditions are 
collected using the top predators because of their deep-
diving capacity (Lowther et al. 2016).

Among marine mammals, the pinnipeds (seals, sea lions 
and walruses) are one of the most extensively studied taxa 
(121 cases in 174 marine mammal studies). These species 
can be easily captured because of their breeding cycle, during 
which they haul-out to breed out of the water. Among marine 
reptiles, the testudinids (sea turtles) are best-studied (64 cases 
in 71 marine reptile studies). Because many sea turtle species 
are endangered, conservation and management are the main 
purpose of bio-logging in this taxa (Hamann et al. 2010; Jang 
et al. 2018).

Bio-logging of marine invertebrates, such as cephalopods, 
crustaceans and cnidarians, was found to be scarce (so far 17 
publications, which represented only about 3.4% of all stud-
ies) (Fig. 2). Soft-bodied eco-sensor tags had been applied for 
trial attachments to jellyfish (Aurelia aurita), squid (Loligo 
forbesi), veined squids (Loligo forbesii), and Pacific sea net-
tles (Chrysaora fuscescens) and these studies presented good 
examples of estimating swimming movements of invertebrates 
with vertical and horizontal movement (Mooney et al. 2015; 
Fannjiang et al. 2019; Flaspohler et al. 2019). Although there 
has been remarkable progress in bio-logging, bio-logging on 
invertebrates are relatively poorly represented even though 
invertebrates are widely and diversely distributed living organ-
isms in the ocean. This could be due to technical difficulties 
involved in deployment and retrieval. However, if bio-logging 
becomes applicable to these taxa, we anticipate that it will a 
tremendous positive impact on both the fishery and conserva-
tion sectors.

6 � Recent Challenges in Bio‑logging Studies

6.1 � Satellite Communication Bandwidth

To retrieve the bio-logger after deployment is difficult 
because one should predict where animals are and catch 
them. Therefore, many information transmission systems 
including GSM, Argos and Iridium Satellite Communica-
tions are being used in connection with bio-loggers. How-
ever, each data transmission system has its own bandwidth 
and coverage ranges that may restrict the amount of data 
obtained from bio-loggers. For example, accelerometers 
can record detailed acceleration signals (300 Hz), but the 
transmitted data is constrained by the Argos satellite system 
message size (258 bits, 40 s intervals) (Fedak 2002; Boehme 
et al. 2009; Nielsen et al. 2018). To resolve such limita-
tions in data transmission, the capacity of networks (Kalra 
and Chauhan 2014) and the data compression (Fedak 2002; 
Nuijten et al. 2020) should be enhanced.

7 � Location Accuracy

In processing the bio-logging data, it is important for 
researchers to refer to the precise locations where the data 
were acquired. Thus, it is important to use high-accuracy 
devices to locate the animal positions. However, even GPS 
has errors because the number of satellites for GPS is limited 
at high latitudes (Januszewski 2016). The Argos CLS system 
is also reported to present higher error estimates than the 
expected values (68th percentile) with regard to free-living 
animals (Nicholls et al. 2007; McKeown et al. 2012). Thus, 
it is recommended for researchers to be aware of device 
specifications for research purposes and to consider satel-
lite communication technology in study areas to estimate 
locations more accurately.

8 � Battery Life

Battery life is determined based on a compromise between 
weight and operation time. Larger and heavier battery sizes 
may often provide longer battery life expectancy for long-
term monitoring use. However, battery size may pose prob-
lems with regard to the application to small marine species 
and it may interfere with the movement of animals. Recent 
advances in electric battery cells have been applied to bio-
logging charging systems to utilise long life span batteries, 
such as lithium polymer and manganese–silicon lithium bat-
teries (Rutz and Troscianko 2013; Virens and Cree 2018). In 
addition to battery improvement, a new controlling system 
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with machine learning has been suggested to minimise 
power costs to extend runtime for video-recording (Korpela 
et al. 2020).

9 � Fluid Dynamical Modelling

When researchers deploy bio-loggers on animals, it is impor-
tant to reduce fluid resistance, not only for ethical and animal 
welfare reasons but also for behavioural data reliability and 
retrieval. Fluid resistance may increase swimming costs and 
the behaviour patterns of marine mammals can be altered 
(Cornick et al. 2006; van der Hoop et al. 2014). Previous 
reports indicate that bio-loggers may negatively affect 
natural animal behaviour (Hazekamp et al. 2010; Portugal 
et al. 2018). To decrease the interference that may result 
from deployment, it is suggested to consider fluid dynam-
ics in the design and to reduce the weight of the devices as 
much as possible. If researchers use effective hydrodynamic 
designs, the drag force can be greatly decreased (Wilson and 
McMahon 2006; Kay et al. 2019). Currently, commercial 
software, such as ANSYS Fluent® v15.0, is available to per-
form computer simulations (an example of a curved shaped 
bio-logger that is designed for marine animals is shown in 
Fig. 3, and the drag forces were 2.89 MPa*mm2 on the X 
axis and 17.61 MPa*mm2 on the Z axis when the flow speed 
was set at 0.05 m/s in water, at 0 °C temperature and 20 MPa 
pressure). Figure 3 shows the fluid dynamic model of the 
curved shaped logger (length = 118 mm, width = 75 mm, 
height = 47 mm, weight = 350 g). In future studies, it is rec-
ommended for researchers to take the hydrodynamic design 
of their loggers into consideration and check the shapes of 
their loggers, to reduce the negative effects of deployment. 
In addition to the drag forces exerted by fluids, it would also 
be a good idea to consider how the loggers stick to the body 
while the animal is actively moving.

10 � Underwater Positioning

GPS is regarded as one the most accurate ways to record 
location, but it is dependent on radio signals from satellites. 
Because radio waves reflect off the surface of the water, GPS 
devices cannot be used to track animals that are underwater, 

so they are often used in combination with other sensors 
measuring acceleration or depth for diving birds and mam-
mals that frequently approach the surface. Between the sur-
face GPS points acquired from the satellites, depth records 
are linearly interpolated to estimate the underwater move-
ment and acceleration data can be used for dead reckoning. 
However, if the underwater tracking position is available, 
the underwater animal’s movements can be tracked more 
accurately. Acoustic positioning systems directly track three-
dimensional underwater positions but they require buoys, so 
they are limited to short-range movement studies. Further-
more, acoustic positioning uses ultrasound, which can affect 
whales that are known to communicate using ultrasound. A 
recent study developed a new technique to record underwater 
location using polarised cameras, demonstrating the possi-
bility of underwater tracking (Powell et al. 2018). The mean 
error is still around 61 km, and the location precision drops 
significantly when the sun is below 40 degrees. Neverthe-
less, if further developed for long-range diving with high 
accuracy, it would be possible to more fully investigate the 
migration behaviour of marine mammals and fish.

11 � Stretchable Skin‑like System

Most bio-loggers have limitations when applied to inverte-
brates due to the weight and shape of the devices, but a stretch-
able skin-like system (called “Marine skin”) has been recently 
proposed. This is a net-like film structure including multi-sen-
sors recording temperature, pressure and conductivity, which 
was developed to improve data logging platforms in terms 
of flexible design and ultralight weight (< 6 g in dry condi-
tions, < 2.4 g in wet conditions) compared with conventional 
bio-loggers (Nassar et al. 2018). Because traditional satellites 
relayed CTD loggers used to track large marine animals, such 
as cetaceans and pinnipeds, featured large batteries they were 
not suitable for tagging young specimens or invertebrates and 
the shape was not animal friendly in terms of the design of the 
fluid dynamics. In contrast, marine skin has been used to tag a 
crustacean, the swimming crab (Portunus pelagicus), and has 
a light weight and bendable shape. Due to the limited film size, 
however, the temperature sensor in marine skin provides data 
at a resolution of 0.5 °C (Nassar et al. 2018), which is much 
lower than that of portable CTD loggers (0.001 °C, an Argos 

Fig. 3   Fluid dynamic model of 
a curved shape bio-logger that is 
designed for marine animals
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CTD-Satellite Relayed Data Logger at SMRU, http://​www.​
smru.​st-​andre​ws.​ac.​uk/​resea​rch-​techn​ology). In addition, the 
battery life is limited because the power consumption for high 
resolution forces increases in the size and weight of the battery 
(Shaikh et al. 2019). Despite the current technical limitations, 
it could be effective in collecting information about marine 
invertebrates as a non-invasive approach.

12 � Conclusion and Suggestion for Future 
Studies

As bio-logging techniques developed, they became an increas-
ingly useful tool to study marine ecology and oceanography. 
Bio-logging grants us insights into marine animals which are 
difficult access. However, current bio-logging devices are 
still under development, with new sensors being added and 
improvements required for broader satellite communication 
bandwidth, higher location accuracy, longer battery life, and 
smaller logger size. Although current studies mainly focus on 
large mammals and birds, in future studies, soft invertebrates, 
such as squid and jellyfish, are expected to be amenable to bio-
logging with the rapid growth of tagging technology. Marine 
skin also has strong potential for use in marine species, with 
its flexible and thin logger shape. Assessing the hydrodynam-
ics of devices using computational fluid dynamics would help 
device developers to reduce water resistance and improve the 
welfare of animals.

At present, animal-borne CTD datasets have relatively low 
precision and high error rates, compared to ship-borne CTD 
datasets, because of their miniaturised size and residual noise 
(Roquet et al. 2017). Calibration algorithms to minimise error 
rates and the lag time between the temperature sensor and 
salinity sensor data would be necessary to increase their accu-
racy for evaluating physical ocean environments. Although 
the issue of precision in animal-borne CTD cannot be easily 
solved, we expect resolution and accuracy to improve with 
the progress of technology, and that this will extend access to 
extreme habitats, including polar oceans, allowing research-
ers to explore the hidden ocean under the thick ice. This will 
provide more information to study global issues, such as cli-
mate change and sea-level rise, by measuring physical oceano-
graphic conditions.
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