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Abstract: The Arctic sea ice concentration (SIC) in summer is a key indicator of global climate change
and important information for the development of a more economically valuable Northern Sea Route.
Passive microwave (PM) sensors have provided information on the SIC since the 1970s by observing
the brightness temperature (TB) of sea ice and open water. However, the SIC in the Arctic estimated
by operational algorithms for PM observations is very inaccurate in summer because the TB values
of sea ice and open water become similar due to atmospheric effects. In this study, we developed
a summer SIC retrieval model for the Pacific Arctic Ocean using Advanced Microwave Scanning
Radiometer 2 (AMSR2) observations and European Reanalysis Agency-5 (ERA-5) reanalysis fields
based on Random Forest (RF) regression. SIC values computed from the ice/water maps generated
from the Korean Multi-purpose Satellite-5 synthetic aperture radar images from July to September
in 2015–2017 were used as a reference dataset. A total of 24 features including the TB values of
AMSR2 channels, the ratios of TB values (the polarization ratio and the spectral gradient ratio (GR)),
total columnar water vapor (TCWV), wind speed, air temperature at 2 m and 925 hPa, and the
30-day average of the air temperatures from the ERA-5 were used as the input variables for the
RF model. The RF model showed greatly superior performance in retrieving summer SIC values
in the Pacific Arctic Ocean to the Bootstrap (BT) and Arctic Radiation and Turbulence Interaction
STudy (ARTIST) Sea Ice (ASI) algorithms under various atmospheric conditions. The root mean
square error (RMSE) of the RF SIC values was 7.89% compared to the reference SIC values. The
BT and ASI SIC values had three times greater values of RMSE (20.19% and 21.39%, respectively)
than the RF SIC values. The air temperatures at 2 m and 925 hPa and their 30-day averages, which
indicate the ice surface melting conditions, as well as the GR using the vertically polarized channels at
23 GHz and 18 GHz (GR(23V18V)), TCWV, and GR(36V18V), which accounts for atmospheric water
content, were identified as the variables that contributed greatly to the RF model. These important
variables allowed the RF model to retrieve unbiased and accurate SIC values by taking into account
the changes in TB values of sea ice and open water caused by atmospheric effects.

Keywords: summer sea ice concentration; Pacific Arctic Ocean; AMSR2; ERA-5; Random Forest regression

1. Introduction

Sea ice concentration (SIC), defined as the portion of sea ice coverage within a given
area, is a key indicator of climate change [1–4]. The decreasing summer Arctic sea ice
extent, the sum of areas with at least 15% SIC, is the most representative indicator of global
warming [5–8]. Moreover, SIC has a profound influence on ecosystems, biological habitats
and human activities in the polar oceans [9–11]. The Arctic summer SIC is important infor-
mation for the sailing of vessels on the Northern Sea Route (NSR) [11]. Decreasing Arctic
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summer sea ice extent suggests the possibility of the development of a more economically
valuable NSR. In recent years, a rapid reduction of Arctic sea ice in summer has been
reported, and it is expected to vanish by the middle of this century [12–15], which could
have significant impacts on the climate and ocean environment, as well as human activities
and economics in the Arctic. Therefore, the accurate estimation of summer SIC in the Arctic
Ocean is very important.

Satellite passive microwave (PM) sensors have provided information regarding the
SIC since the 1970s by observing the microwave radiation characteristics of sea ice and open
water [1,16]. The Special Sensor Microwave Imager/Sounder (SSMIS) and Advanced Mi-
crowave Scanning Radiometer 2 (AMSR2) are representative PM sensors that are currently
observing sea ice and have been operated since 2008 and 2012, respectively [17–19]. For the
operational estimation of SIC from the SSMIS measurements of brightness temperatures,
the NASA Team (NT) [20] and Bootstrap (BT) [1,21] algorithms were developed. These
algorithms use the brightness temperatures (TB), a measure of the emitted radiance of
microwave radiation from the surface, measured at 19 and 37 GHz channels to produce
SIC with a grid spacing of a few kilometers or tens of kilometers, which is attributed to the
instantaneous field of view (IFOV) of the used channels. For the AMSR2, the BT and Arctic
Radiation and Turbulence Interaction STudy (ARTIST) Sea Ice (ASI) [22] algorithms have
been used as operational SIC estimation algorithms. The ASI algorithm uses the 89 GHz
channel, which has a smaller IFOV than lower-frequency channels and provides informa-
tion on SIC with a grid spacing of 3.125 km to 12.5 km thanks to the fine IFOV. In addition
to the above algorithms, many SIC estimation algorithms have been developed and applied
for various satellite PM sensors. The existing algorithms estimate SIC by considering
the different microwave emissivities between sea ice and open water. Most algorithms
have shown good performance in estimating SIC in winter and in highly ice-concentrated
regions [16,20,21,23,24].

In summer, however, the algorithms typically estimate SIC inaccurately because
atmospheric effects such as high water content, strong winds, and high air temperature can
make the difference between the microwave radiation characteristics of sea ice and open
water small [1,23,25–27]. The sea ice surface melts in summer due to the increasing air
temperature, which leads to varying the ice emissivity in the microwave range that makes it
similar to open water. The atmospheric water content in summer, which is relatively higher
than winter, can make the atmospheric signal over the sea ice more dominant relative to the
surface signal in microwave range and cause the PM SIC algorithms to produce inaccurate
SIC values [25,26]. Furthermore, the surface of open water can be roughened by strong
winds. The wind-roughened open water surface can increase the TB over open water,
which can be a source of the overestimation of SIC from the PM observations. [25]. The area
of open water increases greatly in summer, and erroneous SIC values could be estimated
for a wider area than other seasons by the PM SIC algorithms. Andersen et al. [25] revealed
that the values of SIC estimated from the PM SIC algorithms can vary greatly depending on
atmospheric effects. The inaccuracy of the summer SIC values even varies from algorithm
to algorithm [16,23], which acts as a hindrance to accurately analyzing the declining trends
in the Arctic summer sea ice. The inaccuracy of summer Arctic SIC retrieved from the PM
SIC algorithms was reported to be up to ±20% [26,28,29], which is closely related to the
atmospheric contributions. To compensate for the atmospheric effects on the TB values
of sea ice and open water measured by the PM sensors, the SIC algorithms implement
weather filters that use criteria based on combinations of TB values [20–22,30]. However,
large errors in summer PM SIC imply that the weather filters have limitations in terms of
correcting the atmospheric contamination of TB and suggest that it is difficult to estimate
SIC accurately in summer using PM observations only.

Machine learning techniques, including deep learning, have recently been used to
develop SIC retrieval models from various remote sensing data [31–36]. For the develop-
ment of machine learning models, SIC values from ice charts, high-resolution satellites,
airborne images, and in situ observations are used as a reference dataset, and various
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remote sensing-derived parameters (i.e., backscattering and texture features from synthetic
aperture radar (SAR), reflectance from optical sensors, TB values from PM sensors, etc.) are
used as input variables. Thanks to the increase in the available remote sensing data, ma-
chine learning models can be developed by learning patterns from vast amounts of training
data, and they can show good potential in SIC estimation. In particular, satellite SARs that
are hardly affected by weather conditions and sun altitudes but provide high-resolution (a
few meters to tens of meters) images have been effectively used to develop SIC estimation
models in summer based on machine learning approaches. Han et al. [37] developed a
new method for the classification of sea ice and open water in summer from the Korean
Multi-purpose Satellite-5 (KOMPSAT-5) X-band SAR images by implementing Random
Forest, a rule-based machine learning approach, in which the gray level co-occurrence
matrix (GLCM) features computed from the SAR imagery were used as input variables for
the classification. The values of SIC estimated from the classifications were used as reliable
data for the assessment of the PM SIC algorithms [26]. Wang et al. [31] extracted normalized
backscattering coefficients from RADARSAT-2 dual-polarimetric SAR (HH and HV) and
applied them to a convolutional neural network to estimate SIC during the ice melting
season. Karvonen [32] used a combination of Sentinel-1 SAR and AMSR2 features as input
variables for multi-layer perceptron (MLP) deep learning and successfully estimated the
SIC in winter in the Baltic Sea. The machine learning models for SAR images typically
showed higher performance in SIC estimation than the PM-based operational algorithms.
However, due to the limitations in the spatial and temporal coverages of satellite SAR, the
previously developed machine learning models are not sufficient to produce consecutive
SIC products for a wide area.

PM observation data can be used to develop models for temporally continuous SIC
retrieval for a wide area. Chi et al. [34] proposed an MLP-based SIC estimation model
for AMSR2 TB values in order to retrieve multi-temporal SIC over the whole Arctic. They
reported that the estimated SIC values showed better agreement with moderate resolution
imaging spectroradiometer (MODIS) SIC values, which were used as the reference dataset
for the model development, than those from the BT and ASI algorithms. However, the SIC
estimation model developed by Chi et al. [34] might produce erroneous SIC values when
the atmospheric contributions are large enough to contaminate PM-observed TB values, as
their neural networks were trained using the MODIS-derived SIC values obtained only
under clear sky conditions. For the retrieval of operational and accurate SIC amounts
based on machine learning approaches, a training dataset covering various atmosphere
and ice conditions is required—particularly in summer, when the atmospheric effects on
PM-measured TB values are great. If various atmospheric parameters and PM TBs are used
as a set of input variables for the development of an SIC retrieval model, more accurate
SIC values can be retrieved than those estimated by the existing PM SIC algorithms.

The Pacific Arctic Ocean, including the East Siberian Sea, Chukchi Sea, and Beaufort
Sea (Figure 1), is the gateway of the Northwest and Northeast Passage. Sea ice in the region
exhibits earlier melting and faster retreating in summer than other regions because of
continuous heat transportation from the Pacific Ocean through the Bering Strait [38], which
is closely linked to local climate change [39]. In the region, operational PM SIC products
have been used as important data for ship navigation and climate research. However, the
PM SIC products have been reported to be very inaccurate in summer over the region due
to the atmospheric contributions to the TB contamination of sea ice and open water [25,26].

In the present study, we propose a new summer (July to September) daily SIC re-
trieval model for AMSR2 observation over the Pacific Arctic Ocean based on a machine
learning approach by using SAR-derived SIC for various weather and ice conditions and
information of the atmosphere from a numerical weather prediction (NWP) model. The
machine learning model was developed by implementing Random Forest regression, and
its performance was evaluated statistically. The feasibility of the developed machine
learning-based SIC retrieval model was evaluated through a performance comparison with
the operationally used PM SIC algorithms.
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Figure 1. A map of the East Siberian Sea, Chukchi Sea, and Beaufort Sea (the Pacific Arctic Ocean). Yellow and red boxes
represent the coverages of KOMPSAT-5 EW SAR and Landsat-8 OLI images used in this study. The white polygon represents
the area of the Pacific Arctic Ocean defined by Meier et al. [40].

2. Materials
2.1. AMSR2 Data

AMSR2 is a passive microwave sensor onboard the Global Change Observation
Mission–Water (GCOM-W) satellite, launched in 2012, which is a replacement and successor
for the Advanced Microwave Scanning Radiometer (AMSR) and Advanced Microwave
Scanning Radiometer–Earth Observing System (AMSR-E). AMSR2 is composed of 6.925,
7.3, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz dual-polarized (horizontal (H) and vertical (V)
polarization) channels [18,19]. We used AMSR2 Level 3 daily averaged ascending and
descending TB data provided by Japan Aerospace Exploration Agency (JAXA), which are
fully calibrated and gridded into a polar stereographic projection with a grid spacing of
10 km by matching the different resolution of each frequency channel by resampling the TB
of L1B swath data. For use in the retrieval of daily SIC values, the AMSR2 daily ascending
and descending TBs were averaged for each channel every day. The TB values in the 7.3 GHz
channel were not used in this study. The TB values in the 7.3 GHz channel of AMSR2 are
used to detect radio-frequency interference and calibrate the TB values at 6.9 GHz [41], and
are unnecessary information for the development of an SIC retrieval model.

2.2. SAR-Derived Ice/Water Maps

KOMPSAT-5 is equipped with X-band SAR with a center frequency of 9.66 GHz. A
total of 454 KOMPSAT-5 SAR images over the Pacific Arctic Ocean were acquired in HH
polarization at the Enhanced Wide (EW) swath mode from 6 August to 5 September in 2015,
from 8 August to 17 August in 2016, and from 15 July to 25 September in 2017 (Figure 1)
and were provided by Korea Aerospace Research Institute (KARI). The KOMPSAT-5 EW
SAR images cover an area of 100 km × 100 km with a spatial resolution of 6.25 m (1-look).
Sea ice and open water were classified from the KOMPSAT-5 SAR images by using the
sea ice mapping model developed by Han et al. [37]. The sea ice mapping model was
developed for KOMPSAT-5 EW SAR images in HH polarization based on the classification
of GLCM textures of the images by RF, which produces a sea ice map with a grid size of
125 m. The model showed a very high overall classification accuracy and kappa coefficient
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(98% and 99%). The overall accuracy is computed by dividing the number of samples that
were correctly classified by the total number of samples. The kappa coefficient measures
the degree of agreement between classification and reference data considering a change
in agreement as occurring by chance, which is widely used as a criterion for the accuracy
assessment of classification. The SIC values computed from the SAR-derived ice/water
maps were validated by using the Russian Arctic and Antarctic Research Institute (AARI)
ice charts. The mean value of the difference between the SIC values from the RF ice/water
maps and the ice charts was −8.85%, which could possibly be caused by the uncertainty in
the SIC values of the ice charts given as coarse ice concentration categories (10% or 20% SIC
increments) in large polygons [37]. Such high performance of the classification is attributed
to the striking differences in SAR intensities of ice and water in X-band SAR images.
Detailed methodologies for generating ice/water maps from the KOMPSAT-5 EW SAR
images are described in Han et al. [37] and Han et al. [26]. We generated ice/water maps
from the KOMPSAT-5 EW SAR images by using the sea ice mapping model developed by
Han et al. [37] (Figure 2), which was used to compute reference SIC values for training and
validating the machine learning based summer SIC retrieval model.

Figure 2. Examples of (a,b) KOMPSAT-5 EW SAR images and (c,d) corresponding ice/water maps,
modified from Han and Kim [25].
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2.3. ERA-5 Reanalysis Data

The ERA-5 reanalysis is generated by the European Centre for Medium-Range Weather
Forecasts (ECMWF), and provides multi-decadal reanalysis fields of atmospheric, oceanic,
and land variables with a 31 km spatial resolution globally and 137 vertical pressure levels
from ground to 0.01 hPa by using a 4D-Var data assimilation system from 1979 to the
present [42]. ERA-5 replaced the ERA-Interim, featuring several improvements such as a
much higher spatial and temporal resolution, more information about quality assessment
and better performance in estimating variables. The reanalysis fields used in this study
comprised hourly predicted 2 m air temperature, air temperature at 925 hPa, wind speed at
10 m, and total column water vapor (TCWV) predicted by the ERA-5, which were reported
to reflect atmospheric effects on microwave radiation characteristics of sea ice and open
water [26]. The air temperature at 925 hPa can indicate the thermal state of the lower
troposphere and is appropriate to help assess ice surface melting condition [43]. The hourly
reanalysis fields were averaged daily as we used daily averaged AMSR2 TB values. We
also computed the 30-day average of 2 m air temperature and air temperature at 925 hPa
from a particular day to account for the ice surface condition by accumulating the effects of
air temperature on sea ice surface melting [26]. These reanalysis fields were used as input
variables for the machine learning models along with the AMSR2 observation data.

2.4. BT and ASI Sea Ice Concentration Products

The BT and ASI SIC values were assessed by using the reference dataset, and their
performance was compared with that of the developed machine learning model. The BT
and ASI algorithms are currently operationally used for the AMSR2 TB values. The BT
algorithm utilizes TB values in 19 V and 37 V channels [1,21]. The gradient difference
between 19 V and 37 V channels is effectively used for detecting the seasonal ice area
near the ice edge and open water. Therefore, the BT algorithm has the advantage when
estimating the SIC of the ice edge. The ASI utilizes 89 GHz dual-polarized channels for
SIC estimation [22]. The ASI algorithm estimates SIC with a finer grid spacing than the
BT algorithm, as a result of the higher spatial resolution of the 89 GHz channels, however,
the 89 GHz measurements are more sensitive to atmospheric water content than lower-
frequency channels [22,23]. Sea ice shows small differences between the TB measured
at 89 V and 89 H channels, while open water shows large differences. Moreover, the TB
measured at high frequency channels are less influenced by the snow layer on the ice
surface than that at lower frequency channels. We used the daily averaged BT SIC products
(with a grid size of 10 km) provided by the JAXA and ASI SIC products (grid size of
6.25 km) provided by the University of Bremen.

2.5. Landsat-8 OLI Images

The Landsat-8 Operational Land Imager (OLI) Level 1 images listed in Table 1 were
acquired in the Pacific Arctic Ocean (Figure 1) to evaluate the performance of the developed
machine learning model. The dates of Landsat-8 OLI images were different from the
dates of the training dataset for the machine learning in order to evaluate the developed
model independently. The Landsat-8 OLI provides multispectral imagery in the visible,
near infrared, and shortwave infrared bands with a spatial resolution of 30 m for the
swath width of 185 km. A panchromatic image with a spatial resolution of 15 m is also
captured by the OLI. All the OLI images were obtained under mostly clear sky conditions,
radiometrically calibrated, and coordinated in the Universal Transverse Mercator (UTM)
projection. From the Landasat-8 OLI panchromatic images, we classified sea ice and open
water and computed SIC values, which were compared with those from the developed
machine learning model.
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Table 1. Details of the Landsat-8 OLI data used in this study.

Date Path Row

12 July 2013 77 10
11 August 2014 90 6
11 August 2014 90 8

6 September 2014 105 8
8 July 2015 87 6

13 July 2018 82 10
27 July 2018 173 239

9 August 2018 168 240

3. Methodology

This section describes the construction of the reference dataset and input variables for
the development of the machine learning-based summer daily SIC retrieval model. The
machine learning approach used in this study and the methods for the evaluation of the
model performance are also presented in this section.

3.1. Construction of Reference Dataset and Input Variables for Machine Learning

The ice/water maps generated from the SAR images had a grid size of 125 m and the
AMSR2 TB data had a 10 km grid size. The SIC values were computed in an 80 × 80 grid
cell window of the ice/water maps to produce a grid cell of size 10 km, where the area
overlapped with the AMSR2 TBs. A total of 35,240 SIC values were computed from the
ice/water maps, which were used as a reference dataset for the development of the machine
learning-based summer daily SIC retrieval model.

The TB values at each channel of AMSR2 showed different ranges of values for
sea ice and open water due to atmospheric and ice melting conditions. In many PM
SIC retrieval algorithms, parameters based on the ratios of TBs are adopted to estimate
SIC [1,20–22,44]. The representative parameters of the TB ratios used for the SIC estimation
were the polarization ratio (PR) at 18 GHz (PR(18)), the spectral gradient ratios (GR)
between 37 GHz and 18 GHz at vertical polarization (GR(37V18V)) and 23 GHz and
18 GHz at vertical polarization (GR(23V18V)), and the difference between GR(89H18H)
and GR(89V18V) (∆GR), which are computed as

PR(18) =
TB(18V)− TB(18H)

TB(18V) + TB(18H)
(1)

GR( f1 p f2 p) =
TB( f1 p)− TB( f2 p)
TB( f1 p) + TB( f2 p)

(2)

∆GR = GR(89H18H)− GR(89V18V) (3)

where f is the frequency and p is the polarization of the PM channel. The PR(18) and
GR(37V18V) are used for the discrimination of sea ice types (first-year ice and multiyear ice
in the Arctic) and open water, as implemented in the NT algorithm [19]. The difference in
TB measured at 18 V and 18 H channels is greater in open water than in sea ice. Therefore,
open water has a higher PR(18) value than sea ice, which is used to distinguish sea ice from
open water. GR(37V18V) is useful for distinguishing first-year sea ice from multiyear sea
ice, because the difference in TB measured at 37 V and 18 V channels is very small, close to
zero for first-year ice, whereas it is negative in multiyear ice. In open water, TB measured
on the 37 V channel is higher than that measured on the 18 V channel, and GR(37V18V) of
open water is calculated as a positive value. The ∆GR is used in the enhanced NT (NT2)
algorithm and enables the identification of sea ice with an inhomogeneous surface layer
such as surface glaze and layering based on a decreasing TB at 18 GHz and stable 89 GHz
channels by increasing inhomogeneity of the surface layer [44]. The GR(23V18V) is used
in conjunction with GR(37V18V) to correct the influences of weather on SIC estimation
from PM SIC algorithms such as NT, NT2, and ASI [1,20–22,44]. The parameters derived
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from the TB ratios have the advantage of being less sensitive to variations in the physical
temperature of the snow/ice layer [16].

A total of 24 features were extracted from the AMSR2 (TB values in vertically and
horizontally polarized channels of each frequency, PR(18), GR(37V18V), GR(23V18V),
GR(89H18H), GR(89V18V), and ∆GR) and from the ERA-5 reanalysis (2 m air temperature,
air temperature at 925 hPa, wind speed at 10 m, TCWV, and 30-day average of 2 m air
temperature and air temperature at 925 hPa) for the same dates and areas with the reference
SIC grids for the model development. These features were set to be the independent
variables, and the SIC values computed from the SAR ice/water maps were considered
to be the dependent variable in the machine learning model. A total of 35,240 samples
were constructed, of which 80% (28,192 samples) were used for the training of the machine
learning model and the rest (7048 samples) were used to validate the developed model.
The training and validation samples were extracted from different ice/water maps, and
thus they were independent of each other.

3.2. Random Forest Regression for SIC Retrieval

Random Forest (RF) [45] regression was used to retrieve summer daily SIC from the
AMSR2 observation data and ERA-5 reanalysis fields. The RF is a popular rule-based ma-
chine learning algorithm due to its good prediction capability for high-dimensional data in
remote sensing fields [46]. In the remote sensing of sea ice, the RF has been widely used for
the SIC retrieval [36], melt pond fraction estimation [47], ice type classification [37,48–50],
and lead detection [51,52]. The RF is an ensemble classifier and regressor that creates
multiple bootstrapped samples of the original training data and builds a set of no pruning
classification and regression trees (CART) from each set of bootstrapped samples, which is
an ensemble of rule-based decision trees [45]. The numerous independent decision trees
are created by randomly selecting a subset of the training samples with replacement for
each tree and a subset of recursively splitting input variables at each node of the tree.
This process can improve the predictability of response variables by reducing the learning
dependence on the quality and configuration of training samples [46]. For regression, the
RF predicts value at a node by averaging the response variable of all observations in the
node. The predictions from the independent decision trees are aggregated (averaged),
and then a final conclusion is determined. The RF provides the statistical measure of the
relative importance of input variables in terms of the prediction accuracy, called the mean
decrease in accuracy, which represents the decrease in the accuracy when the values of
variables are randomly permuted.

The performance of the RF-based SIC retrieval model was evaluated in terms of the
correlation coefficient (R) between the predicted SIC values and the reference SIC values,
and the mean bias (mean error), the standard deviation of error (SDE) and the root mean
square error (RMSE), in which errors were calculated by subtracting the corresponding
predicted SIC values from the corresponding reference values. The BT and ASI SIC values
were also assessed using the same measures. Prior to the assessment, the SIC products
were resampled to 10 km using the nearest-neighbor scheme to match the grid size of the
reference SIC.

The accuracy of SIC retrieved from the RF model, ASI, and BT algorithms was also eval-
uated by using the Landsat-8 OLI panchromatic images. According to Cavalieri et al. [53],
the broadband albedo (ρ) of the panchromatic image of Landsat-7 Enhanced Thematic
Mapper Plus (ETM+) with a wavelength range of 0.52–0.90 µm is useful to classify surface
types into open water (ρ < 0.1), new ice (0.1 ≤ ρ < 0.4), young ice (0.4 ≤ ρ < 0.6), and
first-year ice (0.6 < ρ). The SIC values calculated from this ice/water classification based on
the thresholds of the albedo were effectively used for the assessment of the AMSR-E NT2
SIC product for the Arctic [54]. In Cavalieri et al. [54], the broadband albedo from the three
visible bands of MODIS (0.46–0.67 µm) was computed using different weights for each
band [55] and classified into open water and sea ice types by using the same thresholds
proposed in Cavalieri et al. [53]. The MODIS broadband albedo covers approximately the
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same spectral range as the ETM+ panchromatic band; thus SIC values calculated based on
the albedo thresholds for the classification of sea ice and open water can be used for the
AMSR-E NT2 SIC product in the Antarctic winter [54].

We obtained the top-of-the-atmosphere reflectance of the OLI panchromatic images
and resampled it to a 100 m grid for ease of handling. Then, the albedo images were
reprojected into the polar stereographic projection. Although the wavelength range of
the OLI panchromatic band (0.50–0.68 µm) was almost the same as that of the MODIS
broadband albedo derived in Cavalieri et al. [54], we used the albedo of 0.15 as a threshold
to separate water from ice. Through visual inspection of the classification results, it was
found that the open water observed in the OLI panchromatic images was misclassified as
new ice when the albedo threshold was set to 0.1, while most was correctly classified as
sea ice with an albedo threshold of 0.15. In the visible wavelength (<0.7 µm), new ice can
have an albedo value larger than 0.11 [56]. We also performed the visual inspection on
the classification results when different albedo thresholds were applied. It was confirmed
that the misclassification when using the albedo threshold values of 0.13 and 0.17 was
greater than when the albedo threshold of 0.15 was used. However, the classifications
with albedo threshold values of 0.14 and 0.16 were not visually different from when the
albedo threshold value of 0.15 was used. The changes in the open water fraction in the
Landsat-8 images were only 1% for every 0.1 increment of the albedo threshold from 0.14 to
0.16. Figure 3 shows the classification result of the Landsat-8 OLI panchromatic albedo
on 8 August 2018, which demonstrates that the separation of open water from sea ice is
clearer with an albedo threshold of 0.15 than 0.10. The grid cells with a panchromatic albedo
value greater than 0.15 were classified into sea ice, and others were defined as open water.
The grids of the albedo covered by clouds were removed before the classification using the
quality assessment band of the Landsat products. From the classified images, SIC values
were calculated with a 10 km grid, over which the SIC results retrieved from the RF model
and ASI and BT algorithms were overlapped. We calculated the values of R, mean bias, SDE,
and RMSE of the RF, ASI, and BT SICs by comparing them with the Landsat-8 OLI SICs.

Figure 3. An example of (a) a Landsat-8 OLI panchromatic image resampled to a grid of 100 m and corresponding ice/water
classification map, in which the open water was classified from albedo values of less than (b) 0.1 and (c) 0.15.

4. Results and Discussion

Table 2 shows the descriptive statistics of the samples used for the development of a
summer SIC retrieval model by RF regression. The samples were extracted under a variety
of weather conditions, which might help the RF model to produce SIC values without
relying on the atmospheric contamination of the AMSR2 observations.
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Table 2. Descriptive statistics of the input variables used in the training and validation samples for the RF model
(TB: brightness temperature, H: horizontally polarized channel, V: vertically polarized channel, Q1: 25th percentile,
Q3: 75th percentile).

Statistics
Variable

Mean Median Std. Min. Max. Q1 Q3

TB 6H (K) 168.23 171.34 38.94 87.87 241.45 133.82 200.65
TB 6V (K) 218.23 222.73 24.40 165.68 259.93 196.63 238.40

TB 10H (K) 173.73 178.11 37.72 96.00 240.02 140.25 206.11
TB 10V (K) 223.53 228.48 22.42 175.06 259.60 203.72 242.84
TB 18H (K) 183.35 189.06 32.29 113.03 241.38 155.61 211.49
TB 18V (K) 230.08 234.0 17.11 190.47 258.33 215.35 245.09
TB 23H (K) 198.75 203.93 26.33 131.93 250.18 176.80 220.52
TB 23V (K) 236.13 237.41 13.70 202.38 263.07 224.65 248.38
TB 36H (K) 195.44 198.90 24.23 141.35 250.18 175.15 215.40
TB 36V (K) 232.28 231.83 12.73 194.31 262.47 222.15 242.47
TB 89H (K) 220.86 218.88 16.06 179.16 268.38 209.31 231.33
TB 89V (K) 243.05 243.66 12.18 194.90 272.15 236.61 250.06

PR18 1.12 1.11 0.06 1.03 1.26 1.07 1.16
GR(36V18V) 1.01 1.01 0.02 0.91 1.06 0.99 1.02
GR(23V18V) 1.01 1.01 0.01 0.98 1.05 1.00 1.02
GR(89H18H) 2.07 2.06 0.03 2.00 2.17 2.04 2.10
GR(89V18V) 1.10 1.09 0.08 0.92 1.29 1.04 1.16

∆GR 1.03 1.03 0.05 0.88 1.13 0.99 1.07
TCWV (kg/m2) 11.99 11.35 3.45 3.83 29.28 9.98 13.34

Wind speed (m/s) 4.88 4.68 2.44 0.04 13.09 2.94 6.24
2 m air temperature (◦C) −0.28 −0.12 1.73 −10.81 6.78 −0.81 0.70

925 hPa air
temperature (◦C) −0.32 −0.58 4.25 −10.98 12.98 −3.10 2.08

30-day average of 2 m air
temperature (◦C) 0.63 0.69 1.02 −3.88 5.57 0.10 1.30

30-day average of 925 hPa
air temperature (◦C) 1.07 0.31 3.01 −5.87 8.11 −1.22 3.72

Reference SIC (%) 61.06 71.13 34.95 0.00 100.00 26.44 95.36

4.1. Performance of Summer SIC Retrieval Model Based on RF Regression

The summer daily SIC retrieval model for the Pacific Arctic Ocean was developed
using RF regression. Figure 4 shows the scatterplots of the RF model-derived SIC values
and reference SIC values for the training and validation datasets. For the training dataset,
the RF SIC values matched well with the reference values with a very small RMSE (3.41%),
mean bias (0.02%) and SDE (3.41%) and a very high R value (0.992). The RF SIC values for
the validation dataset, which was selected independently of the training dataset, were also
strongly correlated with the reference SIC values (R value of 0.959), showing small values
of RMSE (7.89%), bias (0.11%), and SDE (7.89%). The values of RMSE and SDE for the
validation dataset were about twice as great as those for the training dataset, but they were
still small and the value of the mean bias was close to 0%. The performance of the developed
RF model was greatly superior to that of the ASI and BT algorithms (Figure 5). The BT
and ASI SIC values showed lower R values (0.876 and 0.864, respectively) compared to the
reference SIC values for the validation dataset, and they had three times greater values of
RMSE (20.19% and 21.39%, respectively) and SDE (19.11% and 19.67%, respectively) than
the RF SIC values. Furthermore, the ASI and BT algorithms overestimated SIC values with
a mean bias of 6.49% and 8.40%, respectively.

The deviations of the ASI and BT SIC values from the reference values were mainly
caused by the atmospheric effects on the TB values of sea ice and open water observed
by AMSR2 [26]. Even though the developed RF model uses the same observations, it can
retrieve more accurate SIC values by reducing the physical change of the TB values of
sea ice and open water due to atmospheric effects by considering the weather conditions
predicted by the NWP model.
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Figure 4. Comparisons of SIC values computed from the KOMPSAT-5 ice/water maps with those predicted by the RF
model for the (a) training and (b) validation datasets.

Figure 5. Comparisons of SIC values computed from the KOMPSAT-5 ice/water maps with those from the (a) BT and (b)
ASI algorithms.

Summer SIC mapping results from the RF model were compared to the reference
SIC maps, which were used as the validation dataset (Figures 6 and 7). The BT and ASI
SIC maps were also compared with the reference maps. From the SAR intensity images
(Figures 6a and 7a) and ice/water maps (Figures 6b and 7b), we could confirm that the
accurate classification of sea ice and open water was performed by the ice/water mapping
model developed by Han et al. [37]. For the comparison on 18 August 2015 (Figure 6),
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the RF model, BT, and ASI had RMSE values of 9.14%, 12.96%, and 16.81%, respectively.
The BT and ASI SIC values were largely overestimated in the low SIC region (Figure 6h,i),
where the TCWV was higher than 11 kg/m2 (Figure 6j), which is a main cause of the
overestimation of SIC by the BT and ASI algorithms [26]. In the high SIC region, the
ASI SIC values were largely underestimated (Figure 6i) due to ice surface melting, which
could be confirmed by the low backscattering of sea ice (Figure 6a) and the averaged 2 m
air temperature being above 0 ◦C for 30 days (Figure 6l). The 30-day average of 2 m air
temperature in the north, where there was sea ice, was higher than in the south, where
there was open water (Figure 6l). Sea ice continues to move, and the 30-day average of
2 m air temperature could be higher in the sea ice region than open water region on a
particular day. The differences between the RF-retrieved SIC values and the reference
values were mostly less than 10% (Figure 6g), regardless of atmospheric and ice surface
melting conditions.

In a small patch of ice surrounded by open water south of the ice edge with a strongly
wind-roughened ocean on 4 September 2015 (Figure 7o), the RF model, BT, and ASI had a
RMSE values of 9.17% (Figure 7g), 12.74% (Figure 7h), and 15.63% (Figure 7i), respectively.
The BT SIC values were greatly overestimated (Figure 7h), which could be caused by the
effect of the water content and the surface roughness of open water. High atmospheric
water vapor and strong winds over the open water increase TB [25], which could be a reason
for the overestimation of SIC by the algorithm. The ASI algorithm estimated SICs slightly
more accurately than the BT, which could be attributed to the higher spatial resolution
of the 89 GHz channel than others, but it still overestimated SICs for fragmented ice and
underestimated those for some ice floes (Figure 7i) showing low backscattering due to
surface melting. The RF model-retrieved SIC values were much more accurate than the BT
and ASI SIC values, showing small deviations from the reference values (Figure 7g). These
comparisons showed that the RF model can retrieve accurate summer SIC values under
various atmospheric and ice surface melting conditions by considering weather conditions
in its learning process.

We additionally tested the RF SIC model using the SIC values computed from the
Landsat-8 OLI panchromatic images. The BT and ASI SIC values were also compared with
the Landsat-8 SIC values. Figure 8 shows the comparisons of Landsat-8 SIC values with the
RF, BT, and ASI-derived SIC values. RF-based SIC values matched well with the Landsat-8
SIC values with small values of RMSE (9.21%), mean bias (−2.07%) and SDE (8.97%),
and a very high R value (0.955) (Figure 8a). The R values for the Landsat-8 SIC values
and the BT and ASI SIC values were also high (0.879 and 0.924, respectively). However,
the algorithms estimated SIC values with a larger RMSE, mean bias, and SDE than the
RF model (Figure 8b,c), which shows the superior performance of the RF model for SIC
estimation. The ASI values were underestimated compared to the Landsat-8 SIC values,
which was possibly caused by ice surface melting due to the very high temperature at
925 hPa (Table 3). The ASI algorithm produced SIC values close to 0% when the Landsat-8
SIC values less than 20%, i.e., near the ice edge. This is the same result as reported in
Radhakrishnan et al. [57], presenting that the ASI algorithm tends to underestimate SIC
in the vicinity of the ice edge. Meanwhile, the BT algorithm estimated slightly positively
biased SIC values. This might be attributed to the fact that the underestimation of SIC
from the algorithm due to ice surface melting may be compensated by the water vapor
content [26]. Figure 8 confirms once again that the BT and ASI algorithms estimate SIC
values inaccurately in summer due to the contaminated TB of sea ice and open water
caused by atmospheric effects, while the RF model developed in this study retrieves more
accurate SIC values by considering the atmospheric effects through the NWP data.
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Figure 6. (a) KOMPSAT-5 EW SAR image acquired on 18 August 2015, and corresponding (b) ice/water map and (c) SIC
with a grid size of 10 km. (d–f) RF, BT and ASI SIC map for the Pacific Arctic Ocean (the white polygon) on the same
date as the SAR image. The difference between SAR SIC and (g) RF, (h) BT, and (i) ASI SIC for the same area of the SAR
image (the white box in (d–f)). For the same date, (j) TCWV, (k) 2-m air temperature, (l) 30-day average of 2 m temperature,
(m) air temperature at 925 hPa, (n) 30-day average of air temperature at 925 hPa and (o) wind speed. The white box in
(j–o) represents the area of SAR image.
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Figure 7. (a) KOMPSAT-5 EW SAR image acquired on 4 September 2015, and corresponding (b) ice/water map and
(c) SIC with a grid size of 10 km. (d–f) RF, BT, and ASI SIC map for the Pacific Arctic Ocean (the white polygon) on the same
date as the SAR image. The difference between SAR SIC and (g) RF, (h) BT, and (i) ASI SIC for the same area of the SAR
image (the white box in (d–f)). For the same date, (j) TCWV, (k) 2-m air temperature, (l) 30-day average of 2 m temperature,
(m) air temperature at 925 hPa, (n) 30-day average of air temperature at 925 hPa and (o) wind speed. The white box in
(j–o) represents the area of SAR image.
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Figure 8. Comparisons of SIC values computed from Landsat-8 ice/water maps with those from the (a) RF model and
(b) BT and (c) ASI algorithms.

Table 3. Descriptive statistics of atmospheric conditions used in the RF SIC retrieval corresponding to the Landsat-8
SIC (TB: brightness temperature, H: horizontally polarized channel, V: vertically polarized channel, Q1: 25th percentile,
Q3: 75th percentile).

Statistics
Variable

Mean Median Std. Min. Max. Q1 Q3

TCWV (kg/m2) 14.19 13.99 3.07 10.54 26.02 11.01 16.15
Wind speed (m/s) 5.67 5.76 1.26 3.03 8.39 4.84 6.60

2 m air temperature (◦C) 0.65 0.58 0.49 −0.28 4.05 0.26 0.9
925 hPa air temperature (◦C) 3.84 5.44 3.42 −3.54 7.74 0.88 6.19

30 days average of 2 m air
temperature (◦C) 1.09 0.75 0.87 −0.09 7.62 0.55 1.46

30 days average of 925 hPa air
temperature (◦C) 2.43 2.01 2.71 −1.06 9.96 −0.09 3.25

4.2. Variable Importance of the RF Model

The relative importance of the 10 most important input variables used in the devel-
opment of the summer SIC retrieval model based on RF regression is shown in Figure 9.
The most important variable is the 30-day average of the temperature at 925 hPa, and
the second and third most important variables are the temperatures at 925 hPa and 2 m,
respectively. All three of the most important variables are related to air temperature and
account for the ice surface melting condition in summer. The air temperature at 925 hPa
indicates the thermal state of the lower troposphere and that at 2 m potentially reflects
the thermal properties of the ice surface [43]. The ice surface melting in summer makes
it difficult to distinguish between sea ice and open water from the TB values observed by
the PM sensors and has a great influence on the underestimation of the SIC [16,26,58]. In
particular, when high air temperatures are maintained for a long time (e.g., for a month),
the ice surface melting becomes more severe. Therefore, it can be concluded that the three
most important variables related to the air temperature have been used to compensate for
the effect of ice surface melting included in the PM observations in the SIC retrieval by
the RF model. The average of the air temperature at 2 m for 30 days was the sixth most
important variable of the model.

The GR(23V18V), TCWV, and GR(36V18V) were analyzed as the fourth, fifth and
seventh most important variables in the RF model, respectively. In the existing PM SIC
algorithms, the GRs are used to prevent the overestimation of SIC caused by the microwave
radiation characteristics of open water being similar to those of sea ice due to precipitation,
water vapor, and the roughening of the ocean surface by winds [59]. It has been found
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that as the amount of TCWV increases, the overestimation of the SIC from the existing PM
SIC algorithms becomes greater [25,26]. The summer SIC retrieval model developed in
this study can be characterized as correcting the false detection of sea ice from open water
attributed to the weather conditions by using the GR(23V18V), TCWV, and GR(36V18V)
as important input variables. The wind speed is the 10th most important variable, and it
contributes to SIC retrieval by quantifying the effect of a wind-roughened ocean surface.

Figure 9. Mean decrease in accuracy of the RF model.

In the developed model, most variables constructed from the NWP data were more
important than PM observation variables. This proves that an accurate summer SIC can
be estimated by considering information on atmospheric effects together with the PM
observations. In addition, it can be concluded that by inputting variables representing the
atmospheric effects into the machine learning approach, it is possible to retrieve a more
accurate summer SIC without the hassle of determining the weather filters based on the
PM observations and TB threshold values.

4.3. Implications for the Machine Learning Model

Sea ice in the Pacific Arctic Ocean melts rapidly in summer and the ice edge retreats
dramatically, and the summer SIC in this region has been used as an important indicator of
climate change. In addition, as it is the entrance of the Northwest and Northeast Passage,
the accurate estimation of SIC in summer of this region is necessary. The machine learning
model developed in this study adopted the AMSR2 observation data and NWP fields in
combination to retrieve the summer SIC to consider the physical changes in the TB values
of sea ice and open water caused by atmospheric effects, from which more accurate SIC
values were obtained than the BT and ASI algorithms. The machine learning model also
has the advantage of retrieving accurate SIC values without the complication of using
weather filters based on the complex thresholds of TB values.

In the machine learning model, the daily averaged TBs and NWP fields were used as
input variables. In summer, sea ice can move quickly and the weather can vary with time.
Therefore, the use of the daily averaged data may lead to inaccurate SIC retrieval, which
can be particularly highlighted at the ice edge. The ice surface melting can be affected
not only by air temperature, but also by the surface energy balance components such
as downwelling fluxes of longwave and shortwave radiation, latent heat flux, and heat
release from the ocean. However, the energy balance components were not used in the
model development. Moreover, the 2 m air temperature of ERA-5, identified as one of the
important variables for retrieving summer SIC by the RF model, has a warm bias (<1 ◦C)
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over Arctic sea ice relative to buoy observations in summer [60]. This shows that the ERA-5
near-surface temperature may not be suitable as a physical parameter for considering
the sea ice melting, although it has been used as an important measure for estimating
SIC through the machine learning model. Another limitation of the machine learning
model developed in this study is that real-time SIC estimation is not possible because the
quality-assured ERA-5 reanalysis fields are published tens of days later than real time [61].
In the machine learning model, NWP reanalysis fields were used as important variables
for SIC retrieval. However, the near-real time SIC estimation would be possible if forecast
fields from the real time forecast models such as the Integrated Forecasting System (IFS)
provided by the ECMWF or United Model provided by the UK Met office (Global UM)
were used in the model development. In future research, we will develop a more accurate
summer SIC retrieval model by using individual AMSR2 swath data and real time forecast
fields, including the surface energy balance components of the corresponding time, to the
AMSR2 observations.

5. Conclusions

A summer SIC retrieval model for the Pacific Arctic Ocean was developed by using
AMSR2 observation data and ERA-5 reanalysis fields based on a rule-based machine
learning approach—RF regression. The reference dataset for the retrieval of SIC was
constructed from the ice/water classification maps generated from the KOMPSAT-5 SAR
images acquired from July to September in 2015–2017. The TB values of the AMSR2
channels, the ratios of TBs (PR and GRs) and the NWP fields presenting water vapor content,
air temperature, and wind speed were used as input variables of the machine learning
model. The RF model retrieved more accurate SIC values than the BT and ASI algorithms
under various atmospheric and ice surface melting conditions. The BT and ASI algorithms
produced SIC values that had large errors due to the atmospheric effects, but the SIC values
retrieved from the RF model had much smaller errors. The air temperatures at 2 m and
925 hPa, as well as their 30-day averages, GR(23V18V), TCWV, and GR(36V18V), were
identified as more significantly contributing input variables than others by the RF model.
The variables related to air temperature and the other important variables contributed to
the RF model retrieving accurate SIC by taking into account the changes in the TB values of
sea ice and open water caused by ice surface melting and weather conditions.

The machine learning model proposed in this study successfully retrieved the SIC
in the Pacific Arctic Ocean in summer by considering the atmospheric effects on the TB
values of sea ice and open water, and it can be used to reconstruct sea ice information
with much higher accuracy than the operational algorithms for passive microwave sensors.
However, the machine learning model may retrieve inaccurate SIC values in regions with
severe spatiotemporal variations in sea ice and weather conditions. Future research will
include developing a more improved SIC retrieval model by using individual swath data
from passive microwave sensors and real time weather information including the surface
energy balance components for the corresponding time of the swath data for the entire
Arctic Ocean.
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