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Abstract: The minimum brightness temperature (mBT) of seawater in the polar region is an important
parameter in algorithms for determining sea ice concentration or snow depth. To estimate the mBT of
seawater at 6.925 GHz for the Arctic and Antarctic Oceans and to find their physical characteristics,
we collected brightness temperature and sea ice concentration data from the Advanced Microwave
Scanning Radiometer 2 (AMSR2) for eight years from 2012 to 2020. The estimated mBT shows
constant annual values, but we found a significant difference in the seasonal variability between the
Arctic and Antarctic Oceans. We calculated the mBT with the radiative transfer model parameterized
by sea surface temperature (SST), sea surface wind speed (SSW), and integrated water vapor (IWV)
and compared them with our observations. The estimated mBT represents the modeled mBT emitted
from seawater under conditions of 2–5 m/s SSW and SST below 0 ◦C, except in the Arctic summer.
The exceptional summer mBT in the Arctic Ocean was related to unusually high SST. We found
evidence of Arctic amplification in the seasonal variability of Arctic mBT.

Keywords: passive microwave; ocean; AMSR2; tie point; Arctic amplification

1. Introduction

The brightness temperature (BT) of seawater measured by passive microwave (PMW)
satellite data is approximately proportional to sea surface emissivity and sea surface
temperature. The emissivity of seawater depends on the salinity of the sea surface (SSS),
sea surface temperature (SST), and sea surface wind speed (SSW) for the given observation
frequency band and incidence angle of the sensor. The polar region is where the phase
transition occurs between seawater and sea ice. Because solar radiation incidents in the
Arctic and Antarctic oceans are low, the SST can drop to the freezing point. Open water
with a salinity of 35 ‰ starts to freeze below the freezing point of −1.75 ◦C. If seawater
were colder than the freezing point, it would freeze in thermal equilibrium. When seawater
is frozen and sea ice is formed, emissivity in the microwave region increases from a
value of 0.2–0.5 for the seawater to 0.9 for sea ice. Therefore, even if the sea ice has the
same temperature as the ocean, the BT of sea ice measures higher than that of the ocean.
Therefore, we suggest that the minimum BT (mBT) should be the coldest region near the
freezing point of seawater in the polar oceans.

The mBT values in the Arctic and Antarctic oceans can be used as endpoint members
of the BT distribution. The parameters related to the endpoint members of seawater and
sea ice have been utilized for monitoring sea ice in the cryosphere. The most popular
products including sea ice concentration (SIC) and snow depth come from PMW satellite
observation data using significant emissivity contrast between the seawater and sea ice in
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a selected microwave region. The endpoint members, so-called tie-points, for the seawater
and sea ice are essential for retrieving products related to sea ice and to snow over the
sea ice in the Arctic and Antarctic regions. For example, the bootstrap algorithm [1] and
NASA team algorithm [2] define the reference points of BT for 0% and 100% SIC using
higher frequency bands. Ice concentrations of 0% and 100% correspond to the tie-points of
open water and sea ice in the set of BT values, respectively. For the snow depth retrieval
algorithm [3], the tie-points for the ocean at 18 and 37 GHz are necessary for obtaining
accurate snow depth data. Therefore, the determination of tie-points for the ocean and
sea ice from observed BTs are important for maintaining the accuracy and consistency in
operational sea ice products. Despite broad usage of the tie-point concept, the physical
interpretation of tie-points is somewhat unclear.

Generally, SIC products provide a good accuracy (precision) of less than 10%. How-
ever, there is high uncertainty in the retrieval products for the summer period because
of surface melting and the presence of melt ponds. Atmospheric contributions and wind
roughening of the open ocean are also significant error sources [4]. Thin ice in the marginal
zone is another challenge for PMW algorithms [5]. Recently, products using the lower
frequency bands in a PMW satellite have been proposed as a new alternative. Lower
frequency bands are more noticeable for the detection of thin sea ice and less sensitive to
atmospheric contribution and surface roughness than conventional higher frequency bands.
Kilic et al. [6] proposed a new sea ice concentration algorithm, including observation data
at 6.9 and 10 GHz bands, to improve SIC estimation. They showed that the algorithm using
6.9 GHz observations had the lowest rate of error [6,7]. A recent study by Rostosky et al. [8]
showed improved accuracy for the output of a snow depth algorithm including the C-band.
Up to now, the low spatial resolution of low-frequency bands (<11 GHz) has been seen as a
drawback. However, ESA’s planned Copernicus Imaging Microwave Radiometer (CIMR)
mission is expected to include L- and C-band channels with improved resolution [9]. The
higher spatial resolution at the lower frequency channels enables retrievals of various
surface parameters with a lower level of uncertainty than the current operational retrieval
products. Furthermore, it can maintain a sustained continuity of PMW measurements,
which is required in the climate study.

The Arctic has been warming roughly twice as fast as the rest of Earth over the past
30 years [10]. The main drivers of the “Arctic amplification” [11] are the snow/ice-albedo
and cloud-radiation feedbacks. Over the last 30 years, the sea ice in the Arctic Ocean has
been shrinking [12], and land snow cover has decreased especially during the summer.
The reduction in both sea ice and land ice in the Arctic has led to increases in SST [12] and
atmospheric water vapor [13–15] as ice-free regions expand. Understanding the patterns
of rapid changes in the polar environment detected by PMW sensors can provide a new
methodology for monitoring climate change. In addition, it is possible to infer the effect of
the changed physical variables in the polar region on the accuracy of the current retrieval
products.

In this paper, we estimated the mBT and examined seasonal variability and regional
differences between the Arctic and Antarctic Oceans on a global scale. Although the mBT
uses the same concept as tie-points in the sea ice concentration algorithm, we use the mBT
in this paper instead of tie-points. The tie-points generally refer to endmembers at 19 and
37 GHz for the sea ice concentration retrieval algorithm (e.g., bootstrap algorithm [1]).
However, in this paper, we used BT at 6.925 GHz to analyze the effects of the physical
properties. We collected the BT at the 6.925 GHz band measured by Advanced Microwave
Scanning Radiometer 2 (AMSR2) onboard the Global Change Observation Mission–Water
1 (GCOM-W1) satellite for eight years from 2012 to 2020. For comparison, the theoretical
seawater emissivity and BT were calculated using the dielectric constant model of Meissner
and Wentz [16].



Remote Sens. 2021, 13, 2122 3 of 14

2. Materials and Methods

AMSR2, the successor of the AMSR-E onboard the Aqua satellite, is the PMW ra-
diometer system onboard the Japan Aerospace Exploration Agency’s GCOM-W1 satellite.
The GCOM-W1 was launched in 2012 [17] and has been orbiting in a sun-synchronous
low-Earth orbit with an inclination angle of 98.2◦. AMSR2 observations are performed
by conical scanning with a constant incidence angle of 55◦ and a swath width of 1450 km.
The AMSR2 has seven microwave frequency bands at 6.925, 7.3, 10.65, 18.7, 23.8, 36.5,
and 89.0 GHz in the H- and V-polarizations [18]. While the nadir footprint size at the
6.925 GHz channel of the AMSR2 is coarse (35 × 62 km2), it is sufficient for interpreting
polar observation data because it is less affected by the atmosphere and has a relatively
high emissivity contrast between the sea ice and seawater.

We collected the brightness temperature (Level 1B) and the Sea Ice Concentration
products (Level 2 [19]) from the AMSR2 at 6.925 GHz for eight years from July 2012 to June
2020 (see https://gportal.jaxa.jp/, (accessed on 27 May 2021)), except for three days of
missing data (2013.05.11–13). We used both observation data in ascending and descending
orbits without distinction between them. We excluded sea ice (SIC > 0), land, and the
contaminated data adjacent to the land or sea ice from the mBT estimate. Finally, data from
seawater at high latitudes (above 55◦ N for the Arctic Ocean and 45◦ S for the Antarctic
Ocean) were gathered separately from the daily collected data. The estimation of the mBTs
for V- and H-polarizations were determined by averaging the lower 0.1% of data to reduce
potential noise in daily values. The lower 0.1% of the data set was sorted by projecting the
data points onto the trend-line of the BT in the domain of the BTs at V- and H-polarizations.
We conducted an orthogonal projection onto a regression line. Assuming BTs for V- and
H-polarization as the position vector (V, H) in the BTV and BTH space, the orthogonal
projection onto the regression line can be described as follows:

(
Ut
Us

)
=

 √
1/(1 + s)2

√
s2/(1 + s)2

−
√

s2/(1 + s)2
√

1/(1 + s)2

( V
H

)
(1)

where s indicates the slope of the regression line. Ut and Us are the position vectors in a
new space defined by the unit vectors parallel or perpendicular to the linear regression
line. Ut indicates the projected position on the regression line, and the average of the lower
0.1% based on Ut was determined as mBT. At least 1000 data points were available to get
the lower 0.1% dataset in the transformed domain. Figure 1 shows an example scatterplot
for BT in each Arctic (left) and Antarctic (right) pole on 3 November 2018. The grey and the
cyan circles in Figure 1 represent the BT data points and the computed mBT, respectively.
The dashed line in Figure 1 indicates the trend line of BT data points in the polar ocean
obtained by the linear regression method.

To examine the factors inducing seasonal variability, The Remote Sensing Systems
(RSS) model [16,20] was used for the framework of RTM simulation in this paper. It is
the representative ocean RTM developed with SSMI and WindSat observation [21]. We
applied the wind-induced sea surface emissivity model [16] but did not consider the effect
of seafoam and sea surface wind direction. According to the RTM, BT measured by passive
microwave sensors includes radiation energy emitted from various sources. For a non-
scattering plane-parallel atmosphere, BT observed from the top of the atmosphere from the
ocean surface consists of three radiation components: (1) surface-emitted radiation atten-
uated by the atmosphere, (2) upwelling and surface-reflected downwelling atmospheric
radiation, and (3) surface-reflected cosmic background radiation. The radiative transfer
equation in the PMW from the ocean surface can be written as

BTp = eR
p ΓTs + Tu +

(
1 − eR

p

)
ΓTd +

(
1 − eR

p

)
Γ2TCMB (2)

where the subscript p denotes the vertical (V) or horizontal (H) polarization component.
Ts is the SST, and eR

p is the rough surface emissivity of the ocean. TCMB is the BT of the

https://gportal.jaxa.jp/
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cosmic background from space (approximately 2.7 K). Γ is the atmospheric transmittance
defined as Γ = exp(−τa/cosθi), where τa is the optical depth of the atmosphere and θi is
the Earth incident angle of the PMW sensor. The atmospheric optical depth (τa) along the
atmospheric slant path depends on the optical depth of oxygen, water vapor profile, and
cloud liquid water [22,23]. Tu and Td are the temperatures of the atmosphere responding
to upwelling and downwelling radiation components, respectively. For the PMW sensor,
Tu and Td can be approximated by the atmospheric effective temperature (Ta), which
strongly relies on the vertical distribution of atmospheric parameters such as atmospheric
temperature, relative humidity, and liquid water contents [22,24].
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The most dominant component is radiative energy from the surface of the ocean. The
surface term in (2) can be expressed as reflectance for a given polarization.

eR
p ΓTs =

(
eS

p + ∆eW

)
ΓTs (3)

The SST in the polar regions ranges from the freezing point (about −1.75 ◦C in 35‰
seawater) to 10 ◦C. eR

p indicates the emissivity of the rough ocean surface. A notable
approach to the surface height distribution of rough surfaces is described by a Gaussian
random distribution with zero mean and σrms standard deviation [25–27]. According to
this description, the reflectivity on the rough surface (RR

p ) is related to a specular surface
reflectivity (RS

p) and roughness parameter, which is a function of the root mean square
height (σrms), the wavelength, and the incidence angle (θi). As the root mean square height
increases, rough surface reflectance becomes lower but emissivity increases. The specular
surface emissivity on the ocean surface, eS

p =
(

1 − RS
p

)
, is governed by the Fresnel formula

for a certain complex dielectric constant at a local incident angle.
The specular surface emissivity of the ocean is the most dominant component, which

the Fresnel formulas describe as emission. As the SSW blows over the ocean’s surface,
small-scale capillary waves form and surface roughness increases, which leads to a dramatic
change in the emission characteristics as a function of the SSW [28–31]. For ocean surface
emissivity, there are three different types of roughness scales influencing surface roughness:
(1) large-scale roughness due to gravity waves, (2) small-scale roughness due to gravity-
capillary waves or SSW, and (3) seafoam. Large-scale gravity waves are important for
observation when the wavelength of the ocean waves is longer than the wavelength of the
incident radiation. These large-scale waves can mix vertical and horizontal polarizations
and change the local incidence angle of the radiation. The small-scale gravity–capillary
waves scatter incident radiation over the large-scale gravity waves at the surface of the
ocean. This also affects the emissivity of the sea surface, which is treated as a perturbative
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parameter at the surface of the ocean. Seafoam consisting of air bubbles and water can
lead to an increase in surface emissivity. This effect is dominant under strong surface wind
(above 7 m/s). Because we focus on the mBT of the Arctic and Antarctic Ocean in this
paper, we do not consider the effects of the strong wind and seafoam on the ocean surface
or precipitations responsible for increasing emission. We discuss wind-induced roughness
at the centimeter length scale (capillary waves) at the 6.925 GHz band but ignore the effect
of wind direction variation.

In this study, we used the SSW-induced model of Meissner and Wentz [16] to deter-
mine the effect of seawater emissivity change via SSW. Meissner and Wentz presented
emissivity models for the wind-roughened ocean surface for microwave frequencies be-
tween 6 and 90 GHz. They used TB measurements from the space-borne microwave
radiometer WindSat and the Special Sensor Microwave/Imager (SSM/I) as the basis of
analysis. They provided an empirical isotropic wind-induced emissivity model with a
fifth-order polynomial form (∆eW = ∑5

k=1 δkSSWk). Because the SSM/I has an incidence
angle and bands that are similar to AMSR2, we used the isotropic wind-induced emissivity
model without any modification.

To estimate the specular reflectivity of the ocean surface, the permittivity of seawater
is necessary. The permittivity of seawater is generally assumed to be of a dielectric medium
described by the Debye relaxation model. The Debye relaxation model can accurately
describe the permittivity of dielectric material, which is a function of the external electro-
magnetic wave frequency and relaxation time (τ) of the material. The dielectric constant
model of seawater has been developed and significantly improved by many previous
studies and the Debye relaxation model [32–34]. The parameters in the Debye relaxation
model (εs, ε∞, and τ) depend on the temperature and the salinity of the ionic salts. We used
coefficients for the dielectric constant model with double Debye relaxation wavelengths by
Meissner and Wentz [20]. The dielectric model requires inputs of the microwave frequency,
SST, and SSS to calculate the complex dielectric constant.

Under clear sky conditions at microwave frequency bands lower than 10 GHz, at-
mospheric contributions to the BT in satellite observations are relatively small [35–37].
However, the atmospheric influence can induce seasonal variability because the amount
of water vapor and cloud liquid water in the atmosphere over the ocean is usually large
during the summer and early fall. The atmospheric parameters (τa and Ta) in (2) can be cal-
culated from the given atmospheric profiles of temperature and the absorption coefficients
of each component. The atmospheric optical depth (τa) can be accurately parameterized as
a function of oxygen optical depth, water vapor mass absorption and liquid water mass
absorption coefficients [38,39] as follows:

τa = AO2 + AWV + ALW =
∫ H

0
(αO2 + αWV + αLW)dh (4)

where AO2, AWV , and ALW indicate contributions to optical depth by Oxygen (O2), water
vapor (WV), and liquid water (LW) in the atmosphere, respectively. The αi denotes the
absorption coefficients for the i component of O2, WV, or LW. Although the parameters
are related to atmospheric profiles, we use the approximation relationships of Meiss-
ner [40] from 1-dimensional RTM results for horizontally uniform atmospheric profiles
of temperature and humidity, which depend only on the altitude above the surface. The
approximations for Ta, vertically integrated oxygen absorption (AO2) and the vapor ab-
sorption (AWV) are parameterized by the vertically integrated water vapor (IWV) in mm
and SST.

To calculate the atmospheric influence in RTM simulations, the atmospheric compo-
nent was assumed to be a clear sky without clouds or rain. Under cloudless clear sky
conditions, the liquid water absorption term becomes zero. The assumption minimizes
the contribution of liquid water absorption (αLW) in the atmospheric term—even if a small
amount of liquid water is applied to the model, it calculates BT easily exceeding mBT,
which is not relevant to this paper.
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SST, SSW, and IWV were selected as input parameters for the RTM simulation. The
sensitivity of the geophysical parameters to the BTs at 6.925 GHz varies with frequency
and polarization. Generally, the sensitivity of SST and SSW are large for the V- and H-pol.
The SSW affects the emissivity of the sea surface by inducing sea surface roughness [16,30].
The SSW has larger sensitivities to H- than V-polarization, and there is a distinct change
in slopes for V-polarization at about 7 m/s. The sensitivity of the BT at C-band to SST is
larger at V-polarization than H-polarization [41]. The influence of water vapor change is
smaller than that of SST or SSW at low frequencies. The SSS and relative SSW direction
have a minor effect on the BT. In this paper, we assumed the SSS to be 34‰ in both polar
regions.

3. Results

Overall, the mBT showed a stable value without significant temporal/spatial variabil-
ity. The estimated mBTs in the Arctic Ocean were 157.852 K (±0.485 K) for V-polarization
and 74.949 K (±0.612 K) for H-polarization. For the Antarctic Ocean, the results were simi-
lar but slightly lower than those in the Arctic Ocean: 157.654 K (±0.330 K) for V-polarization
and 74.784 K (±0.748 K) for H-polarization. These small standard deviations imply a stable
feature for the extended period of 8 years from July 2012 to June 2020. Figure 2 shows
the boxplots of the annual mBT for the V- and H-polarization in the Antarctic and the
Arctic Ocean. The horizontal gray-colored lines in Figure 2 indicate the mean mBT for
each case. The cyan and orange color circles indicate outliers. The difference in mBTs
between the Arctic and Antarctic Oceans seems subtle, but statistically, the two samples
show a significant difference at a 95% confidence level (p-value = 2.319 × 10−49 for V-pol.,
6.214 × 10−11 for H-pol.). Since neither of the V-polarized and H-polarized data of the
Arctic and the Antarctic Oceans passed the normality test, we conducted a non-parametric
Wilcoxon signed-rank test [42] on two independent mBT samples for the Arctic and the
Antarctic Oceans.
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Figure 2. Boxplots for Annual mBT for the Arctic ((a) for V-polarization and (b) for H-polarization)
and Antarctic Oceans ((c) for V-polarization and (d) for H-polarization).

Table 1 lists the monthly averaged mBT in the polar region for eight years. The mBT
is comparable to the seawater tie-points from the previous study [7]. The sensors have
different characteristics and slightly different incidence angles for the different observation
periods. Nevertheless, the tie-points at 6.9 GHz of the AMSR-E and SMMR by Ivanova
et al. [7] are similar to our results (Table 1). In this paper, the AMSR2 mBT of the V-
polarization was estimated to be higher than the tie-points of the AMSR-E and SMMR, but
lower for the H-polarization. The mBT difference between the Antarctic and the Arctic
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Oceans was smaller than that of Ivanova’s tie-point. Because the tie-points are affected
by the seasonal variation and sensors and environmental change due to climatic trends in
the surface and atmosphere, the dynamic tie points are usually used for the SIC algorithm.
Ivanova et al. [7]’s tie-points in Table 1 developed a particular set of static tie-points to
perform a fair comparison of the SIC algorithms.

Table 1. The monthly averaged mBT in Kelvin for eight years in the Arctic and Antarctic Oceans.

Month
Arctic Ocean Antarctic Ocean

V-pol. (K) H-pol. (K) V-pol. (K) H-pol. (K)

1 157.685 (0.298) 75.393 (0.572) 158.147 (0.169) 73.919 (0.312)
2 157.617 (0.315) 75.446 (0.543) 157.904 (0.226) 74.174 (0.367)
3 157.595 (0.302) 75.016 (0.561) 157.652 (0.232) 74.541 (0.453)
4 157.523 (0.300) 74.659 (0.405) 157.492 (0.192) 74.886 (0.540)
5 157.706 (0.331) 74.518 (0.371) 157.473 (0.215) 74.806 (0.533)
6 158.154 (0.289) 74.575 (0.412) 157.482 (0.258) 74.983 (0.627)
7 158.639 (0.345) 74.711 (0.407) 157.520 (0.256) 75.245 (0.695)
8 158.404 (0.388) 74.722 (0.402) 157.540 (0.365) 75.320 (0.610)
9 157.845 (0.253) 74.569 (0.384) 157.518 (0.299) 75.373 (0.747)
10 157.637 (0.203) 74.862 (0.468) 157.522 (0.287) 75.303 (0.593)
11 157.719 (0.279) 75.378 (0.551) 157.671 (0.258) 74.801 (0.667)
12 157.676 (0.314) 75.560 (0.654) 157.933 (0.202) 74.040 (0.433)

Total 157.852 (0.458) 74.949 (0.612) 157.654 (0.330) 74.784 (0.748)

AMSR-E 1 161.35 82.13 159.69 80.15
SMMR 1 153.79 86.49 148.60 83.47

1 Data from Ivanova et al. [7].

Figure 3 shows the seasonal variability of mBT in boxplots for the monthly mBT
samples of the Arctic (upper panel) and Antarctic Ocean (lower panel). The horizontal gray
lines in each plot of Figure 3 are the average mBT values for the entire study period. The
circles in Figure 3 indicate outliers. Note that the Antarctic boxplot starts in July to match
the seasonal changes between the Arctic and the Antarctic Oceans. In Figure 3, mBT of
V-polarization increases in summer in both Antarctica and the Arctic, but H-polarization
tends to decrease slightly. The mBT of H-polarization for the Antarctic Ocean shows a
minimum in summer (December or January); however, it remains at a similar level from
April to September for the Arctic Ocean.

We illustrate seasonal mBT variation in the Arctic and Antarctic Oceans and the
result of RTM simulations in Figure 4. The cyan- and orange-colored symbols in each plot
represent the mBTs of the Arctic and Antarctic Oceans, respectively. The vertical solid
curves indicate BT with the same SST, corresponding to −1.8, −1, −0.2, 0.6, and 1.4 ◦C
from left (blue) to right (red). The horizontal dashed lines show the simulated BT with the
same SSW corresponding to 0, 1, 2, 3, 4, and 5 m/s from bottom to top. The atmospheric
conditions in RTM simulations were applied differently for each season: IWV = 5 mm
for spring and autumn, 3 mm for winter, and 12 mm for summer. Overall, the SST of the
estimated monthly mBTs remained below 0 ◦C for all seasons except summer (July and
August) in the Arctic Ocean. The monthly mBT in August reached a relatively high SST of
up to 0.6 ◦C. The Antarctic Ocean’s monthly mBTs maintain a low SST near the −1.0 ◦C
curve. SSW in both the Arctic and Antarctic Oceans showed a pattern of weakening in the
summer and strengthened in the winter. In the summer, a weak SSW of less than 2 m/s
is dominant in both oceans. The SSW tends to increase from autumn (less than 2 m/s in
Figure 4c) to winter (up to 3 m/s in Figure 4d) but decreases from winter to spring (about
2 m/s in Figure 4a).
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We tried estimating monthly SST and SSW for given IWV as follows. The IWV was
obtained from the lower 10th percentile of ECMWF reanalysis data set (ERA5) for eight
years from 2012 to 2020. Then, we can estimate the data set (SST, SSW, IWV) that best
describes the estimated mBT of V- and H-pol. Figure 5 shows the monthly estimated SST
and SSW by comparison of RTM simulations with monthly mBTs, and IWV as input data.
We illustrated the SST and SSW from ERA5 (yellow squares for lower fifth percentile and
green squares for 10th percentile) for comparison. The retrieved SST and SSW for the
Antarctic Ocean were similar to the ERA5 percentiles, but those for the Arctic Ocean did
not agree. The difference between the two polar oceans seems to be due to the different
frequency distributions for each variable.
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4. Discussion

From the BT data measured by AMSR2 for eight years, we found a similar mBT
in the Arctic and Antarctic Oceans: 157.852 K (Arctic) and 157.654 K (Antarctic) for V-
polarization and+ 74.949 K (Arctic) and 74.784 K (Antarctic) for H-polarization. While
the mBT differences between the Arctic and Antarctic Oceans were about 0.2 K in both
polarizations, the differences were statistically significant at the 95% confidence level. Our
estimate coincides with the previous work of Ivanova et al. [7], which showed that all
tie-points for the Antarctic Ocean from SSMI and AMSR-E data are lower than that of the
Arctic Ocean.

The main achievement of our work is that we identified SST as a main controlling
factor causing the difference in mBT between the two regions, which is shown by comparing
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the observed mBT with that of RTM simulation. Our finding is also supported by the
previous work of Carvalho and Wang [43], in which the relatively higher seasonal mean
Arctic Ocean SSTs of summer (2.82 ◦C) and autumn (2.15 ◦C) are reported than those of the
winter (0.12 ◦C) and Spring (0.11 ◦C). The spatial pattern of seasonal SST is characterized
by the relatively high SST in the Atlantic side of the Arctic (e.g., the Norwegian Sea and
Greenland) and low SST in the Pacific side of the Arctic Ocean. In the summer, the Barents
and the Norwegian Seas show a high SST of 4–11 ◦C [43].

In contrast to the Arctic oceans, SST in the Antarctic Ocean maintains temperatures
as low as 0 ◦C even in summer. According to Shao and Ke [44], the highest SST record
from spring to summer (Nov. to the following Feb.) is −0.8 ◦C in the Indian Ocean sector.
The Antarctic Ocean’s warming trend is also not apparent. Comiso et al. [45] estimated
the overall trend of 0.1 ◦C per decade for the surface temperature in the entire Southern
Ocean and an increasing trend (1.73% per decade) for sea ice extent in the Antarctic Ocean.
However, Lebedev [46] reported a negative trend of SST (–0.2 ◦C/decade) over the entire
Southern Ocean.

Another important factor affecting the position of the mBT is the SSW. Even if the sea
surface has a low temperature near the freezing point, the BT can be larger if a strong wind
blows over the ocean surface. Both conditions of low SST and weak SSW are necessary
to obtain the mBT. The dependence of mBT on the SSW weakens in the summer and
intensifies in the winter. In general, the Arctic Ocean has numerous robust cyclones in the
winter but weaker and less frequent ones in the summer (e.g., [47–49]). Arctic cyclones are
most dynamically intense during the winter [50]. The seasonal variability of the SSW in
this paper agrees with the general SSW pattern.

The Antarctic Ocean also shows similar seasonal variations in wind speed patterns
(e.g., [51–53]). The number of occurrences and the magnitude of the variability of the SSW
are much smaller in the summer compared to the other seasons [51]. Laurila et al. [54]
found seasonal variation with the strongest winds during the winter months at a monthly
mean of 10 m wind speed over 40 years (1979–2018). They reported that the monthly
distribution of 10 m wind speed in the central North Atlantic shows seasonal variability
with the highest winds during winter and the lowest in the summer.

Sea ice cover plays an essential role in energy exchanges between the atmosphere and
the ocean in the cryosphere. The white ice surface with a high albedo reflects far more
sunlight into space than ocean water does. Sea ice also creates an insulating cap across the
ocean surface, which reduces evaporation and heat loss from the ocean into the atmosphere.
The sea ice has been interacting with the other components of the climate system. As a
result, the weather over ice-covered ocean regions tends to be colder and drier than over
ocean regions without sea ice.

However, Arctic sea ice has been declining at a rate of ~3.8% per decade [55]. The
declining trends in sea ice cover and thickness [56] coincide with Arctic amplification.
Many others have reported the warming trend in the Arctic Ocean. Comiso [57] found a
positive trend at 0.33 ◦C per decade over the Arctic sea ice from the satellite observation
for 20 years from 1981 to 2001. Carvalho and Wang [43] reported a similar trend of 0.36 ◦C
per decade using the data from 1982 to 2018. The surface temperature including land in the
Arctic region increased more rapidly at 0.60 ◦C per decade.

The change has been most dramatic in the summer and autumn periods [58]. The
warming of the Arctic Ocean in the summer is caused by the heating of surface water by
seasonal cycle solar radiation in ice-free regions [59] and improved vertical ocean heat
transport [60]. The Arctic Ocean also receives warm inflows from the rivers and the Atlantic
and Pacific Oceans (e.g., [61,62]). The atmospheric response to reducing sea ice cover is
related to low-level cloud formation [63] and increasing levels of liquid water vapor [64].
Evaporation over ice-free ocean regions leads to an increase in atmospheric water vapor
and low-level clouds (e.g., [13–15,65]). For these reasons, relating to intensified atmospheric
water vapor and clouds, together with higher SST, this effect contributes to the exceptional
mBT value of the Arctic summer season.
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The seawater tie-point represents a typical signature of the sea surface on a hemi-
spheric scale. Deviations from the specific surface properties result in ice concentration
uncertainties. The dynamical tie-point based on seawater’s actual mean signature has been
applied to reduce spatial and temporal variability. Moreover, the dynamic tie-points tune
dynamically for the different instruments and simplify the implementation of other sensors.
However, our results show that the mBT in the Arctic summer departs from the typical
seawater signature for the sea ice concentration algorithm. It will further depart from
mBT in the summer as SST and IWV increase, along with reductions in Arctic sea ice. The
seawater tie-point in the summer may become somewhat higher in the current algorithm
due to the dynamical tie-point method. The accuracy of SIC in the summer season will be
worse and may gradually expand to other seasons.

The mBT depends on essential climate variables such as the SST, SSW, and IWV in
the polar ocean. The characteristic distribution of the mBT in the Arctic summer seems
to be related to Arctic amplification consequences. The fact that drastic changes in the
polar climate are captured in the PMW satellite-based mBT suggests a potential tool
for comprehensively monitoring polar climate change. Furthermore, the BT’s estimate
according to the PMW satellite has excellent advantages in terms of processing, being faster
and more accurate than using retrieval products in a level 2. We expect that the results in
this paper will lead to a better understanding of Arctic routes and climate change.

The 18 and 36 GHz bands used in the SIC algorithm are more sensitive to tie point
changes than the 6.925 GHz band. According to Kilic et al. [6], the point will directly impact
both the systematic and random errors of the SIC retrieval. They showed that changes
in the tie points could induce biases in the SIC estimate up to ~8% with related standard
deviations up to 9% for retrieval algorithm using 18 and 36 GHz bands. The Arctic sea
ice reduction trend could involve higher SST and wetter and more cloudy atmospheric
conditions in the future Arctic Ocean. The changed Arctic Ocean environment will lead
to higher summer tie points and, consequently, negatively affect the accuracy of the SIC
estimation.

5. Conclusions

We collected data of GCOM-W1/AMSR2 BT at 6.925 GHz and SIC data for eight years
from July 2012 to June 2020. We determined the mBT for V- and H-polarization with the
average of the lower 0.1% of data based on the points projected along the trend line. We
found a similar mBT in the Arctic and Antarctic Oceans: 157.852 K (V-pol.) and 74.949 K
(H-pol.) for the Arctic and 157.654 K (V-pol.) and 74.784 K (H-pol.) for the Antarctic.
The mBTs are stable annually over the study period, but there are statistically significant
differences in mBT between the Arctic and Antarctic Oceans at the 95% confidence level.
We also found subtle seasonal variability of about 1 K in the mBT for each region. In the
Arctic and Antarctic Ocean regions, there is a tendency for an increasing V-polarization
mBT but a decreasing H-polarization mBT during the summer season. The only difference
in seasonal variability trends between the Arctic and Antarctic Oceans is that the mBT of
the H-polarization did not decrease as much as that of the Antarctic ocean.

We estimated the mBT at 6.925 GHz using the RTM simulations to discuss the cause
of the seasonal variability. The coefficients for the dielectric constant model by Meissner
and Wentz [20] and the Meissner and Wentz [16] wind-indued roughness surface models
were used to calculate the BT. We parameterized SST, SSW, and IWV as input variables to
compute RTM simulations. Via comparison with the RTM simulations, we found that the
SST in the polar region is constrained below 0 ◦C except for during the summer (July and
August). The RTM simulation results can explain the slight seasonal variability in mBT by
influencing SST, SSW, and IWV variation. Relatively high SST and IWV but weakening
SSW leads to mBT characteristics of departure from the common position in the summer
season of the Arctic Ocean.

Over the last few decades, the Arctic Ocean region has experienced extreme climate
change. As the climate situation in the polar regions changes dramatically, the influence of
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the polar regions is extending to the weather in the mid-latitudes and the global radiative
energy budget. The minor spatial-temporal difference we found could be related to climate
change. Our results provide new evidence for rapid climate change in the Arctic Ocean.

Our findings can be used to improve the accuracy of the SIC and snow depth retrieval
algorithm and lead to the development of the C-band-based SIC and snow depth algorithm.
C-band observation data by a PMW sensor are sensitive to sea ice while having a weak
atmospheric effect. Since it has been observed for a relatively longer time than the L-band
observation, it is expected that it can be used for long-term variability studies, and the
L-band is sensitive to SST change and the sea ice thickness whereas 6.9 GHz is not. Radio
Frequency Interference is mitigated when using low frequency such as L- and C-band
channels. Furthermore, both bands are insensitive to atmospheric conditions. L/C-band
combination will provide a considerable synergy to solve uncovered geophysical variables.
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