
remote sensing  

Article

Two-Stream Convolutional Long- and Short-Term Memory
Model Using Perceptual Loss for Sequence-to-Sequence Arctic
Sea Ice Prediction

Junhwa Chi 1,* , Jihyun Bae 2 and Young-Joo Kwon 1

����������
�������

Citation: Chi, J.; Bae, J.; Kwon, Y.-J.

Two-Stream Convolutional Long- and

Short-Term Memory Model Using

Perceptual Loss for Sequence-to-

Sequence Arctic Sea Ice Prediction.

Remote Sens. 2021, 13, 3413. https://

doi.org/10.3390/rs13173413

Academic Editors: Juha Karvonen

and Anton Korosov

Received: 16 July 2021

Accepted: 26 August 2021

Published: 27 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Center of Remote Sensing and GIS, Korea Polar Research Institute, Incheon 21990, Korea; kwonyj@kopri.re.kr
2 Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Korea; jihyun4133@sju.ac.kr
* Correspondence: jhchi@kopri.re.kr; Tel.: +82-32-760-5346

Abstract: Arctic sea ice plays a significant role in climate systems, and its prediction is important
for coping with global warming. Artificial intelligence (AI) has gained recent attention in various
disciplines with the increasing use of big data. In recent years, the use of AI-based sea ice prediction,
along with conventional prediction models, has drawn attention. This study proposes a new deep
learning (DL)-based Arctic sea ice prediction model with a new perceptual loss function to improve
both statistical and visual accuracy. The proposed DL model learned spatiotemporal characteristics
of Arctic sea ice for sequence-to-sequence predictions. The convolutional neural network-based
perceptual loss function successfully captured unique sea ice patterns, and the widely used loss
functions could not use various feature maps. Furthermore, the input variables that are essential to
accurately predict Arctic sea ice using various combinations of input variables were identified. The
proposed approaches produced statistical outcomes with better accuracy and qualitative agreements
with the observed data.

Keywords: Arctic sea ice; convolutional neural network; long- and short-term memory; visual
geometry group (VGG); loss function; deep learning; future prediction

1. Introduction

Sea ice, referred to as frozen seawater, is a primary indicator of global warming and
climate change because of the ice–albedo feedback—open water absorbs solar energy,
while sea ice reflects it [1]. Arctic sea ice also plays an essential role in climate change in
mid-latitude regions [2]. Satellite observations using passive microwave sensors over a
period of >40 years have shown the long-term decline of Arctic sea ice, particularly in the
last decade. The average sea ice is becoming younger, and multi-year ice regions at the
beginning of the satellite record were greater than the first-year ice regions [3,4].

Owing to the importance of the role of Arctic sea ice in climate change and the North-
ern Sea Route for ship navigation, various studies were conducted to predict its properties,
such as concentration, extent, motion, and thickness. Since 2008, researchers have reported
on the September minimum sea ice extent (SIE) from various perspectives and have pre-
dicted it for the months of June, July, and August [5]. Most of these contributions were
based on the results obtained using conventional statistical and numerical models in the
past years, but results from machine learning-based models have recently been added.

The decreasing and thinning of ice are closely related to positive climate feedback
leading to Arctic amplification [6,7]. Mioduszewski et al. [8] showed that ice area variability
would grow substantially but not monotonically every month, based on many climate
models. The changes in interannual variability in sea ice coverage have been studied only
in a limited capacity, and irregular variability makes it challenging to predict Arctic sea
ice concentration (SIC) and SIE. Therefore, owing to climate change, unpredictable and
extreme anomalies are observed more frequently in the Arctic region.
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Statistical prediction models exploit historical observations and relations between
atmospheric, oceanic, and ice-related variables such as air temperature, sea-level pres-
sure, sea-surface temperature, and the concentration, extent, type, and thickness of sea
ice [9,10]. Numerical models use physical equations based on the atmosphere-ice-ocean
interaction [11,12]. Artificial intelligence (AI) and deep learning (DL) techniques have
been widely used for the prediction of sea ice characteristics. A special type of AI and
an extension of neural networks have been applied for such predictions since 2017. Chi
and Kim [13] conducted the first sea ice prediction study using DL approaches. They
used only historical monthly sea ice concentration (SIC) data as input for the DL net-
works and produced results that were comparable to various statistical and numerical
models for September predictions reported in the Sea Ice Outlook. Although the proposed
long- and short-term memory (LSTM) model showed good predictability for the one-
month prediction, it was inadequate for multistep predictions. Kim et al. [14] employed a
DL method with a multimodel ensemble to provide a near-future prediction for the
10–20 forthcoming years. The proposed model determines the nonlinear relationship
between sea ice and climate variables. Choi et al. [15] used a gated recurrent unit, a type of
recursive neural network, to provide 15-day predictions. They used the spatial information
of sea ice extent and SIC as input variables and compared the proposed model to that of
the LSTM. These studies [13–15] were based on one-dimensional vector data; however,
Choi et al. incorporated the image coordinates into the input vector data [12]. Kim et al. [16]
proposed the convolutional neural network (CNN)–based models by incorporating various
sea ice, atmospheric, and oceanic variables to provide one-month predictions. Although
they exploited the spatial characteristics of sea ice data via CNN architectures, they trained
12 individual CNN models for the prediction of each month, which may be redundant.
Liu et al. [17] used the convolutional LSTM (ConvLSTM) to predict daily Arctic SIC. Their
proposed model outperformed the CNN-based model, particularly in simulating the local
variations in the Northeast Passage, but it was designed for one-step predictions. Overall,
current sea ice prediction models using DL approaches are limited to one-dimensional
vector-based recurrent networks, CNN models without considering sequence information
or conventional ConvLSTM.

To address the limitations of the current prediction models, we propose an ensemble
model with a new loss function that enables multi-step Arctic sea ice predictions. Three
primary goals are discussed. First, we propose a ConvLSTM model with different modali-
ties to capture the spatiotemporal characteristics of historical sea ice information. Second,
we introduce a new feature-based loss function to produce better qualitative prediction
maps by comparing their perceptual characteristics. As addressed by us and others in pre-
vious studies [13–16], ice, atmospheric, and oceanic variables may be helpful in improving
predictability. Finally, we test the significances of several input variables through the direct
training of the model without using relative sensitivity tests.

2. Datasets

Conventional numerical, statistical, or ensemble models for sea ice prediction often
use various ice-, ocean-, and atmosphere-related properties as input variables [9,11,12].
Based on previous DL-based sea ice prediction studies [13–16], we also used several sea ice
and atmosphere-related variables. The details of the variables are provided in Table 1.
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Table 1. Details of input variables used in the Arctic sea ice prediction model.

Group Variable Abbreviation Unit

Sea ice
Sea ice concentration SIC %

Sea ice concentration anomaly SICano %
Sea ice extent SIE Binary

ERA5
2 m temperature T2m K

10 m V wind component V10m m/s
10 m U wind component U10m m/s

2.1. Sea Ice Data

Since 1978, continuous passive microwave programs such as the Scanning Multichan-
nel Microwave Radiometer onboard Nimbus-7, Special Sensor Microwave/Imager, and
Special Sensor Microwave Imager/Sounder on Defense Meteorological Satellite Program
satellites, Advanced Microwave Scanning Radiometer (AMSR)-E on Aqua and AMSR2
on the Global Change Observation Mission 1st-Water have been recording the brightness
temperature of the surface [18–22]. We used the brightness temperatures obtained from
these sensors to produce daily SIC data, which is a widely used sea ice property in various
disciplines. The NASA Team algorithm-based SIC data provided by the National Snow and
Ice Center (NSIDC) were used because they contain long-term observations from ongoing
satellite missions. The NSIDC SIC product (NSIDC-0051) used was mapped onto the Polar
Stereographic 25-km grids, and it was corrected for differences in multi-sensor transitions
for ongoing missions. Each SIC image contained 448 × 304 pixels.

The sea ice concentration anomaly (SICano) is the difference between the SIC at a given
time and the long-term average, indicating how close it is to the average concentration
in each period. Anomalies have positive and negative values based on whether the ice is
more than or less than that of the average, respectively. We used SIC data from 1981 to
2010 to compute the long-term average. Sea ice extent defines a region as either ice-covered
or not ice-covered. A threshold to determine the extent can be as high as 30%, but 15% is a
typical value [23].

2.2. ECMWF Reanalysis v5 (ERA5)

Atmospheric circulation can play a significant role in driving Arctic sea ice variabil-
ity. Kim et al. [14] tested correlation coefficients between SIC and 19 extracted atmospheric
variables, and they found that near-surface air temperature, specific humidity, surface down-
welling, and upwelling longwave radiation show a strong linear correlation with SIC.

The European Centre for Medium-Range Weather Forecasts (ECMWF) has produced
global reanalysis datasets using numerical weather prediction models and 4D-Var data
assimilation. Data assimilation applies a correction to the numerical models based on in
situ and satellite observation data. The ECMWF Reanalysis v5 (ERA5) provides hourly
estimates of many atmospheric, land, and oceanic climate variables covering the period
from January 1950 to the present [24]. ERA5 covers the Earth on a 0.25◦ × 0.25◦ regular
grid and 37 pressure levels from the surface to the top of the atmosphere (1 hPa) vertically.
We used the “ERA5 hourly data on single levels from 1979 to the present” dataset [25]
released by the Copernicus Climate Change Service.

The ERA5 variables that were used in this study provided hourly data with a regular
grid of 721 × 1440. T2m is the air temperature 2 m above the land, sea, or inland waters. It
is calculated by interpolating between the lowest model level (1000 hPa) and the Earth’s
surface, considering the atmospheric conditions. U10m and V10m are the eastward and
northward components of the wind speed at a height of 10 m above the Earth’s surface,
respectively. Consistent estimation of atmospheric variables such as wind and tempera-
ture from the reanalysis data has been confirmed with observations over the Arctic and
Antarctic [26–28]. ERA5 produced the best reanalysis over the Arctic [27] and Antarctic [28]
regions among the different reanalysis datasets.
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2.3. Input Data Compilation

We stacked co-registered sea ice and atmosphere-related images and then constructed
448 × 304 × 6 images for a given time (Figure 1). Since Arctic sea ice shows seasonal trends,
we used data for the previous 12 months as inputs to predict for the following six months.
Therefore, each sequence data consists of 12 × 448 × 304 × 6 and 6 × 448 × 304 × 6 images
for input and output, respectively. Although sea ice data are being collected since 1978, the
number of sequence data is only 500 from November 1978 to December 2020, which may not be
sufficient (“big data”) to be considered a key component for DL. As an alternative, we generated
monthly data from daily sea ice and ERA5 data every three days. For example, monthly sea ice
and ERA5 products provided by the NSIDC and ECMWF are the monthly averages from the
first day to the last day of a given month, while our approach is a one-month moving average
for every three days. Since there are sea ice data gaps for approximately one month (from
2 December 1987 to 12 January 1988) because of a technical issue, we simply ignored data
for this period while constructing sequence data. Therefore, we obtained approximately
4600 datasets from 1979 to 2019, which is better than the use of monthly products to learn
detailed spatiotemporal patterns in sea ice dynamics. Missing values that were centered over
the North Pole, which are never measured owing to the orbit inclination of the satellite but
have near 100% concentration, were filled by interpolation using neighboring pixels. We also
replaced the pixels for land and coastlines with zeros.
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Figure 1. Examples of co-registered (top row) sea ice and (bottom row) atmosphere-related images.
All images are mapped onto a polar stereographic 25-km grid.

3. Methods
3.1. Prediction Models
3.1.1. Baseline Models: Persistence, LSTM, and ConvLSTM

Changes in Arctic sea ice have an annual cycle, although they have rapidly declined
in recent years owing to global warming. However, SIC for a given month may show a
high correlation with the same month of the past one or two years. Therefore, we used SIC
data observed during the previous year as the persistent baseline model.
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Our previous study showed that the LSTM-based prediction model outperformed the
statistical autoregressive and multilayer perceptron models, although it was not suitable
for long-term sea ice predictions [13]. In this study, we used LSTM as the second baseline
model, with the same configurations for the network architecture and hyperparameters
(three hidden layers with 32 hidden states in the LSTM cells). Because this model predicts
one future time step, the predicted SIC value was reinjected for multi-step predictions.
Therefore, the predictability degraded significantly as the lead-time increased. Further
details are provided in [13].

LSTM is popular for solving prediction problems [29–32]. However, it is limited to
one-dimensional vectors of the cell’s memory and state and does not capture the spatial
characteristics of two-dimensional images or video frame data. In addition, excessively
redundant weights increase computational costs. To overcome the drawbacks of conven-
tional LSTM architectures, ConvLSTM was introduced in [33]. Due to their promising
results, ConvLSTM-based models have been widely investigated in scientific forecasting
applications, such as sea ice [17], precipitation [33–35], and weather [36,37]. ConvLSTM
replaces the matrix multiplications in the LSTM with convolutional filters to encode both
the structural and temporal information of the image sequence. Accordingly, ConvLSTM
has become a milestone in the field of spatiotemporal prediction. ConvLSTM uses a convo-
lution operator in the state-to-state and input-to-state transitions to determine the future
state of a given cell in the grid by the inputs and past states of its local neighbors. While a
ConvLSTM with a larger kernel may capture faster and sparse motions, a ConvLSTM with
a smaller kernel may capture slower and detailed motions. As our baseline, we used three
layers of ConvLSTM, with 128 hidden states for the first two layers and 64 hidden states
for the third layer. The convolution filters in the ConvLSTM layers were set to 3 × 3.

3.1.2. Proposed Model: Two-Stream ConvLSTM

Conventional ConvLSTM captures the spatiotemporal characteristics in prediction
problems. As addressed above, although ConvLSTM learns various feature maps from the
CNN part, the type of spatiotemporal characteristics to be learned depends on the kernel
size and the network depth. Sea ice changes and motions show different characteristics
within the Arctic oceans. Although there are no significant changes in ice concentrations or
motions in multi-year ice zones and winter seasons, the changes in the first-year ice zones or
summer seasons are dynamic. In particular, owing to recent global warming, these changes
have accelerated and become difficult to predict. In addition, a combination of more than
two networks with different configurations, which learn different data characteristics,
showed better outcomes than a single type model [38–41].

Therefore, this study proposes a sequence-to-sequence Two-Stream ConvLSTM
(TS-ConvLSTM) architecture by combining two ConvLSTM with different modalities
to learn both fast/slow and sparse/detailed characteristics of sea ice dynamics. The pro-
posed model is comprised of four components: a CNN-based encoder, ConvLSTM-based
sparse and detailed learners, and a CNN-based decoder.

Figure 2a shows a detailed block of the proposed architecture. First, a compiled input
image (448 × 304 × n; n depends on the number of input variables used) at a given time t
(xt) in the sequence data passed through the encoder, which consists of six convolutional
layers with 8, 16, 32, 32, 64, and 64 filters, respectively. It extracted feature maps and
reduced image size using a 3 × 3 kernel. The output size of the encoded image was
112 × 76 × 64. Then, the sparse and detailed learners took the encoded information and
learned the spatiotemporal features separately. The sparse learner extracted the overall
position and patterns of sea ice images using a shallow network with a large kernel
(i.e., one layer with 64 hidden states (hS); 7 × 7 kernel). The detailed learner learned
residual features such as unknown factors, textures, and details, using a deeper network
with a small kernel (i.e., three layers with 128, 128, and 64 hidden states (hD), respectively;
3 × 3 kernel). Hidden states from each learner for the next time stamp t + 1 (hS

t+1 and hD
t+1)

were concatenated and then fed into the decoder to produce a predicted image at t + 1
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(x̂t+1). The decoder consists of six up-convolutional layers (i.e., 64, 32, 32, 16, 8, and n filters,
respectively; 3 × 3 kernel) to restore images of the original size. We used skip connections
between the encoder and decoder to prevent the loss of encoded features.
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Figure 2b shows an overview of the pipeline for sequence-to-sequence predictions
based on individual blocks (Figure 2a). All hidden states were used as inputs for the two
parallelized learners (i.e., blue and green arrows). In the prediction part, the predicted
image from the individual block was reinjected as the next input for the individual block.

3.2. Loss Functions

Because the loss function is a navigator of how the model finds an optimal solution of
the DL model, selecting appropriate loss functions is essential to determine the performance
of the model. The L1-norm (i.e., mean absolute error) and L2-norm (i.e., mean square error)
are the most widely used loss functions. The L1-norm is intuitive, less sensitive to outliers,
and produces sparser solutions. The L2-norm has better precision than L1, but it is sensitive
to outliers as it strongly penalizes large errors. However, in our sea ice prediction problem,
we observed large discrepancies between the number of statistical errors and the visual
differences (this is demonstrated in Section 4.2). Accordingly, we investigated two feature-
based loss functions: structural similarity (SSIM) loss and CNN-based loss–to overcome
this limitation.

SSIM is used as a metric correlated with the perception of the human visual sys-
tem using a combination of correlation, luminance, and contrast, instead of traditional
error summation metrics such as mean square error (MSE) or peak signal-to-noise ratio
(PSNR) [42]. From a human visual perspective, because SSIM is normalized, while MSE
and PSNR are not, the treatment of SSIM is easier than MSE and PSNR. The SSIM between
the two images x and y can be defined as follows:

SSIM(x, y) = l(x, y)c(x, y) s(x, y)

l(x, y) = 2µxµy+C1
µ2

x+µ2
y+C1

c(x, y) = 2σxσy+C2
σ2

x+σ2
y+C2

s(x, y) = σxy+C3
σxσy+C3

(1)

where l(x, y), c(x, y), and s(x, y) are the luminance, contrast, and structural similarity,
respectively. µ and σ are the average and standard deviations of the image, respectively.
σxy is the covariance of x and y. C1, C2, and C3 are small constant values to stabilize the
division with a weak denominator.

We propose a new feature-based loss using various feature maps generated by a
widely used visual geometry group (VGG) model. VGG is a CNN-based model developed
by the University of Oxford, and it won second place in the ImageNet Large Scale Visual
Recognition Challenge in 2014 [43]. The image is passed through a stack of convolutional
layers, where the 3 × 3-filters (the smallest size to capture the notion of left/right, up/down,
center) were used. One pixel of the convolution stride was used. The spatial padding of the
convolutional layer input preserved the spatial resolution after convolution. Max pooling
is performed over a 2 × 2-pixel window, with a stride of 2 followed by some convolutional
layers. VGG is configured by a depth of 16 or 19 weighted layers. Johnson et al. [44] used
a VGG network for perceptual losses in real-time style transfer and super-resolution; it
outperformed the per-pixel loss function, particularly in reconstructing sharp edges and
fine details. In our study, we used 16-layer configurations, referred to as VGG16. The
original architecture of VGG16 takes fixed size 224 × 224-RGB images, but we inserted
an encoding layer using 1 × 1 convolution filters to take any input channels (i.e., a linear
transformation of the input channels) such as 448 × 304 × 6 images of sea ice properties
and ERA5 variables, as listed in Table 1. The other structures were the same as those of
the original VGG16, as illustrated in Figure 3. VGG16 has five main blocks that end in a
max-pooling layer. We collected feature maps for each of the last convolutional layers in
each block. However, we used the first three blocks because the output image sizes of the
4th and 5th blocks were too small, and our image datasets were relatively simple compared
to widely used RGB image datasets. Therefore, 64, 128, and 256 feature maps from the first
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three blocks were sufficient to capture diverse spatial characteristics. We used pretrained
weights without end-to-end training. For the 448 feature maps from VGG16, we used the
L1-norm to calculate the total loss.
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Figure 3. The architecture of VGG16 for the first five blocks. To calculate loss, we used feature maps
from the last convolutional layer in the first three blocks.

3.3. Sensitivity of Input Variables

Although our previous study [13] developed a DL-based SIC prediction model using
only historical SIC data, follow-up studies [13–16] used additional input variables related
to the ice-ocean-atmosphere in their DL models. In the most recent study conducted by [16],
SIC and SICano acquired one year before showed the most significant contributions to the
CNN-based prediction model rather than other variables. Because our prediction model
was designed for multiple-step predictions, it is worthwhile to test the sensitivity of the
input variables. Feature permutation tests using randomly varying single features are
widely used to evaluate the feature importance in machine learning tasks [16,45]. Feature
permutation tests can be conducted without model retraining because it uses a fully trained
model and varies the values of the single test feature. The importance is then ranked based
on the relative difference, which is not intuitive. Therefore, in this study, we developed
ten independent prediction models using different input variable selections, as defined in
Table 2. SIC was used in all the models. In M2–M6, we sequentially added one input vari-
able. Input variables for M7–M10 were defined based on the results of M1–M6 (additional
details are presented in Section 4.3).

Table 2. A comparison of the sensitivity of the prediction models with varying combinations of
input variables.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

SIC 3 3 3 3 3 3 3 3 3 3

SICano 3 3 3 3 3 3 3 3 3

SIE 3 3 3 3

T2m 3 3 3 3 3

V10m 3 3 3

U10m 3 3 3
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3.4. Training and Testing of Model

Sequence data for the periods 1979–2017, 2018–2019, and 2020 were used for training,
validation, and testing, respectively. Several techniques were applied for training to affect
robustness and efficiency.

First, adequate training data are required to produce robust models, but obtaining
relevant data is limited. Data augmentation can improve the ability of the model to
generalize and apply that to new data [46], particularly to those unobserved environmental
phenomena that have occurred in the past. Transformations of existing data, such as flips,
translations, or rotations, can expand the training data. While training a model, we applied
a combination of left-, right-, up-, and down flips and reversed the time sequence with
50% probability. Therefore, our model increased the chances of spatiotemporal learning of
new cases. Second, an encoder–decoder architecture for sequence-to-sequence prediction
models reinjects the output from the last time step (t−1) as the input for the model at the
current time step (t). This recursive output-as-input process can result in slow convergence
and model instability owing to incorrect predictions at the early training stages. To remedy
these limitations, we used the teacher forcing strategy for quick and efficient training of
the recurrent neural network (RNN) models by using the ground truth from a previous
time step as input [47]. However, with teacher forcing, predictions can be biased toward
performing well only on the exposed past data owing to their over-exposure to the ground
truth during training [48]. To maximize the efficiency and stability of the model, we varied
the teacher forcing ratio according to the training epochs. For example, at the beginning of
model training, we used teacher forcing with near 100% probability, but we reduced the
ratio as training progressed. Accordingly, after 100 training epochs, we trained the model
without teacher forcing. Finally, we decayed the learning rate with cosine annealing for
efficient learning and avoiding local minima present on the stochastic gradient descent.

The models were trained on eight NVIDIA Tesla V100 (32 GB memory) GPUs until the
validation loss converged to its minimum after ~120 epochs. The PyTorch (https://pytorch.org
accessed on 1 July 2021) framework was used to implement the models.

3.5. Evaluation Metrics

Various error metrics were used to evaluate the performance of the prediction model.
Statistical accuracy for SIC values is important, but for sea ice predictions, determining
ice-covered or not ice-covered pixels is also important. Therefore, in addition to the mean
absolute error (MAE), root mean square error (RMSE), and SSIM, the harmonic mean of
the precision and recall (F1 score) was compared and defined according to Equation (2):

F1 score = 2 × Precision × Recall
Precision + Recall

Precision =
True positives

True positives + False positives

Recall = True positives
True positives + False negatives

(2)

Because open water (SIC < 5%) and highly concentrated (>50%) pixels are relatively
easy to predict, we evaluated pixels ranging from 5% to 50% to calculate F1 scores. To
determine the existence of sea ice for these pixels, a threshold of 15% was used to combine
both statistical error and visual agreement between the observed and predicted images,
and to maximize the difference in errors, MAE/F1 was applied.

4. Experimental Results

Experiments were conducted to compare and demonstrate the performance of the pre-
diction models, loss functions, and input variables for the six-month Arctic sea ice predictions.

https://pytorch.org
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4.1. Comparison of Prediction Models

Table 3 summarizes the average accuracies for the six-month predictions of the models
described in Section 3.1. Figure 4 illustrates the performance of the statistical model
according to the lead-time. In this experiment, we used SIC data as inputs and the L1-norm
as a loss function for all models to consistently compare the statistical performance based
on the model types. As shown in Table 3 and Figure 4, there were no significant statistical
benefits in the LSTM model compared to the persistence model. However, ConvLSTM-
based models, including the proposed TS-ConvLSTM, significantly outperformed the
persistence and LSTM models in all error metrics. As shown in Figure 4, the errors of
the DL models were the smallest at t+1, but the errors rapidly increased as the lead-time
increased. The proposed TS-ConvLSTM model had the smallest prediction error at t+1,
and the variations according to the lead-time were also the smallest among all prediction
models. LSTM generally predicted well for the first few steps compared to the persistence
model, but errors were higher than the persistence model for later steps. The ConvLSTM-
based models consistently outperformed the persistence and LSTM models for future steps.
Remarkably, the proposed TS-ConvLSTM had the smallest mean and standard deviation
of errors for six-month predictions among all models. Therefore, we used the proposed
TS-ConvLSTM model.

Table 3. Statistical comparisons according to model architectures.

MAE RMSE SSIM F1 MAE/F1

Prediction
models

Persistence 3.0439 9.5741 0.9528 0.7526 4.0447
LSTM 2.9917 9.1791 0.9501 0.7438 4.0112

ConvLSTM 2.6904 8.0059 0.9603 0.7687 3.5209
TS-ConvLSTM 2.3130 7.0274 0.9617 0.7772 3.0157
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4.2. Loss Comparison

This experiment used the proposed TS-ConvLSTM model and SIC data as inputs to
compare various loss functions. The statistical mean errors between the observed and
predicted images are calculated in Table 4 according to the loss functions.
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Table 4. Statistical comparisons according to loss functions.

MAE RMSE SSIM F1 MAE/F1

Loss
function

L1-norm 2.3130 7.0274 0.9617 0.7772 3.0157
L2-norm 2.5347 7.1096 0.9528 0.7482 3.4337

SSIM 2.3764 7.2373 0.9648 0.7852 3.0836
VGG 2.2480 6.8250 0.9641 0.7864 2.8922

Error minimization achieved by model training depends on the type of loss function
used. For example, as shown in Table 4, a relatively small MAE value was achieved because
the L1-norm was based on the absolute error (Note: VGG uses the L1-norm to calculate
the differences between feature maps). Similarly, compared to the other error metrics,
SSIM loss had a relatively good SSIM value. However, the high F1 scores of the SSIM
and VGG loss functions indicated that these perceptual loss functions might improve the
predictability of sea ice boundaries or low SIC zones compared to the mathematical loss
functions. The overall statistical differences between the loss functions are trivial compared
to the differences between the model types, but we observed significant visual differences
in the resulting images. Figure 5 illustrates examples of prediction results according to
different loss functions. Visual inspections show that even though the differences in the
values of MAE and RMSE for each loss function were not significant, the sea ice boundaries
in the resulting images were significantly different. Large sea ice distributions connecting
to the coastlines of Russia in the East Siberian Sea were present in the observed image (see
yellow dashed rectangles). However, as seen in the predicted images using the L1-norm
and L2-norm loss functions, these spatially characterized sea ice patches did not exist. The
SSIM loss predicted these unique sea ice distributions better than the L1- and L2-norms.
The proposed VGG loss function successfully predicted the spatial characteristics of the
East Siberian Sea. However, these characterized sea ice patches moved toward the Laptev
Sea as the lead-time increased. Based on quantitative and qualitative analyses, the VGG
loss predicted the spatial distribution of sea ice with better statistical accuracy compared to
other loss functions.

One possible explanation is that the proposed VGG loss is close to human vision.
While the L1- and L2-norms are simply calculated using pixel-by-pixel statistics of the
single resulting image, and the SSIM can be compared only to the three structural features,
the VGG loss generated 448 feature maps. Figure 6 illustrates the sample feature maps
from the last convolutional layers of the first three blocks. As shown, the feature maps
provide information such as edges and shapes. The convolutional filter detected the bright
areas and thereby achieved its purpose. Some feature maps retained most of the sea ice
information in the image, acted as edge detectors, or captured the overall shapes of sea ice.
In general, while the convolution filters in the first layers detect simple edges or shapes, the
feature maps in the deeper network capture an abstract, complex, and sparse representation
of the original image. Accordingly, VGG may capture perceptual characteristics that are
similar to those of human vision. Although statistical accuracy is a fundamental metric
for evaluating the performance of the prediction model, we believe that visual agreements
may prove beneficial for appropriate applications.
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4.3. Input Variable Comparison

Based on previous experiments, we chose the proposed TS-ConvLSTM with a VGG
loss function. Table 5 summarizes the statistical accuracies of the prediction models based
on the combinations of input variables. As mentioned in Section 3.3, we sequentially added
each feature to M1–M6. As seen in the results of M3, when we added SIE, all types of
model accuracies deteriorated notably. Therefore, we excluded the SIE variable in M7–M9
and tested the T2m, V10m, and U10m variables. As a result of M8, when V10m was added, the
errors increased again. Accordingly, M10 excluded V10m and finally used SIC, SICano, T2m,
and U10m as input variables. Based on the overall accuracies of the considered error metrics
in Table 5, M1, M2, and M4–M7 showed good predictability, but the differences between
these models were not significant. Notably, there were no significant improvements when
using the SIE and ERA5 variables. We also compared the standard deviations of the errors
for each model. The standard deviations tended to decrease with the increase in input
variables used. However, M2 had the smallest standard deviation of errors compared to
the other models, indicating that M2 showed stable predictability. The statistical accuracy
of the prediction model is the most fundamental factor, but the efficiency of data collection
and the stability of predictability is also crucial in operational systems. Based on the
experimental results, SIC and SICano were the most valuable variables for developing the
most accurate, efficient, and stable prediction model.

Table 5. Statistical comparisons according to the combinations of input variables.

Avg. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

MAE 2.2480 2.2484 2.4248 2.3048 2.3241 2.2936 2.2768 2.2721 2.4822 2.3946
RMSE 6.8250 6.6659 7.1526 6.7504 6.7499 6.6584 6.8210 7.3290 6.8440 7.0379
SSIM 0.9641 0.9611 0.9583 0.9617 0.9609 0.9607 0.9628 0.9375 0.9460 0.9581

F1 0.7864 0.7833 0.7737 0.7885 0.7808 0.7882 0.7848 0.7734 0.7812 0.7724
MAE/F1 2.8922 2.8764 3.1992 2.9667 3.0413 2.9456 2.9490 3.5472 3.2053 3.1428



Remote Sens. 2021, 13, 3413 14 of 20

Table 5. Cont.

Std.
Dev. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

MAE 0.5601 0.4515 0.5980 0.5186 0.4694 0.5010 0.5427 0.5178 0.4682 0.5248
RMSE 1.4970 1.1525 1.6554 1.3358 1.2441 1.1900 1.4999 1.3183 1.1999 1.4581
SSIM 0.0139 0.0103 0.0148 0.0141 0.0141 0.0130 0.0141 0.0118 0.0125 0.0136

F1 0.0434 0.0342 0.0452 0.0400 0.0466 0.0425 0.0404 0.0346 0.0369 0.0384
MAE/F1 0.7627 0.5899 0.8787 0.6831 0.6551 0.6515 0.7265 0.7040 0.6352 0.7118

4.4. Experimental Results for 2020

Based on the previous three experiments, that is, comparisons of the models, losses,
and input variables, the best architecture for the six-month predictions of the Arctic sea ice
was the proposed TS-ConvLSTM model with VGG loss using the past 12-month SIC and
SICano data as inputs. The proposed TS-ConvLSTM significantly reduced the prediction
errors compared to the other baseline models (see Section 4.1). The feature-based loss
function effectively captured sea ice distributions while maintaining statistical accuracy
(see Section 4.2). However, incorporating additional input variables, such as ocean and
atmospheric parameters, did not result in an improvement in predictability as expected
(see Section 4.3).

Figure 7 shows the statistical comparisons of the proposed prediction model according
to lead-time (Figure 7a) and month (Figure 7b), and all statistics are listed in Table 6. Figure 8
illustrates the prediction results for 2020. Overall, as seen in Figure 7a, predictability became
weak as the lead-time increased (i.e., MAE, RMSE, and MAE/F1 increased, whereas SSIM and
F1 scores decreased). Variations at t+1 were the smallest, but they increased for the long-term
predictions owing to the characteristics of the RNN. Notably, the proposed model captured
the recent trends and characteristics of sea ice distributions well using the recently updated
sea ice data. For example, as shown in Figure 8, for the September predictions, unique sea
ice distributions in the Beaufort Sea were clearly identified in t+1 and t+2 images. However,
these characteristics were merely present or not observed in the prediction of the images at
t+3 to t+6. The extremes of the SIC (open water and high-SIC regions) showed relatively
good agreements with the observations regardless of the lead-time as seen in Figure 8, but the
differences and errors were mainly observed in the marginal ice zones (20% < SIC < 80%).
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Table 6. Statistics of prediction errors according to lead-time and month.

MAE Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

t+1 1.5449 1.6073 1.9119 2.0731 2.1925 2.3110 1.9762 1.4274 1.3749 1.6131 2.1307 1.5121
t+2 1.8651 1.9391 2.2336 2.6025 2.6588 3.0276 2.2576 2.0488 1.5990 2.2147 2.3257 2.0685
t+3 1.7661 1.9172 2.3787 2.6064 2.6328 3.1759 2.6029 2.1151 1.7610 1.9262 2.5185 2.1391
t+4 1.7501 1.9257 2.2756 2.6432 2.8337 3.2640 2.6258 2.2361 1.7602 2.1307 2.5406 2.1382
t+5 1.7408 1.9589 2.3791 2.7415 2.9673 3.0936 2.5449 2.2148 1.8593 2.5055 2.7582 2.1568
t+6 1.8103 1.9429 2.3729 2.7009 2.9537 3.1456 2.4645 2.1787 1.8640 2.3840 2.8797 2.0871

RMSE Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

t+1 4.5148 4.4901 5.4807 5.6759 5.9136 6.3384 6.2614 4.9205 5.4771 5.1247 5.7645 4.1212
t+2 5.4400 5.5926 6.5878 7.8104 7.5234 8.1855 6.6227 6.8165 5.5151 7.1589 6.2950 5.6306
t+3 5.1743 5.3749 7.0786 7.6140 7.3080 8.6651 7.5839 7.1062 7.0182 6.0830 6.7504 5.9125
t+4 5.0823 5.5483 6.6607 7.8540 7.9402 8.8780 7.5768 7.4978 7.2786 6.6463 6.7005 5.8293
t+5 5.1137 5.5092 7.0488 7.9020 8.2512 8.6228 7.4925 7.3205 7.6022 7.5872 7.3328 5.9219
t+6 5.2537 5.5314 7.0453 7.7836 8.2356 8.6377 7.1290 7.1325 7.6024 7.9469 7.8677 5.6516

SSIM Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

t+1 0.9789 0.9811 0.9738 0.9666 0.9650 0.9653 0.9635 0.9757 0.9763 0.9648 0.9585 0.9766
t+2 0.9720 0.9737 0.9681 0.9567 0.9527 0.9490 0.9500 0.9602 0.9637 0.9559 0.9561 0.9693
t+3 0.9735 0.9735 0.9636 0.9546 0.9549 0.9490 0.9387 0.9615 0.9675 0.9578 0.9534 0.9689
t+4 0.9735 0.9734 0.9658 0.9512 0.9554 0.9500 0.9384 0.9586 0.9662 0.9553 0.9546 0.9683
t+5 0.9745 0.9731 0.9639 0.9491 0.9527 0.9518 0.9466 0.9585 0.9648 0.9505 0.9503 0.9675
t+6 0.9723 0.9729 0.9651 0.9502 0.9513 0.9499 0.9472 0.9599 0.9654 0.9525 0.9403 0.9673

F1 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

t+1 0.8161 0.8231 0.8188 0.8143 0.8156 0.8088 0.7811 0.7978 0.7642 0.7610 0.7812 0.8150
t+2 0.8128 0.8170 0.8147 0.7959 0.8045 0.7902 0.7514 0.7475 0.7459 0.7440 0.7813 0.8113
t+3 0.8133 0.8179 0.8114 0.7992 0.8030 0.7869 0.7407 0.7502 0.7253 0.7487 0.7770 0.8120
t+4 0.8130 0.8182 0.8118 0.7985 0.8018 0.7841 0.7393 0.7254 0.7202 0.7399 0.7789 0.8125
t+5 0.8144 0.8176 0.8142 0.7969 0.7988 0.7879 0.7401 0.7410 0.7156 0.6905 0.7767 0.8129
t+6 0.8129 0.8180 0.8156 0.7984 0.7987 0.7878 0.7451 0.7484 0.7171 0.7177 0.7755 0.8129

MAE/F1 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

t+1 1.8929 1.9527 2.3349 2.5458 2.6883 2.8572 2.5302 1.7891 1.7991 2.1198 2.7274 1.8554
t+2 2.2946 2.3735 2.7415 3.2699 3.3050 3.8314 3.0046 2.7407 2.1438 2.9765 2.9766 2.5497
t+3 2.1715 2.3439 2.9314 3.2614 3.2786 4.0360 3.5141 2.8193 2.4279 2.5728 3.2413 2.6344
t+4 2.1527 2.3537 2.8032 3.3103 3.5343 4.1629 3.5518 3.0824 2.4442 2.8796 3.2619 2.6317
t+5 2.1377 2.3959 2.9221 3.4401 3.7148 3.9264 3.4387 2.9887 2.5983 3.6285 3.5509 2.6533
t+6 2.2270 2.3751 2.9093 3.3828 3.6979 3.9929 3.3077 2.9112 2.5995 3.3218 3.7131 2.5673

As seen in Figure 7b, in freezing months (December–April), statistical accuracies such
as MAE, RMSE, and MAE/F1 were relatively low compared to those in summer, although
there were more sea ice pixels in winter. However, for the months between the melt and
freezing onset, the predictability was weak because of increased sea ice dynamics and
the recently accelerating global warming effect. Overall, owing to the large number of
open-water pixels and the minimum sea ice, the average MAE, RMSE, and MAE/F1 for
September were relatively good compared to the other summer months. However, since
F1 scores were calculated for SIC pixels ranging from 5%–50%, which are challenging to
predict the range for, September’s F1 scores were lower than that of the others.
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5. Discussion

DL-based prediction models using historical remote sensing data have gained atten-
tion in many environmental applications in recent years. Because DL-based prediction
models show reasonable predictability, they are now used as an alternative to conven-
tional statistical and numerical models. In this study, three research questions were raised
: (1) Which types of DL models are appropriate for predicting Arctic sea ice? (2) Is a loss
function critical for learning sea ice patterns? (3) Which input variables should be used
for an efficient and stable model? To address these questions, we conducted experiments
to compare DL model architectures and loss functions and to test input variables using
individually trained models instead of relative feature significant tests.

The selection of the proper model is critical for developing an accurate prediction
model. Owing to the high relationship between the current and previous year SICs, the
statistical accuracy of the persistence model was not poor. Recurrent models worked well
in the first few steps but degraded predictability when going further into the future. The
overall accuracy of the pixel-wise LSTM model was better than that of the persistence model;
however, for longer lead times, it showed more significant errors (see Figure 4). ConvLSTM-
based models, including the proposed TS-ConvLSTM, consistently outperformed the
persistence and LSTM models for up to six months. However, errors increased as the
lead-time increased owing to the nature of the multi-step predictions. The use of different
modalities in the proposed model architecture further improved prediction accuracy.

For the second question, the loss function is critical for determining statistical accuracy
as well as the overall sea ice distributions or shapes. As compared and discussed in [49],
the selection of the proper loss function led to successful estimations. Image quality
assessment metrics such as SSIM prevented blurry effects in the predicted images, unlike
the conventional global-evaluating loss functions such as the L1-norm or L2-norm using
less computational resources. In our study, feature maps from pretrained CNN networks
further improved the learning of local patterns. However, the blurry effects for long-term
predictions when using the L1-norm or L2-norm discussed in [49] were not observed as
lead-time increased because the time periods for our monthly sea ice prediction problem
are based on six future steps. While we used the pretrained networks, the proposed VGG
loss function was not a computationally cheap solution compared to the SSIM because
of the large number of feature maps that needed to be evaluated. Unlike the statistical
differences between the model architectures, those between the loss functions were not
significant. However, incorporating feature maps from the CNN architecture into the
proposed perceptual loss function has the merits of learning and predicting better local
distributions and patterns of Arctic sea ice.

Finally, we expected that the atmosphere-related variables were important to improve
predictability, but they were not as effective as expected. Due to the characteristics of
DL architectures, which learn complicated and nonlinear connections in hidden layers,
the importance of input variables seems to be trivial or depends on the model types and
the target months. For example, as discussed in [16], forecast albedo was an important
variable for September predictions using the random forest model, but this variable was
not significant in other cases such as annual predictions or September predictions using the
CNN model. We used ERA5 variables acquired during the same period as that of the sea
ice data. There might be some time lag between the atmospheric and sea ice variables. For
example, the minimum SIE was observed in September, whereas the air temperature in the
Arctic was high in July [50]. In this study, the time lags between the input variables were
not considered, and this could possibly be the reason for the inability in developing a better
prediction model by adding atmospheric variables. Furthermore, the 10 m wind speed is
essential for sea ice modeling because it determines the surface wind stress, which is the
primary force responsible for ice motion. Wind speed and direction in the Arctic are closely
controlled by cyclone activity. Serreze et al. [51] noted the impact of summer cyclone
activity on sea ice loss. Cyclones can spread out ice to cover a larger area and form spaces
between ice floes. This accelerates ice loss because the dark ocean water absorbs more
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solar energy and increases melting. Contrastingly, high cyclone activity in May, June, and
July leads to a higher-than-average September SIE. Some storms can bolster the ice [52,53],
and they can occasionally strengthen the ice pack by bringing in cold air. Snow from the
storm falls on the ice, which can help to reinforce ice by increasing the sunlight reflection
and further help to keep temperatures down. Arctic winds can have both positive and
negative effects on the growth and retreat of the Arctic sea ice. These conflicting effects
may attenuate the outcome.

Although the proposed approaches in this study were successfully incorporated into
the six-month Arctic sea ice prediction compared to the pixel-wise LSTM or the vanilla
ConvLSTM model, challenges remain. First, we demonstrated that atmospheric parameters
were not significant, and therefore, a further investigation of the time lags between input
variables caused by environmental phenomena must be explored. Utilizing sea ice motion
and thickness, first ice-free date, different climatological scenarios, and CO2 concentration
scenarios [54] may further improve the prediction accuracy and robustness. Second, the
ConvLSTM was widely used in the prediction of the video frames that contain continuous
image information, but the monthly sea ice data used in this study were temporally sparse.
Capturing these dynamic and subtle sea ice changes using sparse monthly data may be
limited because there are significant changes in sea ice distributions and patterns during
summer. On the other hand, daily data contain large inter-day variability, and there are
no significant daily changes, or the changes may be within daily uncertainties in satellite
records. Therefore, the selection of optimal prediction frequencies (3-day or weekly data)
and frequent predictions are beneficial for applications such as marine navigation and
understanding the subtle differences in sea ice changes. Finally, although the proposed
VGG loss function mimics human vision and improves both quantitative and qualitative
accuracies, the pretrained VGG network may not be optimal for sea ice data. Many
feature maps may contain redundant information. Therefore, retraining and optimizing
the VGG network or the more efficient CNN-based networks such as ResNet [55] and
EfficientNet [56] using sea ice data are worth investigating.

6. Conclusions

The present study proposed DL-based Arctic sea ice prediction models, including
a new model architecture and a perceptual-loss function. We also tested the impact of
the input variables using several combinations. As a result, owing to the seasonal cycle
of Arctic sea ice, there were high correlations between the sea ice observed in the same
month. The LSTM model did not outperform the persistence model for multi-step-ahead
predictions. However, a combination of CNN and LSTM models would benefit from
learning both spatial and temporal characteristics. The proposed TS-ConvLSTM captured
different spatial characteristics using different network modalities. We also demonstrated
that the selection of a proper loss function was critical for capturing sea ice distributions and
patterns, although statistical differences between the loss functions were not significant.
Additional input variables were less critical than expected, but the addition of input
variables slightly reduced the uncertainties in the predictions. Overall, the proposed TS-
ConvLSTM model using the perceptual VGG loss function and input variables of SIC and
SICano produced the most accurate and efficient monthly predictions of Arctic sea ice.
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