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Abstract: Spectral information is a proxy for understanding the characteristics of ground targets
without a potentially disruptive contact. A spectral library is a collection of this information and
serves as reference data in remote sensing analyses. Although widely used, data of this type for
most ground objects in polar regions are notably absent. Remote sensing data are widely used in
polar research because they can provide helpful information for difficult-to-access or extensive areas.
However, a lack of ground truth hinders remote sensing efforts. Accordingly, a spectral library was
developed for 16 common vegetation species and decayed moss in the ice-free areas of Antarctica
using a field spectrometer. In particular, the relative importance of shortwave infrared wavelengths
in identifying Antarctic vegetation using spectral similarity comparisons was demonstrated. Due to
the lack of available remote sensing images of the study area, simulated images were generated using
the developed spectral library. Then, these images were used to evaluate the potential performance
of the classification and spectral unmixing according to spectral resolution. We believe that the
developed library will enhance our understanding of Antarctic vegetation and will assist in the
analysis of various remote sensing data.

Keywords: Antarctic vegetation; Barton Peninsula; field spectroscopy; King George Island; lichen;
moss; spectral characteristics; spectral library

1. Introduction

Recent interest in climate change and global warming has affected the distribution
and function of vegetation by changing the environmental conditions of ecosystems [1].
Since the Antarctic ecosystem is particularly sensitive to environmental change, studying
its responses can enhance our understanding of such changes [2–6]. The monitoring of
terrestrial biodiversity in the Antarctic Peninsula and the South Shetland Islands, which
are some of the most rapidly warming areas in the world [6,7], is vital as a proxy for
climate change.

Detailed information on the maritime biodiversity in Antarctica has been collected
via field surveys, but this information is limited to the areas most frequently visited
by researchers, primarily near Antarctic research stations. Therefore, on King George
Island, the largest of the South Shetland Islands and the most concentrated region of
Antarctic research stations, various biodiversity monitoring studies via field surveys have
been conducted. In the Maxwell Bay area of King George Island, vegetation cover was
surveyed [8], and the species density of bryophytes and lichens was calculated for the
Barton Peninsula around King Sejong Station [9]. Due to the extreme environmental
conditions, only two species of flowering plants, Deschampsia antarctica and Colobanthus
quitensis, grow in small and sparse patches; however, cryptogamic species, including
33 bryophytes (mosses) and 62 lichens, are dominant in most snow-free regions [8,9].
Changes in the lichen community diversity and composition of a deglaciated gradient
were analyzed using five 50 × 50 cm grids at 24 sites in the Potter Peninsula [10]. The
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present study reports that the patterns of these Antarctic lichen communities are dynamic
and highly heterogeneous due to a strong influence of microsite factors and macroclimate
variables. In Admiralty Bay, biomass and net annual production patterns were analyzed for
four moss species in Antarctica [11], and the driving mechanisms of vegetation, including
soil characteristics and landscape elements (altitude and geomorphological variations),
were investigated [12] in the surrounding area of Arctowski Station. A distribution map
was generated for 35 vegetation communities of the Keller Peninsula [13], and the lichen
biota dynamics of Lions Rump for the past 20 years were characterized, showing that
the most significant changes had taken place in the forefield of a glacier and on the
young moraines [14]. In addition, the distributions of the representative flowering plant
Deschampsia antarctica [15] and of mosses [16] were surveyed and compared between the
South Shetland Islands and the Antarctic Peninsula.

However, periodic field surveys of extended areas are financially and physically costly,
and the human activity can potentially destroy or disturb the ecosystem. Additionally,
survey-based approaches maintain inherent uncertainty when quantifying vegetation
cover and variations over relatively long time periods. As an alternative, remote sensing
techniques are widely used to periodically monitor quantitative and qualitative states of
extensive and/or inaccessible regions. Several studies have been conducted to assess polar
vegetational biodiversity using remote sensing approaches over the past decade. Théau
et al. [17] used a classification method and spectral mixture analysis for mapping several
types of lichen over Northern Quebec using Landsat imagery. They acquired field data
using a helicopter and determined the types and percent of coverage by visual inspection.
Large-scale mapping analyses using the normalized difference vegetation index (NDVI)
from medium-resolution Landsat [18] and SPOT [19] images have been conducted; how-
ever, detailed information from these studies is not available due to the limited spatial and
spectral resolution of the images and ground truthing efforts. Nonetheless, such research
has suggested that a combination of remote sensing data and techniques could potentially
help obtain information. Shin et al. [20] used a spectral mixture analysis technique to
quantify vegetation abundance at the sub-pixel level from high-resolution KOMPSAT-2
(Korea Multi-Purpose Satellite-2) and QuickBird images of the Barton Peninsula; however,
they employed image-driven endmembers instead of field spectra. Liu and Treitz [21]
used ground-based near-infrared (NIR) images to develop a vegetation cover model for
the Canadian High Arctic, and then applied this model to high-resolution satellite images
to examine the spatio-temporal patterns of the vegetation cover over the extended areas.
Sun et al. [22] investigated vegetation abundance and health mapping from WorldView-
2 data using spectral mixture analysis in the Fildes Peninsula and Ardley Island, King
George Island. They categorized mosses and lichens according to their associated health
conditions and acquired reference field spectra over approximately 300–1000 nm for large
sampling plots (2 m × 2 m), which are suitable for obtaining high resolution satellite data.
Accordingly, past vegetation mapping studies of remote sensing data have focused on
the analysis of vegetation/spectral indices and on the classification/unmixing of a few
vegetation species or conditions due to the relative lack of spectral information and images
of the Arctic/Antarctic vegetation.

Incorporating the field spectra of the target areas into the remote sensing analyses
can greatly assist with the assessments of inaccessible areas. A spectral library is a set
of digital reflectance spectra measured in the laboratory or the field, or remotely by air
or spacecraft. They are employed to support imaging spectroscopy studies of the Earth
and other planets and include informative wavelength data of both natural and artificial
surfaces, such as rocks, minerals, soils, vegetation, snow, and ice [23]. A spectral library can
play an important role in identifying the components of unknown targets and quantifying
their abundance in mixed pixels. Widely used spectral libraries are contributed to by
the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER), the NASA
Jet Propulsion Laboratory (JPL), the Johns Hopkins University, and the United States
Geological Survey (USGS). However, these spectral libraries have been primarily developed
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for use in mid-latitudinal regions. As the landscapes of the polar regions are quite different,
the current libraries may not be applicable for interpreting the ecosystems and landcover
types in the Antarctic region. Limited research has been aimed at developing a spectral
library of polar vegetation. Goswami and Matharasi [24] developed a vegetation spectral
library for the Arctic, Antarctic, and Chihuahuan Desert regions using a hand-held portable
spectrometer in the visible and NIR (VNIR) wavelength range. Calvino-Cancela and Martin-
Herreroin [25] developed a spectral library for 13 representative moss and lichen species in
the Barton Peninsula in the VNIR wavelength range (380–1000 nm). Their classified field-
measured spectra showed high overall accuracy in principal component analysis–linear
discriminant analysis. However, the analysis also concluded that some species, such as
Deschampsia and Prasiola, were challenging to discriminate using their library spectra.

Although the spectral library is crucial for quantitative remote sensing analysis, par-
ticularly for inaccessible or difficult-to-access locations such as the polar regions, limited
spectral information for ground objects in the polar regions is available. This study had
two research goals: (1) the development of a spectral library for Antarctic vegetation; and
(2) the investigation of the spectral characteristics of Antarctic vegetation to determine
which spectral ranges are the most effective for identifying Antarctic vegetation in remote
sensing data. To this end, we first developed a spectral library for 16 representative vegeta-
tion species and decayed moss, including mosses, lichens, vascular plants, and one alga
often discovered in the ice-free areas of Antarctica. Iterative field spectral data across the
visible–shortwave-infrared (SWIR) range (400–2500 nm) were collected for homogeneous
vegetation patches and then compiled to generate representative spectra. Both spectrom-
eters and hyperspectral imaging sensors typically use the VNIR (400–1000 nm), SWIR
(1000–2500 nm), or full-spectrum (i.e., VNIR–SWIR; 400–2500 nm) ranges. As VNIR sensors
are lighter, cheaper, and have a better signal-to-noise ratio than SWIR or full-spectrum
sensors, using a VNIR spectrometer or integrating a VNIR imaging sensor to a small
unmanned aerial vehicle (UAV) has fewer technical challenges. Therefore, along with
developing a spectral library of the Antarctic vegetation species over a full-spectral range,
analyses were carried out using spectral discrimination measures to observe the spectral
characteristics and potential separability of the Antarctic vegetation by wavelength range.
Since sufficient remote sensing images with corresponding surveyed data over the study
area are unavailable, artificial images were created and modeled using the developed
spectral library, field information, and spectral response functions of widely used remote
imaging sensors. The potential performance of the vegetation discrimination was then
evaluated for practical classification and unmixing tasks. In particular, we addressed the
importance of SWIR wavelengths in discriminating or quantifying Antarctic vegetation
species effectively.

2. Materials and Methods
2.1. Study Area

The Barton Peninsula is located between 62.12◦S and 62.14◦S and 58.42◦W and 58.48◦W
in the southwest of King George Island, the largest of the South Shetland Islands (Figure 1).
The elevation of the peninsula ranges only from 0 to 266 m, but the topography is com-
plex [26]. A large part of the ground area is covered with snow throughout the year;
however, during the summer, ~12 km2 of the regions near the coastal area are snow-free.
Soils generally lack nutrients and organic matter, except near seabird nesting sites and
penguin rookeries [27]. The climate is relatively warmer, more humid, and milder than
that of continental Antarctica, as is more typical of the polar oceanic climate. Based on me-
teorological records from the Korean Antarctic King Sejong Station in the Barton Peninsula,
the annual mean values for this region are: −1.6 ◦C surface air temperature, 89% relative
humidity, and wind speeds of 8.0 m·s−1 [28].
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2.2. Measurement of Vegetation Spectra

Surface features have unique signals similar to fingerprints, one of the most well-
known biometrics for human identification due to their uniqueness and consistency over
time, referred to as spectral reflectance. Different surface objects reflect and absorb elec-
tromagnetic radiations in different ways according to their physical and chemical states.
Spectral reflectance is a measure of how much energy a surface reflects at a specific wave-
length [29]. Generally, in the field procedures employed to acquire reflectance spectra,
the flux reflected from a level reflectance reference surface such as a Spectralon panel is
first measured, and then the flux reflected from the subject (e.g., vegetation species in this
study) is measured. In this study, an ASD Fieldspec 4 spectrometer (Malvern Panalytical
Ltd., Malvern, UK) was used to collect field spectra across the 350 to 2500 nm wavelength
range at a spectral resolution of 1 nm. Due to the high and fast-changing cloud cover
over the study area, the spectra were measured with a contact probe, which had a stable
halogen krypton light source attached to the mount of the optic cable. The light source of
the contact probe was aligned at a fixed illumination zenith of 23◦ to the probe body to
minimize issues of variable illumination from the surface topography, thereby allowing for
the rapid acquisition of spectra at any time of day. The optical cable of the spectrometer
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was mounted to the contact probe at a fixed view zenith angle of 35◦ in the same azimuth
of the probe axis as the light source [30].

Field campaigns were carried out in selected areas of the Barton Peninsula in the
Antarctic summer season, from 17 January to 14 February 2019. As there were no rain or
snow events before the acquisition of the field spectra, the impact of water content was
minimized. Table 1 displays the scientific names and descriptions of species surveyed in this
study. Decayed moss was often observed as mixed or next to other living vegetation in the
study area, and we thought it was one of the major components of the ground surface of this
area. However, it was difficult to distinguish spectral differences between types of decayed
moss. Since the homogeneous and pure targets for 16 vegetation species and decayed moss
were first localized to within the field of view, there were mostly no mixed signals in the
selected targets. At least 20 individual patches per species were selected, and ten iterative
measurements were conducted for each patch. The size of each patch depended on species
type and field conditions, but it was a minimum of 5 cm × 5 cm. Spectra for each patch
were acquired on different days and at different locations in the Barton Peninsula during
the field campaign period. ASD Fieldspec 4 consists of three spectral detectors (relative to
the 350–1000 nm, 1001–1800 nm, and 1801–2500 nm wavelength ranges) to capture the full
spectral range. The measured spectra often exhibited spectral discontinuities at the borders
between these three ranges owing to insufficient sensor warm-up and inhomogeneities
of the targets within the field of view [31,32]. These inter-channel radiometric steps were
corrected using a radiometric inter-channel jump correction method [31]. To build a spectral
library, the reflectance spectra of the 16 species and decayed moss were averaged, with the
exclusion of all abnormal spectra and noisy data, across the 350 to 400 nm wavelength range.

Table 1. Scientific names and descriptions of the 16 representative vegetation species in Barton Peninsula [9].

Species Description

Mosses

Andreaea spp.

Very common and dominant on dry, exposed rocks, boulders on
stony ground, rock ledges, and outcrops. Sometimes encrusted
with epiphytic lichens and mixed with the liverwort
Herzogobryum teres.

Chorisodontium aciphyllum (Hook. f. and Wils.), Broth Turf-forming species occurring almost exclusively on the small
Ardley Island near the Fildes Peninsula.

Polytrichastrum alpinum (Hedw.) G.L. Sm.
Small patches associated with Sanionia georgico-uncinata and the
grass Deschampsia antarctica and present in fairly moist places near
ponds.

Polytrichum strictum Brid. Small turfs present, with tall turfs being rare on King George
Island.

Sanionia uncinata (Hedw.) Loeske
Dominant species distributed primarily on the lower-level terrain
in both sheltered and open habitats. Commonly associated with
P. alpinum, Bryum spp., and Andreaea spp.

Lichens

Cladonia spp. Fruticose lichens; commonly associated with turf-forming species
C. aciphyllum and P. strictum in the mixed stands.

Himantormia lugubris (Hue.) I.M. Lamb Fruticose lichens that dominate the lichen community along with
U. antarctica.

Ochrolechia frigida (Sw.) Lynge
Commonly associated with S. uncinata and turf-forming mosses
on dry habitats and gentle slopes, and nearly absent in wet
habitats.

Placopsis contourtuplicata I.M. Lamb Found on dry and fairly exposed gravels of gentle slopes, forming
a rich understory beneath the macrolichens.

Psoroma spp. Squamulose lichen, usually associated with mosses.

Sphaerophorus globosus (Huds.) Vain. Fruticose lichens; usually associated with turf-forming species
C. aciphyllum and P. strictum in mixed stands.
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Table 1. Cont.

Species Description

Stereocaulon alpinum Laurer Fruticose lichens; growing in dry and exposed areas.

Usnea antarctica Du Rietz

Fruticose lichens; abundant in most habitats from sheltered to
very exposed and moist to dry, and showing a tendency to occur
in areas with early exposure from snowmelt and in higher
altitude locations.

Flowering plants

Colobanthus quitensis (Kunth) Bartl.
Dicot species observed in sheltered areas facing Marian Cove;
expanded rapidly and primarily associated with patches of
S. uncinata within the Usnea-crustose community.

Deschampsia antarctica Desv.

Monocot species mostly growing in the flat areas used by skuas as
resting places around Sejong Point near ponds. Most grass
patches were formed in stable, well-drained areas covered by an
S. uncinata moss carpet.

Alga

Prasiola crispa (Ligtf.) Kütz. subsp. antarcica (Kütz.) Knebel Nitrophilous alga; present around ponds near King Sejong Station
and penguin rookeries with high nitrogen levels.

2.3. Spectral Similarity Measures between Library Spectra

Various similarity metrics have been developed to quantitatively compare reflectance
spectra [33,34]. Spectral correlation (SC) is a derivative of the Pearson’s correlation co-
efficient (PCC) between the two spectra x = (x1, x2, · · · , xn)

T and y = (y1, y2, · · · , yn)
T,

according to Equation (1) [35]:

SC =
n ∑n

1 xiyi −∑n
1 xi ∑n

1 yi√
[n ∑n

1 x2
i − (∑n

1 xi)
2]
[
n ∑n

1 y2
j −

(
∑n

1 yj
)2
] (1)

where n is the number of spectral bands. SC is relatively simple to compute and considers
the overall spectrum shape. The correlation value ranges between −1 and 1 and shows the
extent of the linear relationship between the two spectra. SC can be expressed as an angle,
applying the arc-cosine.

The spectral angle (SA) is the most widely used spectral similarity index in the
analysis of hyperspectral remote sensing imagery. It is similar to the PCC except for
the standardization of the data themselves. It measures the angle between two spectral
signatures, according to Equation (2) [36]:

SA = cos−1

 ∑n
1 xiyi√

∑n
1 x2

i

√
∑n

1 y2
i

 (2)

SA analysis yields similar results to Euclidean distance (ED) analysis, but the ED is
affected by the brightness temperature of the spectra, while the SA and SC are invariant
to brightness.

Another common metric is the spectral information divergence (SID) proposed by
Chang [33]. The SID exploits spectral band-to-band variability as a random variable and
then calculates the discrepancy of probabilistic behaviors between two spectra, whereas
the SA simply extracts spectral geometric features. The SID is more effective than the SA at
capturing subtle spectral variability [33] and is defined according to Equation (3):

SID = ∑n
1 pi log pi/qi + ∑n

1 qi log qi/pi (3)

where pj = xj/ ∑n
1 xi and qj = yj/ ∑n

1 yi. Although the SID typically shows better spectral
discrimination than other metrics, the number of spectral bands required for calculating
the SID limits quantitative comparison. A secondary goal of this research was to com-
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pare the spectral similarities of the 16 vegetation species and decayed moss across three
different spectral ranges: VNIR (400–1000 nm), SWIR (1000–2500 nm), and VNIR-SWIR
(400–2500 nm). Thus, the SA is a valuable spectral similarity measure because of its in-
variability to the number of spectral bands, unlike the SID. SC measurement showed a
similar discrimination capability to SA measurement in various comparison studies, and
was more effective in spectrally severe overlapping conditions, although it depended on
the targets of interest [34,37]. Since there were no significant differences between the SA
and SC values in our preliminary experiments, we selected the SA as a primary spectral
similarity measure.

The spectral similarity measures only provide information on the similarity or dissim-
ilarity between paired spectra and are insufficient at discriminating between more than
two spectral signatures. Field spectra here were measured from homogeneous objects
to develop a spectral library; however, most spectra acquired either remotely or from
the field were mixtures of more than one signature. To appropriately evaluate spectral
discriminant performance, identifying one spectral signature from the other is the founda-
tion for discriminating pixels of highly mixed remote sensing imagery, more indicative of
true applications. Relative spectral discriminability entropy (RSDE) provides an overall
measure of uncertainty in identifying the mixed signal (d) with respect to a set of spectral
signatures (S). S is defined as = {sk}K

k=1, where K is the number of spectra in the set,
the mixed spectral signature (d), which is more similar to real remote sensing signals, is
modeled in terms of a linear combination of library spectra sk, according to Equation (4):

d =
K

∑
1

aisi + ε (4)

where ai is a scalar value representing the proportion (i.e., fractional abundance) of the field
spectrum si, and ε is the random noise. Two constraints were imposed: (1) nonnegativity

(ai ≥ 0, ∀ai : 1 ≤ i ≤ q) and (2) sum-to-one
(

∑K
1 ai = 1

)
. The spectral discriminability

probabilities pd,S(k) of all sk in S relative to d can be defined according to Equation (5):

pd,S(k) =
SA(d, sk)

∑n
1 SA(d, si)

(5)

This value can be further employed to calculate relative spectral discriminability
entropy (RSDE) and to provide an overall measure of uncertainty in identifying the mixed
signal (d) with respect to S [33]. RSDE can be calculated according to Equation (6):

RSDE = −∑n
k=1 pd,S(k) log pd,S(k) (6)

The lower the RSDE, the higher the chance of correctly identifying d [33]. To calculate
the RSDEs, 100 linear mixtures of library spectra were randomly generated.

2.4. Generation of Synthetic Images Using Spectral Library

The enhanced capability of high spectral resolution sensors provides an improved
capacity for feature identification compared with that of multispectral sensors. Due to the
unavailability of real remote sensing data with corresponding field-surveyed information,
synthetic remote sensing images were used as an alternative to evaluate their potential
performance in the practical classification/unmixing of vegetation types. First, the frac-
tional abundances of the 16 vegetation species and decayed moss were generated using the
Spheric Gaussian Fields method, and synthetic hyperspectral images were reconstructed
using the abundances and library spectra. Based on the information on vegetation distribu-
tion in the Barton Peninsula acquired from previous field campaigns (2012–2016) [8,38],
16 cases of vegetation composition were defined (Table 2). Figure 2 shows an example of a
field photo for Case 7. Fractional abundance images (300× 300 pixels) were created for each
case and then combined into a single 1200 × 1200 hyperspectral image (Figure 3). Figure 4
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illustrates the generated hyperspectral dataset with corresponding class labels, where each
pixel is labeled according to the most dominant species based on fractional abundance.

Table 2. Representative vegetation compositions in Barton Peninsula.

Vegetation Species

Case 1 Polytrichum, Himantormia, Sphaerophorus, Usnea
Case 2 Andreaea, Chorisodontium, Sanionia, Usnea, Colobanthus
Case 3 Polytrichum, Psoroma
Case 4 Sanionia, Placopsis, Usnea
Case 5 Stereocaulon, Usnea
Case 6 Polytrichum, Sanionia, Sphaerophorus, Usnea

Case 7 Andreaea, Chorisodontium, Sanionia, Sphaerophorus, Stereocaulon, Usnea,
decayed moss

Case 8 Andreaea, Sanionia, Cladonia, Ochrolechia
Case 9 Deschampsia, Prasiola
Case 10 Sanionia, Deschampsia
Case 11 Polytrichastrum, Sanionia, Cladonia, Ochrolechia, Usnea
Case 12 Andreaea, Chorisodontium, Himantormia
Case 13 Polytrichastrum, Psoroma, Usnea
Case 14 Sanionia, Ochrolechia, Psoroma
Case 15 Polytrichastrum, Sanionia, Ochrolechia, Usnea
Case 16 Andreaea, Polytrichastrum, Himantormia, Placopsis, Usnea
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The generated synthetic hyperspectral image contained 2101 spectral bands (400–2500 nm)
at a spectral resolution of 1 nm; however, real hyperspectral imaging sensors often have
wider 5–10 nm bandwidths. To recreate more realistic hyperspectral images, the 1 nm
spectra were aggregated into 10 nm bands using the Gaussian spectral response function
for each simulated hyperspectral band [39]. Most hyperspectral sensors record reflected ra-
diation from a ground target over either the 400–1000 nm or the 1000–2500 nm ranges based
on the different types of detector technologies (i.e., silicon detectors are often used for VNIR
sensing, while MCT or InSb detectors are common SWIR sensors). Therefore, three hy-
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perspectral sensors were modeled—VNIR (400–1000 nm; 60 bands), SWIR (1000–2500 nm;
150 bands), and VNIR-SWIR (400–2500 nm; 210 bands)—and used to evaluate their veg-
etation classification and spectral unmixing performance. Additionally, three popular
multispectral sensors—WorldView-3, Landsat-8, and IKONOS—were modeled using their
spectral response functions (Figure 5). WorldView-3, Landsat-8, and IKONOS have 16, 7,
and 4 multispectral bands, respectively. WorldView-3 and Landsat-8 have 8 and 2 SWIR
bands, respectively, whereas IKONOS has no SWIR bands. The center wavelength for each
sensor’s spectral band is denoted on the x-axes in Figure 5.
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2.5. Classification and Spectral Unmixing of Synthetic Images Using Spectral Library

Classification was carried out using a spectral angle mapper (SAM), which is a
physical-based spectral classifier that uses an n-dimensional SA to match pixels to the
reference spectra [40]. This classifier is insensitive to illumination and albedo effects and
is readily associated with endmember spectra from the spectral library. Each pixel in the
synthetic images was assigned to the class that exhibits the smallest SA.

Spectral unmixing was performed to estimate fractional abundances of each species
from mixed signals using the least squares solution. To find the fractional abundances
(α) that minimize pixel reconstruction error e = ||r−Mα ||2, the least squares solution is

α =
(

MTM
)−1

MTr, where r is a (mixed) pixel vector and M is endmember matrix (i.e.,
spectral library). Nonnegativity and sum-to-one constraints were imposed [41].

3. Results
3.1. Spectral Library of Antarctic Vegetation Species

Figure 6 illustrates the resulting spectral reflectance curves of the representative
16 vegetation species and decayed moss across the 400 nm to 2500 nm wavelength range
employed in this study.
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The biochemical properties (e.g., cellulose, chlorophyll, lignin, nitrogen, protein,
starch, sugar, and water content) of vegetation are closely related to absorption/reflection
at a vicinity of specific wavelengths [42–44]. Visible wavelengths are typically related
to foliar pigments (mainly chlorophylls). In the NIR region, where there are no strong
absorption features except two minor water absorption wavelengths, leaf pigments are
transparent, and the magnitude of reflectance is governed by internal cell structure rather
than by foliar pigment concentration. SWIR has absorption features related to cellulose,
lignin, and water content, and is particularly useful for characterizing the water content
in lichens [42–45]. In general, as shown in Figure 6, the analyzed green-leaved vegetation
groups, such as most mosses (except Andreaea and decayed moss), vascular plants, and
algal species, typically absorbed solar radiation of around 670 nm, corresponding to the
chlorophyll absorption maxima of 642–662 nm, and were highly reflective across the green
wavelength ranges [46]. For Andreaea, decayed moss, and lichens (Figure 6a,b), chlorophyll
absorption was either not observed or was barely detected. Strong absorptions around
1450–1465 nm, attributed to absorption by the hydroxyl (–OH) group, were identified in all
species save for the lichens, which exhibited relatively weak features compared with all
other groups. As cellulose presence is often associated with a broad absorption feature near
2100 nm, it can be formulated using spectral differences between the adjacent wavelengths
near 2000 and 2200 nm [47]. As seen in Figure 6, such strong absorption patterns were
observed in lichens and in an alga, while other groups did not exhibit this feature (save for
Andreaea). Additionally, a considerable spectral structure above 2000 nm was observed in
the lichen group, which has been previously documented [48].

As addressed above, the species in each group shared unique spectral characteristics.
However, the spectral reflectance of Andreaea differed from the general pattern of other
mosses and was closer to that of lichens. The green hump, common to the reflectance
spectrum of mosses, was not observed in Andreaea and lichens. The red edge and water
absorption near 1200 nm of Andreaea and lichens were barely detected. The overall spectrum
differences between the 400–1300 nm and the 1300–2500 nm regions of Andreaea and lichens
were smaller than those of typical mosses. Foliar chemicals such as water, protein, oil,
and starch were highly correlated with the spectral response [49]. Reflectance in the
400–1300 nm range is affected by the scattering of photons within the leaf structure due
to changes in the refractive index between liquid water and air within the inter-cellular
spaces [42,50]. Dried leaves showed relatively low reflectance values in the 400–1300 nm
range and high values in the 1300–2500 nm range, compared to healthy leaves [51]. Among
Antarctic terrestrial mosses, Andreaea is a representative species which inhabits dry areas
such as exposed rocks and stony ground [9]. Although there were no measurements of the
water content of the Andreaea used in this study, the Antarctic species Andreaea depressinervis
had 60% tissue water content at full turgor compared with Polytrichum alpestre [52], and
Andreaea alpina showed the lowest water content of the 15 tested bryophytes, even lower
than that of the lichen Cladonia convoluta [53]. Therefore, we assumed that the unique
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spectral characteristics of Andreaea were due to the low water content, which is a typical
characteristic of lichens inhabiting dry environments [42]. However, investigations of the
ultra-structure or foliar chemical contents of Andreaea, which were absent in this study,
may explain these characteristics.

Although the above standard features were identified through a combination of visual
interpretation and general knowledge, analyses were limited to providing quantitative
separability for species identification via remote sensing imagery.

3.2. Spectral Discrimination of Antarctic Vegetation

SAs were first calculated between two vegetation species in the VNIR, SWIR, and
VNIR-SWIR spectral ranges (Figure 7). Figure 7a shows paired SA differences in the VNIR
region, while Figure 7b,c show those in the SWIR and VNIR-SWIR regions, respectively,
with colors denoting the SA improvements over the VNIR range. Table 3 summarizes the
average SAs of each species by wavelength range. Inter-species separability was improved
in 78 out of 136 cases when including SWIR wavelengths, whereas decreased discriminative
ability was seen in 58 combinations. Nine species (Chorisodontium, Polytrichastrum, Poly-
trichum, Sanionia, Himantormia, Placopsis, Psoroma, Colobanthus, and Deschampsia) yielded
increased average interspecies separability, while eight species showed a decrease. For ex-
ample, decayed moss and Andreaea, often dark in color, exhibited a 0.1694 SA difference in
the VNIR region, but the SA significantly increased to 0.2761 in the SWIR region, indicating
that much of the spectral information of these two subjects is contained within the SWIR
wavelengths. Alternatively, some mosses such as Chorisodontium, Polytrichastrum, Poly-
trichum, and Sanionia, which are distinguishable from decayed mosses by visual analysis
in the field, had smaller SA differences in the SWIR region than across the VNIR wave-
lengths. Himantormia also displayed better separability when including SWIR reflectance.
No distinguishable absorption feature around the 1100–1200 nm wavelength was found
in the spectral reflectance curve of Himantormia, unlike in that of other species, and the
brightness of its SWIR bands was relatively high compared with that of its VNIR bands,
potentially translating into the enhanced discrimination of Himantormia in the SWIR region.
The separability of Ochrolechia in the SWIR region was deteriorated compared with that
in the VNIR region. In particular, the most significant decrease in the average relative
SA with respect to the VNIR region (~76%) was observed in this species. It should be
noted that Ochrolechia, which showed high reflectance values in the VNIR region, is readily
distinguishable from other dark or green species, and it had the largest average separability
(0.3637) of all species in the VNIR range. The VNIR range inter-species separability between
Chorisodontium, Colobanthus, Deschampsia, and Prasiola was complicated by a shared high
peak in the green band and showed dramatically increased reflectance values around the
700 nm wavelength; however, the separability significantly improved with the inclusion of
the SWIR wavelengths.

When incorporating reflectance values obtained across the VNIR-SWIR range, the
SAs of 98 paired species showed improvements, while those of 38 cases slightly decreased,
compared with those obtained across the VNIR range alone (i.e., the blueness of Figure 7c).
Although 38 combinations yielded decreased separability compared with that seen in the
VNIR range, the pairs still showed improved discrimination than that seen across the SWIR
wavelengths alone. Overall, the average separability of all species, except Ochrolechia, was
improved, although its combined average SA (0.3321) still maintained relatively good
separability compared with that of the other species (Table 3).

To evaluate the overall separability of highly mixed signals, the calculated RSDEs
of the VNIR, SWIR, and VNIR-SWIR ranges were 2.7723, 2.2262, and 2.0693, respectively.
Accordingly, employing the full-spectrum range was most effective since it provided more
spectral information than using either the VNIR or SWIR ranges alone; however, a lower
RSDE value for the SWIR wavelengths than for the VNIR indicated that the former were
more statistically useful for identifying the 16 vegetation species and decayed moss from
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the mixed signals. As an invariant SA was used as a similarity index, the number of bands
in each spectral range did not affect either the SA or the RSDE.
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Table 3. Average spectral angles of 16 vegetation species and decayed moss according to the VNIR,
SWIR, and VNIR-SWIR ranges (note: the underlined values indicate better separability between the
VNIR and SWIR ranges, and the values in bold are the best separability).

Species VNIR SWIR VNIR-SWIR

Decayed moss 0.3047 0.2937 0.4006
Andreaea 0.2634 0.2342 0.3632

Chorisodontium 0.2049 0.2208 0.2754
Polytrichastrum 0.2450 0.3623 0.4164

Polytrichum 0.2233 0.2986 0.3443
Sanionia 0.2131 0.2214 0.2765
Cladonia 0.2519 0.1947 0.2691

Himantormia 0.2412 0.4674 0.5830
Ochrolechia 0.3637 0.2062 0.3321

Placopsis 0.2262 0.2749 0.3142
Psoroma 0.2194 0.3432 0.4465

Sphaerophorus 0.2017 0.1971 0.2574
Stereocaulon 0.2164 0.1962 0.2567

Usnea 0.2817 0.2309 0.2924
Colobanthus 0.2460 0.3241 0.3910
Deschampsia 0.2007 0.2314 0.2835

Prasiola 0.2335 0.2054 0.2726

3.3. Classification and Spectral Unmixing Using Synthetic Remote Sensing Images

Alongside the spectral similarity of paired spectra and the overall discriminating
performance of mixed spectra tested above, the present analysis was designed to investigate
the discriminability and quantification of Antarctic vegetation in practical remote sensing
images using synthetic hyperspectral and multispectral imagery.



Remote Sens. 2021, 13, 2470 15 of 21

3.3.1. Classification of Vegetation Species

As described in Sections 2.4 and 2.5, three synthetic hyperspectral images and three
multispectral images were classified using the library spectra and a SAM. Experiments were
conducted across all synthetic image data to investigate the performance related to spectral
information, although the spatial resolution of each sensor was not considered. The overall
accuracy can be seen in Table 4 for all 17 classes as well as for the most dominant classes,
as defined by the quantitative approach through field campaigns [38]. Table 5 shows the
spatial coverage of the five dominant species. Usnea maintains the largest spatial population
in the Barton Peninsula, covering ~23% of the area. Psoroma, Ochrolechia, Sanionia, and
Andreaea accounted for ~15, 12, 10, and 9% of the area, respectively. Cumulatively, these
five species made up more than 72% of the total vegetation coverage, with the three most
dominant species accounting for approximately 50%.

Table 4. Comparison of the overall accuracy according to sensor type and the number of classes
(note: 5 and 3 species refer to the most dominant 5 and 3 species, respectively).

Hyperspectral Multispectral

VNIR SWIR VNIR-SWIR IKONOS Landsat-8 WorldView-3

17 classes 77.23% 89.15% 92.15% 20.33% 35.31% 46.42%
5 species 92.24% 93.18% 98.13% 69.24% 71.12% 84.30%
3 species 99.04% 94.17% 98.61% 88.50% 87.92% 94.17%

Table 5. Spatial coverage of the five dominant species from field surveys in the Barton Peninsula.

Usnea Psoroma Ochrolechia Sanionia Andreaea

Coverage 23.51% 15.74% 12.55% 10.66% 9.86%
Cumulative coverage — 39.26% 51.80% 62.46% 72.31%

For the complete 17-class experiments (Table 4), the most accurate analyses were
obtained using the VNIR-SWIR ranges of the hyperspectral data. Similar to the results of the
inter-class separability tests, the SWIR spectra were more useful for classifying the Antarctic
vegetation than the VNIR spectra. Figure 8 illustrates the classified vegetation maps of
all the hyperspectral and multispectral datasets. None of the multispectral sensors more
accurately classified vegetation species compared with the hyperspectral sensors. Similar
to the results of the statistical comparisons, multispectral data showed a large number of
misclassified pixels, whereas hyperspectral data showed much greater agreement with
the label data; however, some differences were observed between the three hyperspectral
datasets. For example, in Case 5, consisting of Stereocaulon and Usnea, many Stereocaulon
(red) pixels were classified as Placopsis (yellow) in the VNIR image, while the SWIR
and VNIR-SWIR datasets had them correctly classified. As indicated by the spectral
reflectance curves of Placopsis and Stereocaulon in Figure 6b and the 0.0345 SA value in
Figure 7a, these two species share similar spectral characteristics across the VNIR range,
resulting in the occurrence of many misclassified pixels in the images without SWIR
data. Case 9 consisted of Deschampsia and Prasiola and discriminating between these two
species was difficult across the VNIR range (Figure 8). Many pixels were classified as
Polytrichastrum (light blue) in the VNIR image because Polytrichastrum and the flowering
plants showed similar spectral curves (Figure 6a,c). The paired SAs of Polytrichastrum–
Deschampsia, Polytrichastrum–Prasiola, and Deschampsia–Prasiola across the VNIR range were
0.1176, 0.0417, and 0.1115, respectively (Figure 7a); however, data from across the SWIR
and VNIR-SWIR ranges were able to successfully distinguish these species.
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In five-dominant class experiments, however, less informative multispectral sensors
showed significant statistical improvements to 17-class analyses. Moreover, multispec-
tral sensors could correctly identify the three most dominant classes with ~90% accuracy.
Overall, the sensors with more spectral bands across the SWIR range showed improved
classification accuracies (i.e., Landsat-8 had two SWIR bands, WorldView-3 had eight,
while no SWIR bands were present in IKONOS; Table 4), aligning with the finding that
SWIR wavelengths contain more meaningful information for the characterization of Antarc-
tic vegetation.

3.3.2. Spectral Unmixing of Vegetation Species

The spatial resolutions of each sensor employed were the same in previous classifica-
tion experiments; however, spatial resolution is a foundational distinguishing characteristic
in remote sensing analyses. Let 1200 × 1200 synthetic hyperspectral images be 0.1 m of the
spatial resolution from UAV platforms. If the same area is captured using 4 m and 30 m
spatial resolution sensors, the resulting image sizes are 30 × 30 and 4 × 4, respectively,
which may not be acceptable for successful image classification. In lower spatial resolution
images covering the same area, most pixels are a mixture of more than one vegetation
species. As an alternative to single object classification, spectral unmixing decomposes
mixed pixels into a collection of individual pure spectral signatures at the sub-pixel level
and enables more quantitative analyses than standard image classification [40]. In this
experiment, pixels in simulated hyperspectral and multispectral images taken by satellites
and UAVs were decomposed in a manner similar to that used in the classification experi-
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ments, but considering spatial resolution. The resolutions and image sizes of the simulated
images for the spectral unmixing tasks are listed in Table 6.

Table 6. Spatial/spectral resolution, image size, and band number of simulated remote sensing
images according to platform and sensor types.

Platform Sensor Spatial Resolution Image Size Spectral Bands

UAV
Hyperspectral 0.1 m 1200 × 1200 210
Multispectral 0.1 m 1200 × 1200 4

Satellite

WorldView-3 4 m 30 × 30 16
IKONOS 4 m 30 × 30 4
Hyperion 30 m 4 × 4 220
Landsat-8 30 m 4 × 4 7

Table 7 lists the true abundances that were used to generate the synthetic imagery
and the reconstructed abundances from the unmixing of simulated sensor imagery. These
reconstructed abundances from the UAV-based hyperspectral images were nearly identical
to the true abundance values. Small UAVs often mount four-band multispectral sensors
(RGB + NIR) to acquire very high spatial resolution imagery. However, as shown in
Table 7, significant differences between the reconstructed abundances, estimated from
multispectral sensors mounted on the UAVs, and the true coverage indicate that less
spectral information is detrimental to accurately quantifying vegetation species, unless that
information is obtained at a very high spatial resolution. In 30 × 30 images, 16 bands of
WorldView-3 successfully quantified vegetation species coverage, whereas the four bands
of IKONOS failed to reconstruct the distribution. The simulated Hyperion image, generated
by one of the most widely employed spaceborne hyperspectral sensors, consisted of only
4 × 4 pixels but most accurately depicted abundances among all satellite-based sensor
images; however, the images may not be able useful for creating thematic maps. Landsat-8
images, 4 × 4 in size with a 30 m spatial resolution, yielded better abundance estimations
than IKONOS images with 4 m resolution, but they still did not quantify some vegetation
covers accurately. Naturally, high spatial resolution imagery is necessary for qualitative
mapping by visually analyzing study areas; however, Hyperion’s successful abundance
estimates indicated that rich spectral information is also essential to quantitatively analyze
the environmental cover. Although the present experiment was derived using a simple
linear mixture model and pure endmember spectra, notably rare in practice, it effectively
demonstrated the importance of spectral information.

Table 7. Comparisons of reconstructed fractional abundances of 16 vegetation species and decayed moss from linear spectral
unmixing, according to types of remote sensing data.

Classes Ground Truth
UAV Satellite

Hyperspectral Multispectral WorldView-3 IKONOS Hyperion Landsat-8

Decayed moss 39,285 39,285 741 40,876 0 39,157 14,444
Andreaea 103,415 103,415 24,347 104,823 14,252 103,091 100,432
Chorisodontium 60,772 60,772 2061 60,109 2208 62,233 50,703
Polytrichastrum 19,799 19,799 149,167 21,141 176,967 20,575 186,550
Polytrichum 25,698 25,702 284,107 27,493 331,520 27,265 29,093
Sanionia 100,522 100,522 51,224 98,278 40,534 101,385 51,045
Cladonia 65,250 65,251 48,086 67,615 44,203 65,208 43,317
Himantormia 84,828 84,828 165,020 86,029 185,792 84,721 76,151
Ochrolechia 46,887 46,887 27,328 47,447 17,764 47,561 91,286
Placopsis 72,340 72,341 58,475 73,203 43,237 70,976 135,734
Psoroma 85,348 85,347 533 84,039 448 84,009 0
Sphaerophorus 38,781 38,781 38,781 40,990 28,444 39,904 51,535
Stereocaulon 100,468 100,468 0 97,765 0 99,320 142,703
Usnea 238,132 238,132 302,951 236,002 307,771 236,433 36,420
Colobanthus 59,759 59,759 119,294 59,855 127,283 60,406 137,901
Deschampsia 55,930 55,929 52,848 56,206 45,741 55,618 26,675
Prasiola 242,783 242,782 115,037 238,127 73,836 242,138 266,011
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4. Discussion

Research on vegetation species classification using remote sensing data is currently
popular. However, as we discussed in the introduction, this research has been conducted
based on limited field-survey information or image-driven spectral information due to
the unavailability of spectral libraries for Antarctic vegetation species. We believe that
the spectral library developed in this study can be used as ground truth and can assist in
understanding remote sensing data in various disciplines. Along with the development of
the spectral library, two research questions were raised in this study: (1) which spectral
ranges are required to effectively analyze Antarctic vegetation in remote sensing? (2) which
sensor is appropriate for classifying or quantifying vegetation species? To address these
questions, we conducted experiments to compare interspecies separability and performed
image classification/unmixing using simulated remote sensing imagery according to
spectral resolution.

First, whereas only visible and NIR wavelengths have been investigated for the
Antarctic vegetation in previous research [25], this study explored a full spectral range and
revealed the importance of using SWIR wavelengths for accurately identifying various
vegetation classes. The VNIR range could generally explain cell structure and leaf pigments
better than longer wavelengths; however, vegetation in cold regions may have relatively
weaker spectral signals corresponding to this information and may present stronger water-
or biochemical-related information in the SWIR region, compared with vegetation in
temperate latitudes. This was tested using individual spectra and simulated image data
discussed in Section 3. Particularly, the identification of Deschampsia and Prasiola, which has
previously been reported as a challenge when using data from across the VNIR range [25],
was improved at 1000–2500 nm.

With respect to the second question: the synthetic images in Section 3.3 were generated
using library spectra to model popular remote sensing images, including multi- and
hyperspectral sensors, owing to the unavailability of real image data for the study area.
SAM-based classification and linear unmixing methods were applied to the generated
images to investigate which sensor was optimal for analyzing vegetation distributions
in practical applications. These experiments represented ideal scenarios since simulated
images of known library spectra, using assumed linear mixture models and the ground
truth, were used. With true remote sensing imagery, the resulting accuracy will be lower,
as it will be difficult to associate the library spectra with the images owing to different data
acquisition conditions. However, under the same experimental conditions, hyperspectral
data significantly outperformed multispectral sensor data in identifying and quantifying
Antarctic vegetation. In particular, these results also indicate that spectral information
from the SWIR wavelengths was more effective than that from the VNIR. However, it
is worth noting that multispectral sensors showed reasonable classification performance
for several dominant species. Particularly, multispectral sensors with more SWIR range
bands showed better results than those with fewer bands. Therefore, considering the
difficulty in acquiring high-quality hyperspectral data, the purpose of the application, and
the vegetation compositions of the study area, the selection of proper remote sensing data
would be important.

Although we demonstrated the potential performance of several sensors to analyze
vegetation species according to their spectral resolutions, it is difficult to conclude which
species are clearly separated by which sensor or wavelength region. For example, in Case
12, consisting of Andreaea, Chorisodontium and Himantormia, as shown in Figure 8, the VNIR
region images showed better classification results than the SWIR and VNIR-SWIR region
images. Some Andreaea and Himantormia pixels in the SWIR and VNIR-SWIR region images
were misclassified to Usnea and Psoroma, respectively. However, the Andreaea species in
Cases 2, 7, and 16 were successfully identified in both the VNIR and SWIR range data,
with even WorldView-3 and Landsat-8 classifying them relatively well, compared with the
other species. Himantormia in Cases 1 and 16 were also correctly classified using the VNIR
and SWIR datasets. This should indicate that while the spectral resolution of the sensor is
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crucial, types of species that consist of image pixels are also important for determining the
sensor’s classification and unmixing performance.

Conventional surveys assessing vegetation cover over quadrants in the Barton Penin-
sula have been conducted for several years across sparse locations. However, these surveys
are costly, and their findings do not adequately quantify the overall vegetation cover.
Recent advances in sensor technologies have facilitated the development of miniaturized
hyperspectral sensors for drones. In future work, the spectral library created here, and
hyperspectral UAV data should be incorporated to generate detailed vegetation maps
of the entire Barton Peninsula, as an alternative to conducting physically intensive field
surveys. Satellite remote sensing data, including a new hyperspectral sensor PRISMA
(PRecursore IperSpettrale della Missione Applicativa) [54] or high-resolution multispectral
data, should also be investigated using the spectral library, based on research goals and
sensor performance. In addition, intraspecies spectral variations exist according to color,
shape, and environmental conditions. As the spectral library was created with multiple
measurements for each species and was temporally distanced from rain or snow events,
the spectra used should be considered the most representative signals of the species. How-
ever, developing a more detailed library that factors in environmental and physiological
conditions is a worthwhile alternative to the potentially destructive contact that currently
occurs during the characterization of vegetation.

5. Conclusions

The present study developed a spectral library of 16 major vegetation species and
decayed moss in the Barton Peninsula of King George Island, Antarctica, and investigated
the interspecies separability and analysis performance using simulated remote sensing
imagery. We demonstrated that full-range spectral information was the most effective;
however, SWIR range information contributed to better discrimination of the representative
vegetation species in the study area than VNIR range information. With respect to practical
application using the spectral library and remote sensing data, hyperspectral data are ideal
for analyzing vegetation species qualitatively and quantitatively. However, multispectral
data with more SWIR range bands showed good performance for several dominant species.
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