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Abstract: The spatial patterns of species richness can be used as indicators for conservation and
restoration, but data problems, including the lack of species surveys and geographical data gaps,
are obstacles to mapping species richness across large areas. Lack of species data can be overcome
with remote sensing because it covers extended geographic areas and generates recurring data. We
developed a Deep Learning (DL) framework using Moderate Resolution Imaging Spectroradiometer
(MODIS) products and modeled potential species richness by stacking species distribution models
(S-SDMs) to ask, “What are the spatial patterns of potential plant species richness across the Korean
Peninsula, including inaccessible North Korea, where survey data are limited?” First, we estimated
plant species richness in South Korea by combining the probability-based SDM results of 1574 species
and used independent plant surveys to validate our potential species richness maps. Next, DL-based
species richness models were fitted to the species richness results in South Korea, and a time-series
of the normalized difference vegetation index (NDVI) and leaf area index (LAI) from MODIS. The
individually developed models from South Korea were statistically tested using datasets that were
not used in model training and obtained high accuracy outcomes (0.98, Pearson correlation). Finally,
the proposed models were combined to estimate the richness patterns across the Korean Peninsula
at a higher spatial resolution than the species survey data. From the statistical feature importance
tests overall, growing season NDVI-related features were more important than LAI features for
quantifying biodiversity from remote sensing time-series data.

Keywords: biodiversity; data fusion; deep learning; LAI; MODIS; multilayer perceptron (MLP);
NDVI; remote sensing; species richness; S-SDMs

1. Introduction

Spatial patterns of species richness can provide insights for understanding and mon-
itoring community, regional, and global scales of biodiversity [1,2]. Diverse approaches
have been used to estimate species richness or biodiversity, including using drones [3],
citizen science observation data [4], and remotely sensed data [5]. In applied ecology and
conservation biology, species richness is an indicator at the crossroads of conservation and
restoration [6]. In addition, it can support decision making, conservation strategies, and
the management of natural resources worldwide [7–9].

Estimating and conserving biodiversity requires studies of extensive areas that are
independent from administrative boundaries [10]. However, insufficient data, including
the lack of species surveys and geographical data gaps, are obstacles to understanding and
measuring species biodiversity [7,11,12]. In addition, data-poor regions are often under
great risk of losing biodiversity, so filling the data gaps is essential to halt the ongoing
declines in worldwide biodiversity [13]. Although many global species databases, such
as the Global Biodiversity Information Facility (GBIF; www.gbif.org), provide species’

Remote Sens. 2021, 13, 2490. https://doi.org/10.3390/rs13132490 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-2130-1622
https://orcid.org/0000-0003-4943-3790
https://doi.org/10.3390/rs13132490
https://doi.org/10.3390/rs13132490
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
www.gbif.org
https://doi.org/10.3390/rs13132490
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13132490?type=check_update&version=1


Remote Sens. 2021, 13, 2490 2 of 20

occurrence data, their availability varies geographically [14]. For example, the number
of occurrences for vascular plant species provided by the GBIF is 513,815 in South Korea
but 27,060 in North Korea (accessed on 22 May 2021), despite these being neighboring
nations. This is more than an 18-fold difference. The lack of species survey data can
potentially be overcome by using species distribution models (hereafter SDMs) [15]. SDMs
define the suitable environmental conditions needed for a species, and its range, by using
environmental variables extracted at known species locations. SDMs have been used to
estimate species richness by combining the predictions of each species’ modeled range [16].

Satellite remote sensing data can be an option for overcoming the spatial and temporal
gaps of species’ occurrence data because the cover extended geographic areas, even in
inaccessible areas, and generate information consistently on a regular basis [17,18]. Re-
mote sensing technology measures the reflected radiation of the Earth’s surface and can
detect various components of the ecosystem such as soil, vegetation, and water, which
can indicate ecological conditions across wide geographical areas [19–22]. Incorporating
spectral information from remote sensing imagery with species biodiversity data enables
us to quantify biodiversity in inaccessible but biologically important regions. For example,
Hernández-Stefanoni et al. [23] used the normalized difference vegetation index (NDVI)
from Landsat 7 to calculate plant productivity and habitat structure for explaining α- and
β-diversity, and examined the relationship between remotely sensed and field data. Wu
and Liang [20] analyzed the relationships between vertebrate richness and remote sensing
metrics using machine learning models, including support vector machines, random forests,
and neural networks. Moreover, Zarnetske et al. [24] identified the relationships between
tree diversity and geodiversity variables, including elevation, from NASA’s Shuttle Radar
Topography Mission (SRTM) across diverse spatial grains. These studies combined existing
biodiversity data with remote sensing imagery to construct biodiversity information for
inaccessible areas. However, biodiversity data are often sparse and are concentrated in
specific regions [24,25]. Novel biodiversity estimation techniques are needed for areas
where survey data are incomplete or scarce.

Since the development of the AlphaGo, artificial intelligence (AI), which comprises a
broad range of machine learning and deep learning (DL) methods, has gained increased
attention in various industries and multidisciplinary studies [26]. Due to the simplicity of
automation of AI-based approaches and their promising results, these new approaches
offer an alternative method to many traditional methods/models in scientific research. Suc-
cessful integration of the DL framework and remote sensing data shows a new possibility
for producing spatially and temporally dense information on inaccessible areas [27,28].
Studies that have investigated combinations of remote sensing and machine learning ap-
proaches to represent biodiversity include Lopatin et al. [29], who modeled vascular plant
species richness for trees, shrubs, and herbs using 12 airborne LiDAR-derived variables.
They compared the suitability of random forest (RF) and a generalized linear model (GLM),
and found that the GLM had better performance. Hakkenberg et al. [30] investigated
remote sensing-derived variables from integrated LiDAR and hyperspectral data to map
vascular plant richness in a forest landscape at different spatial scales using RF regression
models. Sun et al. [31] introduced deep learning approaches to map tree species diversity
using LiDAR and images with a high spatial resolution. They used convolutional neural
network (CNN)-based algorithms such as VGG16, ResNet50, and AlexNet for tree species
classification, which were then used to estimate forest species diversity. Although most
studies have been limited to small areas, there is need to scale up in order to estimate
plant species richness over the larger and inaccessible areas by incorporating both remote
sensing and DL approaches.

The level of biodiversity on the Korean Peninsula is high and the proportion of en-
demic species is higher compared with other countries of the same size area due to its
various topographical features and climatic conditions [32–34]. However, considerable por-
tions of the peninsula are access-limited, and systematic ecological surveys have not been
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conducted. Novel biodiversity estimation approaches can be applied to other unreported
areas where survey data are scarce.

The goal of the study was to estimate potential plant species richness for the Korean
Peninsula, including North Korea, which has limited survey data, by combining deep
learning with remote sensing data. To accomplish this goal, plant species richness in South
Korea was estimated by combining the suitability predictions of 1574 species using species
distribution models. To estimate potential plant species richness patterns for North Korea,
a state-of-the-art DL approach was used to develop a species richness retrieval model by
integration of the surveyed and estimated richness information collected in South Korea
and multitemporal remote sensing data. Not only were we able to estimate potential plant
species richness over the entire Korean Peninsula at a higher resolution than in previous
efforts [33], but we identified which variables at which time periods were more important
for estimating plant species richness.

2. Materials and Methods

Located at the eastern end of Eurasia, the total land area of the Korean Peninsula,
including the islands, is 223,170 km2 (100,210 km2 for South Korea). The wildlife of the
Korean Peninsula belongs to the Palearctic realm [35] and its climate is affected by the East
Asian monsoon. Its 4 seasons have very distinct temperature and moisture patterns. The
DMZ (demilitarized zone) divides the peninsula into North Korea (Democratic People’s
Republic of Korea) and South Korea (Republic of Korea) (Figure 1).
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Figure 1. Topography and forest distributions on the Korean Peninsula (left), and administrative boundaries and the
surveyed point locations of plants used in S-SDMs (right).

Figure 2 illustrates a brief overview of this study to estimate plant species richness
patterns for the Korean Peninsula, which comprised 2 parts: (1) species distribution
modeling and (2) DL-based species richness modeling. First, we estimated plant species
richness in South Korea by combining the 1574 species’ suitability estimations from species
distribution models at a resolution of 30-arcseconds. We then developed a DL-based species
richness model using the species richness results from South Korea and a time-series of
MODIS-driven NDVI and LAI, which were resampled to 30-arcseconds from 15-arcseconds
of the original sources. Finally, we applied the DL model to estimate the plant species
richness for both North and South Korea from the original MODIS-driven NDVI and LAI
images (15-arcseconds). More details are described in the following sections.
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Figure 2. Overview of the present study. Potential plant species richness in South Korea calculated by combining the 1574
species’ suitability estimations from species distribution models at 30-arcseconds was used as the ground truth. Multilayer
perceptron (MLP) models using quarterly Moderate Resolution Imaging Spectroradiometer (MODIS)-driven Normalized
Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) time-series datasets in South Korea were applied to estimate
the plant species richness at a 15-arcsecond resolution for the entire Korean Peninsula, including inaccessible North Korea.

2.1. Species Distribution Modeling

To estimate species richness in South Korea, we used 183,854 occurrence records of
vascular plants, comprising 1574 species from South Korea’s Third National Ecosystem
Survey data (National Ecosystem Survey data are available at http://ecobank.nie.re.kr
(accessed on 24 June 2021)). Most species observations were recorded between 2006 and
2012. Evaluating the habitat suitability for all species located in South Korea would be
ideal for determining the potential species richness, but we required a minimum number
of 10 occurrence records for use in modeling, since small sample sizes affect the reliability
of statistical analyses [36,37]. The observation records for the 1574 species ranged from 10
to 921.

We downloaded 19 bioclimatic variables at a grid resolution of 30-arcseconds (≈900
× 900 m at the equator) from the WorldClim (http://worldclim.org/ (accessed on 24 June
2021); [38]), soil variables from the Harmonized World Soil Database at a resolution of 30
arcseconds [39], and digital elevation model (DEM) with a 90 m resolution from the SRTM (
http://srtm.csi.cgiar.org/ (accessed on 24 June 2021); [40]). For elevation, we calculated the
standard deviation and the range (maximum value minus minim value) of elevation at a
coarser resolution of 30-arcseconds to identify the topographic changes in the surrounding
areas [37,41]. We matched the resolutions of all variable layers to 30-arcseconds for further
modeling processes. Among these variables, we selected 8 variables that had a Spearman’s
|rho| of <0.7 [42,43]. These were annual mean temperature (Bio1), mean diurnal range
(Bio2), isothermality (Bio3), precipitation of wettest quarter (Bio16), precipitation of driest
quarter (Bio17), topsoil silt fraction, topsoil pH, and the standard deviation of elevation.

We fitted each species’ habitat suitability using the variables at a resolution of 30
arcseconds and predicted to South Korea at the same resolution level. We used the Max-
ent SDM [44] to estimate the plant species’ habitat suitability in South Korea. Maxent
is appropriate for presence-only data and is highly reliable, even when the number of
samples is small [36,45,46]. However, models of species with few occurrence records can
be overfitted when the number of environmental predictors is large compared with having
few occurrence records [47,48]. Lomba et al. [47] proposed a strategy for modeling rare
species’ distributions using sets of bivariate models and averaging them using weights
derived from model performance, and Breiner et al. [48] showed that ensembles of bivariate
models performed better than standard models. We adopted the approach of using an
ensemble of bivariate models for species with less than 50 occurrence records. In our study,
we had 8 predictor variables, so the number of all possible bivariate predictor combinations
was 28. We divided the occurrence records randomly in half and the portions of the data
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were used in fitting and validating a model, respectively. We calculated the AUC for each
bivariate model, and the AUC (area under the curve) was used to calculate Somers’ D
for weighting all the possible bivariate models. Somers’ D is D = 2 × (AUC—0.5), and
bivariate models with a Somers’ D lower than 0 (i.e., AUC < 0.5) were not used to build
the ensemble range models [48]. Finally, the suitability of the species was averaged by
constructing the ensembles of bivariate models 5 times. For the species with 50 or more
occurrence records, we used all 8 predictor variables and fitted the models 5 times using
k-fold cross-validation [49] with k = 5. We averaged the 5 results for the final suitability
result for each species.

2.2. Species Richness (as a Response Variable)

Several modeling approaches, including macro-ecological models [50] and stacking
species distribution models (S-SDMs) [51], have been proposed for estimating species
richness. As many global species databases, such as the Global Biodiversity Information
Facility (GBIF; www.gbif.org (accessed on 24 June 2021)), eBird (https://ebird.org (accessed
on 24 June 2021) [52]), and iNaturalist (www.inaturalist.org (accessed on 24 June 2021)),
provide species’ occurrence data [14,16], S-SDMs which combine the predictions of each
species’ SDM to estimate species richness have become a common strategy in recent
studies [53]. Although there is still no agreement as to how to stack each species’ predictions,
many studies have found that probability-based (raw SDM results ranging from 0 to 1)
stacking produced unbiased richness that is closer to the true species richness [16,50,53,
54]. We estimated the potential plant species richness of South Korea by combining the
probability-based SDM results of the 1574 species.

2.3. MODIS Products: NDVI and LAI (as Input Variables)

Remote sensing data efficiently record reflected energy over extended and inaccessible
areas using sensors on aircraft or spacecraft, while also providing information on the spatial
variability of reflectance periodically. Over the past decade, users have had opportunities
to access data acquired from a variety of Earth-observing sensors. The Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) is one of the most widely used remote sensing
instruments aboard the Terra and Aqua satellites (https://modis.gsfc.nasa.gov/ (accessed
on 24 June 2021)). With a 2330 km swath, MODIS can observe the Earth’s surface every 1
to 2 days, using an enhanced spectral resolution sensor in 36 spectral bands. Along with
low-level MODIS products, diverse higher-level products for land, atmosphere, cryosphere,
and ocean color applications have been distributed to the science and applications com-
munity [55]. Two MODIS sensors have sun-synchronous, near-polar circular orbits and
observe the same regions 3 hours apart (Terra and Aqua are timed to cross the equator at
10:30 (from north to south) and 13:30 (from south to north), respectively).

Productivity measures calculated from remote sensing technology may be highly
correlated to species richness [25]. Remote sensing indices provide a quantitative proxy
of environmental phenomena as an alternative to in-situ measurements. Indices such
as NDVI and leaf area index (LAI) that emphasize spectrally unique characteristics of
the targets of interest have been developed for application of remote sensing data to
vegetation dynamics. We used NDVI and LAI products, which may have high correlations
with species richness [56], among the various regularly produced MODIS land products
quantifying vegetation richness. NDVI quantifies vegetation by utilizing the spectral
characteristics of green vegetation, which strongly reflects in the near-infrared range but
absorbs in the red or blue wavelength region, and the value always falls between −1 and 1
(note: a negative NDVI indicates dead plants or inorganic objects, while a positive value
indicates live plants, with those close to 1 being healthier) [57]. The NDVI is retrieved from
daily atmosphere-corrected bidirectional surface reflectance using a specific compositing
method to remove low quality data, and is widely used in all ecosystems and climates,
and in natural resource management studies [58]. Leaf area index, which is defined as
the one-sided green leaf area per unit ground area, is an important structural property
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of vegetation and characterizes plant canopies, representing foliage vigor [59]. While
NDVI can be formulated by a simple difference/sum ratio, LAI is measured by a direct
and destructive method, which is time-consuming [60]. LAI is mainly derived from a
look-up-table that exploits the spectral information of the MODIS red and near-infrared
surface reflectance, and a 3D radiative transfer equation [61].

In this study, we used the 16-day composite NDVI product (MOD13A1 and MYD13A1)
at a resolution of 15 arcseconds and a combined 8-day composite LAI product (MCD15A2)
at 15 arcseconds. However, since the MCD15A2 data contain many missing values because
of high cloud cover, and to match the temporal resolution of the NDVI product, we
converted them to 16-day composite images. To be consistent with the species richness
results in South Korea, these NDVI and LAI data were then resampled at a spatial resolution
of 30 arcseconds. The data were downloaded from the Land Processes Distributed Active
Archive Center (LP DAAC; https://lpdaac.usgs.gov/ (accessed on 24 June 2021)) and
processed using the MODIS Reprojection Tool to convert the map projection and to create
mosaic images. To cover the entire Korean Peninsula, 3 images (h27v04, h27v05, and
h28v05 of MODIS’s Sinusoidal Tile Grid) were composited.

2.4. Deep Learning-Based Species Richness Model

An artificial neural network mimics the learning process of the human brain and then
is expanded to deep learning using deeper network architecture [26]. From an applied
perspective, DL networks are able to automatically learn arbitrary complex mappings
from inputs to outputs, and they offer promise for problems with complex nonlinear and
multivariate regression.

Among the various types of DL architectures, multilayer perceptron (MLP) is the
most practical and typical type of feedforward neural network and is effective for solving
regression problems [62]. However, MLP is now deemed insufficient for modern advanced
computer vision tasks. As an alternative, there is increased interest in convolutional
neural networks (CNNs), which are more effective at analyzing image data [63], since they
use spatial information and sparsely (partially) connected layers instead of MLP’s fully
connected layers. Although we used co-registered MODIS-derived NDVI and LAI images
collected in 2009 as inputs, there were many missing values at different pixel locations and
times due to high cloud cover. In CNN architecture, these missing values could hinder both
model training and proper inference. Therefore, in consideration of our data characteristics
and the objectives of this study, pixel-wise MLP was used to estimate species richness.
Multilayer perception comprises more than one perceptron, which consists of an input
layer to receive the signal, an output layer that makes a decision, and one in between those
two, and is capable of learning any continuous mapping function from the hierarchical
or multilayered structure of the networks. Figure 3 illustrates the network architecture of
MLP used in this study.

https://lpdaac.usgs.gov/
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Figure 3. Network architecture of the species richness estimation model of the Korean Peninsula. (a) Individual network
architecture of each MLP block. Here, x is the MODIS-derived NDVI and LAI time-series data at each pixel location, and y
is the corresponding species richness derived from S-SDMs. (b) Overall architecture of the proposed method from quarterly
geographic datasets of South Korea.

The input variables are the compiled MODIS-derived NDVI and LAI time-series
(x = [xNDVI1 , xNDVI2 , . . ., xNDVIi , xLAI1 , xLAI2 , . . ., xLAIi , i = 23]) collected in 2009, the
middle year of the period when the species surveys were conducted, and which may have
a high correlation with species richness. The output layer (y) is a value of species richness
derived from S-SDMs. At each pixel location where no missing values existed, we obtained
approximately 500,000 samples of x and y in South Korea for model training and testing.
TensorFlow (https://tensorflow.org (accessed on 24 June 2021)), which is an end-to-end
open source platform for DL, was used to develop our species richness estimation model.

In developing DL models, there are several hyperparameters that need to be tuned
prior to training the model, but there are common sets of rules or heuristics governing
parameter tuning. After iterative grid search parameter tuning, using a small subset of our

https://tensorflow.org
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data, 5 hidden layers (Hj, j = 1, 2, . . . , 5) were used, and the number of neurons (n) in each
hidden layer was 64, 128, 256, 128, and 64, respectively. The hidden layers were stacked
one by one to transfer the input signals to the deeper layer, which could extract hidden and
unknown features related to species richness. We chose the RMSprop stochastic descent
optimizer with the default parameters [64], and a rectified linear unit (ReLU) as a nonlinear
activation function because of its promising performance in the literature [65]. Dropout
layers with a rate of 0.2 were added to each hidden layer to prevent model overfitting [66].
The L1 loss function, also known as the least absolute error, was used because it is not
sensitive to outliers and is intuitive. The detailed MLP model structure is described in
Figure 3a.

To develop a geographically more robust estimation model due to the lack of survey
data in North Korea, stacked species richness training data for South Korea were divided
into quadrants (NE, NW, SE, and SW). For each quadrant of South Korea, we developed 4
MLPs using 3 subsets as the training set and the other set as the testing set. For example, as
illustrated in Figure 3b, MLP 1 used the NW, SW, and SE datasets as the training sets and
the SW dataset as the testing set. In MLP 2, the NE, SW, and SE datasets were used to train
and the NW dataset was used to test. A randomly selected 20% of the training samples
were used as validation data to determine the models’ performance and to minimize
overfitting for unseen data. Therefore, we obtained 4 potential plant species richness
models according to the geographical quadrants of South Korea. To evaluate the statistical
model performance, estimations from the test set of each MLP model were combined,
indicating that the combined statistical accuracies were calculated from the unseen data.
For the final inference of the potential plant species richness of the entire Korean Peninsula
at a resolution of 15 arcseconds, the resolution of the input NDVI and LAI products, and
the results from all MLP branches were ensembled.

The training process was performed for a number of iterations in which all the training
data were exposed to the network until the loss function reached its minimum value. The
model score reached its maximum after approximately 5000 iterations with a NVIDIA
Titan X GPU (3584 CUDA cores). The number of trainable parameters was 85,569 and the
computational run-time was approximately 4 h with a training batch size of 1024.

Deep learning approaches have shown promising results in many scientific applica-
tions [67,68] but do not always guarantee better outcomes [69,70]. Therefore, we compared
the performance of the proposed DL model with a RF regression model as a baseline, since
RF showed reasonable results and is popular in various machine learning applications [71].
To determine the best values of the hyperparameters (number of trees, maximum tree
depths, and the maximum number of features) in the RF model, a grid search was used.

Due to the unique characteristics of neural networks, which solve problems by ex-
ploiting the hidden relationships inherent in multiple input variables, it was difficult to
physically quantify the importance of the input variables. As an alternative, we performed
a statistical feature importance test (SFIT) to explain which feature had the greatest sig-
nificance in the species richness retrievals and to determine the optimized features in
an operational retrieval system. For the SFIT, a single feature was randomly shuffled,
while all the other features were kept constant. We iterated this process by changing the
test variable. The feature importance shows the extent to which the model performance
decreased with random shuffling. In this study, we used the root mean square error (RMSE)
as the performance metric.

2.5. Independent Validation of Species Richness

Finally, we evaluated our two model results, S-SDMs and DL species richness, by
comparing the species richness obtained from independent tree plot datasets from the
Korea Forest Service [72]. We calculated species richness using grids with a 10 km resolution
after sensitivity analysis at different resolutions. We then calculated the overall correlation
and local correlations between the species richness from the independent datasets and the
results from the S-SDMs and DL species richness model. For direct comparisons, the model
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results were resampled at 10 km by pooling a median value of the corresponding pixels
within a 10 km grid and comparing them with the results using the independent datasets.
To calculate the local correlations, we defined a 3 × 3 square focal area (30 km × 30 km) for
each grid, using a moving window to define the spatial ranges for correlations.

3. Results
3.1. Species Richness Estimation from S-SDMs

The mean AUC and mean Boyce index of 1574 plant species were 0.77 (±0.11 SD) and
0.73 (±0.18 SD), respectively (Table S1, see Supplementary Materials). When we stacked
the probability-based SDM results of 1574 species, the 30-arcsecond cell with the highest
potential number of species richness had 1167 species. This was in the middle of Jeju Island,
the largest island located in southernmost South Korea (Figure 4). S-SDMs predicted
the highest species richness to be in the northeastern part of South Korea (Gangwon
Province) and Jeju Island, and the results correspond with previous literature and other
studies [33,73].
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by the deep learning model in the Korean Peninsula (right). Nonzero values are grouped into 10
classes in each figure; each class contains an equal number of grid cells (decile).

3.2. Deep Learning-Based Species Richness Estimation Model Using Remote Sensing Data

Table 1 summarizes the mean absolute error (MAE), RMSE, bias (also known as the
mean error), and the Pearson’s correlation coefficient of RF and the proposed DL models.
The p-values of all models from a two-sided Student’s t-test were <0.05, which means that
there was a statistically significant difference between the S-SDMs-derived and RF/DL
model-derived species richness at a confidence level of 95%. As shown in Table 1, all of
error metrics of the proposed DL model outperformed those of the RF model. Although
the RF model was computationally more efficient than the DL (approximately 1 min on a
CPU (Intel E5-2699, 2.2 GHz, 22 cores) versus approximately 4 h on a GPU (NVIDIA Titan
X, 3584 CUDA cores)), the error of the proposed DL model was about half that of the RF
model (MAE: 28.8105 versus 61.1028; RMSE: 38.5759 versus 78.9512).
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Table 1. Comparison of statistical accuracy metrics between the random forest and deep learning
models.

Model Types MAE (Mean
Absolute Error)

RMSE (Root Mean
Square Error)

Bias Correlation

Random Forest 61.1028 78.9512 0.5656 0.8843
Deep Learning 28.8105 38.5759 10.2055 0.9752

A combined scatterplot of plant species richness from the S-SDMs (PSRS-SDMs; x-axis)
and DL models (PSRDL; y-axis) for the test sets, with the number of pixels denoted by
the color density, shows that most data points were located around the one-to-one line
(Figure 5a; black solid line), although some pixels were underestimated or overestimated.
Overall, our model yielded an RMSE of 38.58 and a MAE of 28.81, with a near unity slope
(0.95) in the linear regression model. The bias (mean difference between PSRS-SDMs and
PSRDL) was calculated as 10.21, indicating that the proposed model slightly underestimated
the potential plant species richness compared with the reference S-SDMs species richness,
but the differences were small and may be handled by adjusting the slope and offset
parameters in post-processing if necessary. A remarkable Pearson’s correlation coefficient
(0.98) was achieved.

A histogram (Figure 5b) of PSRS-SDMs and PSRDL, with a 20 PSR bin width, shows
a relative weakness in estimating PSR values between 400–600 and PSRs larger than 850.
The Kullback–Leibler divergence (DKL) is often used to observe the statistical similarity
of the two distributions. Although DKL is not a distance metric, it is close to zero if two
distributions are similar. In this histogram, the DKL was 0.0043, indicating that the two
distributions are nearly the same.

We applied the proposed model to a time-series of MODIS NDVI and LAI images
acquired at a 15-arcsecond resolution to estimate plant species richness for both North and
South Korea (Figure 4, right), whereas Figure 4 (left) is the reference S-SDM results for
South Korea at a resolution of 30 arcseconds. For South Korea, the DL-predicted richness
maps exhibited high agreement with the reference S-SDM results, which is similar to
the statistical comparisons in Figure 5. There are some missing values in the predicted
map (Figure 4, right), but these are mostly areas of large cities or missing values in the
input NDVI or LAI images due to clouds. Based on quantitative and qualitative analysis
of the S-SDMs results in South Korea, the MODIS LAI and NDVI time-series data were
successfully integrated into the proposed DL model to estimate species richness. The
distribution of species richness values near the border between North and South Korea
showed continuous values. Forested areas in the eastern part of the Korean Peninsula
showed high species richness, while low concentrations were in urban areas in the west
(Figure 1). Cold highland areas in the north also showed relatively low richness values.
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3.3. Statistical Feature Importance

Figure 6 shows the increased RMSE values obtained by the SFITs of the input features,
which were calculated after 10 replications of the tests, with the Pearson’s correlation
coefficients of each feature (red lines). A more important feature has a higher increased
RMSE value. Table 2 summarizes the average feature importance according to the feature
sources and seasons, with the correlation coefficients. We divided the input features
according to the seasonal characteristics of the Korean Peninsula. Overall, NDVI-related
features were generally more important than LAI features (32.64 versus 42.32). The features
in the growing season (i.e., spring) exhibited greater feature importance than those of
the other seasons in both the LAI and NDVI feature groups. Highly correlated features
generally had higher statistical feature importance values, but were not proportional to
each other.
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Table 2. Comparison of feature importance according to the seasons (seasonal correlation coefficients
from single feature tests are in parentheses).

DOY (Day of
Year)

LAI (Leaf Area
Index)

NDVI (Normalized Difference
Vegetation Index)

Spring 97–177 46.46 (0.50) 49.59 (0.61)
Summer 193–257 38.51 (0.38) 35.06 (0.38)

Fall 273–321 28.19 (0.21) 43.50 (0.49)
Winter 1–81; 337–353 20.84 (0.01) 40.83 (0.41)

Average 32.64 (0.25) 42.32 (0.47)

3.4. Independent Validation of Species Richness

Species richness at a 10-km resolution using the independent South Korea datasets was
high in the middle of Jeju Island, in southern mountainous areas, and in the northeastern
part of South Korea (Figure 7). This is similar to the species richness results from the two
species richness models (Figure 8). The overall Pearson’s correlation between the two
species richness values was 0.49 for the species richness from S-SDMs and 0.47 from the DL
model. From the local correlation map, we identified that positive correlations appeared
in almost all regions (Figure 8). We found that the negative correlations along coastal and
boundary lines, especially with the DL model results, mostly had to do with missing values
from the input MODIS images.
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4. Discussion

Biodiversity data are lacking in many parts of the world [24,25]. In order to overcome
this limitation, deep learning, which is one of the techniques of machine learning, was
applied to multitemporal satellite remote sensing data that are globally available. By
DL combining the modeled richness estimations and remote sensing data, we increased
the resolution of potential plant species richness maps for the Korean Peninsula to 15
arcseconds, including the large unreported area of North Korea, and maintained statistical
accuracy. Since species richness represents a basic indicator for effective conservation and
restoration, our results can provide resource managers and planners with maps that show
areas in need of active conservation or restoration, even in regions that have not been
sufficiently investigated. Threats to biodiversity are global problems [74], but the spatial
gaps in scientific information make actions less reliable, because of socioeconomic status,
history, culture, geography, and scientific interests [14]. Our novel data fusion approach
shows potential for overcoming these data limitations.

4.1. Deep Learning-Based Species Richness Estimation

Based on our results in Table 1, the proposed DL-based model exhibited a better
estimation capacity for plant species richness from remote sensing time-series data than
the widely used RF model. Pau et al. [75] identified that there was no direct relationship
between NDVI and species richness using the mean NDVI values of a 10-year period. How-
ever, it is worth noting that the DL model successfully captured the inherent relationships
between 46 remote sensing-based input features and the species richness from the S-SDMs.
An ensemble of spatially validated models using quarterly geographic datasets confirmed
that the DL model was spatially robust, at least within South Korea. In light of the size and
ecosystems of the Korean Peninsula and the spatial robustness of the proposed model, it
could be used to estimate the spatial patterns of plant species richness in North Korea, as
shown in visual inspections of Figure 4 (right).

Plant species richness may be related to a variety of factors, including temperature,
light and water availability, and environmental heterogeneity [76]. We found that the
average feature importance of LAI and NDVI in spring were the two most important
feature groups, marking the onset of vegetation growth, while the fall months, when
deciduous plants start dropping their leaves, were the most insignificant months for LAI
(Table 2). However, NDVI features in the fall and winter months were more critical than
the fall and winter LAI features. The high coverage of evergreen forests in the Korean
Peninsula (approximately 30%) may explain the relatively high feature importance of fall
and winter NDVI [77].
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The relationship between LAI and NDVI is not clear. As seen in Figure 6, LAI or
NDVI, at a specific time, particularly DOY 129–161, had relatively high agreement with the
species richness values. However, exploiting a single LAI or NDVI feature was limited in
terms of correctly retrieving the species richness values. Highly correlated features did not
always guarantee high feature importance. For example, LAI337, NDVI193, and NDVI209
had very low correlation coefficients (less than 0.1), but they were statistically important
in the DL model. NDVI features from DOY 225–257 were highly ranked features in the
single feature correlation tests, but their feature importance was ranked at the bottom of
the graph. Thus, it is difficult to say that there is a linear relationship between species
richness and the correlation coefficient of a single feature. However, incorporating multiple
features into the state-of-the-art DL framework proposed in this study could define the
inherent relationships between species richness and remote sensing time-series data, and
then estimate species richness with the accuracy level of the S-SDMs model. It seems that
46 features may be redundant, but the lack of negative feature importance in Figure 6
indicates that each feature plays a specific role in improving the species richness model in
hidden networks.

Although previous studies investigated biodiversity using high-resolution airborne/
spaceborne LiDAR and multispectral/hyperspectral data for local areas [29–31,78,79], data
acquisition is challenging. Our proposed model used easy-to-access MODIS imagery
to develop a species richness estimation model over extended and inaccessible regions
by combining surveyed data, and further improved the spatial resolution of the species
richness map.

4.2. Limitations and Recommendations

We validated our S-SDM- and DL-based species richness models using independent
tree plot data. Although the independent data we used were only for trees, we found a
moderate positive correlation between these species richness measures. As it can be seen in
Figure 7, the area that has not been surveyed in the tree plot data is widely displayed, using
smaller grids than 10 km produces many empty areas, and using larger grids generalized
the richness pattern excessively [80]. There are widespread areas that have not been
surveyed and it is difficult to evaluate the species richness of a large area depending only
on surveys. In addition, in the local correlation map (Figure 8), most of the areas with
negative correlations appear around coastal or administrative boundaries. This might be
due to the differences in the resolution and the calculation methods of the two species
richness sets. Therefore, it is necessary to use appropriate remote sensing data as inputs to
the richness model to compensate for data scarcity according to the estimation’s purpose.
Moreover, we may be able to further validate the S-SDM- and DL-based plant richness
models in different ways. For example, area-specific plant surveys, targeted systematic
surveys such as the forest tree survey used here, and herbarium or global species presence
records such as GBIF and iNaturalist could be used to compare the S-SDM and DL models’
predictions at certain spots, either for subsets of the entire plant species richness (e.g., trees)
or for the presence of individual species. While, in this study, we compared the overall
pattern of species richness from each model and data source, it would also be possible
to use a point-based or small area-based approach to assess the overall accuracy of our
modeled approaches.

We were able to obtain a very detailed level of species richness, but it was greatly
affected by the resolution of the remote sensing data we used. Although MODIS may
be the best sensor for mapping at a global scale, it is not appropriate for observing local
areas due to the low spatial resolution. Especially, NDVI shows higher correlation with
species richness than LAI. NDVI can be readily derived from most remote sensing sensors,
including sensors with better resolution but a narrower swath such as Landsat, WorldView,
and KOMPSAT (Korean Multi-Purpose Satellite). Although the revisit cycle of high-
resolution data is less frequent than MODIS, it may be possible to develop high-resolution
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species richness for local areas by optimizing our proposed model and the results of the
feature importance test.

Regarding the DL framework, our proposed models were based on the most typical
type of neural network, using pixel-wise inputs due to the characteristics of the data used
in this study. As mentioned in Section 2.4, general image-based CNN architectures may
not be appropriate for our data; applying one-dimensional CNN [81,82] or recurrent neural
networks [83] in the temporal domain, or graph convolutional networks for handling graph
structures between samples [84] should be interesting topics, as these are more advanced
approaches. Additionally, super-resolution using a generative adversarial network [85]
would further improve the spatial resolution of species richness map.

In addition, we quantitatively tested the proposed model using quarterly datasets
acquired in 2009. Thus, we could not test the temporal robustness of the model using data
from other years. One of the advantages of remote sensing data is it allows continuous data
acquisition over extended areas. If we investigate and test multiple-year data, the proposed
model can be further extended to an operational system to estimate and monitor plant
species richness periodically. The GEO BON (the Group on Earth Observations Biodiversity
Observation Network) consortium has developed the Local Biodiversity Intactness Index
by combining the annual PREDICTS global biodiversity survey database and 1 km land-
use maps [86]. Our study was able to provide more detailed information using a similar
approach to GEO BON, and periodical application of our study is expected in terms of
practicality. Moreover, our approach overcomes the limitations of SDMs’ environmental
space, which can be explained only by the environmental variables used, by combining
these with proxy values representing site degradation. Since many sites are not in pristine
condition, especially in some parts of North Korea, developing a modification factor
associated with site conditions could produce additional insights.

5. Conclusions

Species richness information provides basic clues for effective conservation and
restoration, but many areas lack sufficient data for its estimation. We combined machine
learning techniques in ecology and computer science to analyze remote sensing big data
and estimate species richness across data-limited and inaccessible areas. Our DL-based
model exhibited better estimation capacity for plant species richness than the widely used
RF model. Overall, we found that NDVI related features in growing season are generally
more important than LAI features for estimating plant species richness. Our methods
are readily applicable to other regions, but the results may depend on the structure of
the remote sensing data used. Thus, future studies using high-resolution remote sensing
time-series data could provide more detailed information for effective conservation and
restoration planning.
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