
1. Introduction
As global climate change and human activities in the ocean have intensified, the underwater acoustic en-
vironment has changed drastically (Duarte et al., 2021; Frisk, 2012; Mahanty et al., 2020). Polar regions 
are not an exception because interest in the development of natural resources in these areas is steadily 
increasing and geophysical exploration technology has been developed (Caldwell & Dragoset, 2000; Drago-
set, 2000; Haver et al., 2018; Klinck, Mellinger, et al., 2012; Stroeve et al., 2007). Moreover, the decreasing 
sea ice extent in summer can increase ambient sound level coupled with sea-state and anthropogenic ac-
tivities (Klinck, Nieukirk, et al., 2012; Roth et al., 2012). Noise from anthropogenic activities may affect the 
communication, foraging, and navigation of aquatic life and can cause severe damage, such as temporary or 
permanent threshold shifts (Ellison et al., 2011; Hawkins & Popper, 2017; Slabbekoorn et al., 2010). There-
fore, it is necessary to regulate, mitigate and monitor underwater noise, and such activities are currently 
being performed by numerous international and regional commissions and organizations using passive 
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acoustic monitoring (PAM) (Mellinger et al., 2007; Merchant et al., 2015; PAME, 2019). PAM is carried out 
in the fields of meteorology, geophysics and ecology, using the acoustic characteristics of rainfall, wind, 
T-waves, and marine mammal vocalizations (Dziak et al., 2010; Ma et al., 2005; Van Parijs et al., 2009; Yang 
et al., 2015).

The East Siberian Sea (ESS) is one of the least studied regions in the Arctic Ocean and there are many 
knowledge gaps regarding ambient noise around the East Siberian Shelf. Previous studies on underwater 
acoustic monitoring were conducted in the Bering Sea, Chukchi Sea, Beaufort Sea, Greenland Sea, and 
central Arctic Ocean (black circles in Figure 1a) (Chen et al., 2019; Geyer et al., 2016; Halliday et al., 2020; 
Heard et al., 2013; PAME, 2019; Southall et al., 2020; Wen et al., 2020). According to previous studies, the 
underwater acoustic environment in the Arctic Ocean is dependent on seasonal and geophysical conditions 
and is correlated with sea ice (PAME, 2019). The Arctic Ocean has a unique sound propagation environ-
ment because its sea ice cover and ice-containing water have different boundary conditions and sound 
speed profiles than those in open water. Sea ice dynamics induced by environmental forcing could also be 
a source of sound from an infrasound frequency range from below 20 Hz to several kHz (Geyer et al., 2016; 
Glowacki et al., 2018; Kinda et al., 2015; Pettit et al., 2015). Marine species, including Arctic endemic ma-
rine mammals produce different types of vocalizations over a wide frequency range, which also contribute 
to the underwater acoustic signature of the Arctic Ocean (Chou et al., 2020; Halliday et al., 2017; Simard 
et al., 2014; Stafford et al., 2017). In this study, we provide the first assessment of the seasonal variability of 
ambient noise in the East Siberian Arctic Shelf, an acoustically pristine region on the planet. The present re-
sults could provide implications for the seasonal variability of underwater ambient noise as the soundscape 
from one of the most largely unidentified places in the Arctic Ocean.

1.1. Measurements

Acoustic measurements were made from August 21, 2017 to August 13, 2018 on the East Siberian Shelf 
(74° 37.332′N, 174° 56.382′E) in the ESS (Figure 1b). The ESS is a marginal sea of the Arctic Ocean with 
relatively shallow water reaching an average depth of ∼54 m (Gorbatenko & Kiyashko, 2019). An auton-
omous passive acoustic recorder (AURAL-M2, Multi-Electronique Inc.) was moored at a depth of 52 m, 
corresponding to 10 m above the seafloor. The AURAL was programmed to record acoustic data for 10 min 
every hour with 16-bit resolution and a 32,768 Hz sampling rate. An HTI-96-MIN hydrophone (High Tech 
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Figure 1. (a) Previous study sites (black circles) in the Arctic Ocean and (b) the location of the measurement site (red circle).
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Inc.) with a gain of 22 dB and receiving voltage sensitivity of −165 dB re 1 V/μPa was used. The frequency 
range was analyzed from 10 Hz to 10 kHz since the receiving voltage sensitivity was almost flat with a ±2 dB 
error in this range (De Robertis & Wilson, 2011). The spectrum level was produced using the power spectral 
density with units of dB re 1 μPa2/Hz (Carey, 2006) that was computed from 60 s of continuous data with a 
1 s Hanning window, 50% overlap and a fast Fourier transform (FFT) length of 32,768 points, yielding a 1 Hz 
band. Data contaminated by the saturated waveform of ∼1.1% of the data corresponding to 958 min were 
excluded. The average spectrum level of the power spectral densities is represented by the mean squared 
sound pressure (mean intensity hereafter), a commonly used average metric. However, it is likely to be 
influenced by the transient high-pressure. Therefore, it was estimated by the spectral probability density 
with the median spectrum level meaning that level lasted for a long time (Menze et al., 2017; Merchant 
et al., 2013). The sharp spectral peak at 7 kHz and the harmonic peaks corresponding to odd multiples of the 
fundamental frequency of 16 Hz near the noise floor were identified as system self-noise and removed (Fig-
ure 2a). In addition, the sound pressure level in units of dB re 1 μPa was estimated at the band level in the 
frequency range of 10 Hz and 10 kHz (Kinsler et al., 2000) since the average spectra above 10 kHz reach the 
noise floor, and their correlation with environmental data was analyzed with Pearson correlation test. Sea 
ice concentration (SIC), ice drift speed, ice draft depth, wind speed and ocean current data were collected 
(Text S1) and are shown in Figure S1. The SIC at the measurement site remained high throughout the year 
except for a few days from August to October 2017, and open water was presented from September 9 to 24 
and on October 14 (Figure S1a and Movie S1). According to automatic identification system data during the 
measurement period, there was one vessel (IBRV Araon) between August 12 and 13, 2018 within a radius 
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Figure 2. (a) The spectral probability density of the acoustic data measured for one year. Thick magenta lines represent the average values of the mean 
intensity spectrum level (dashed) and the median spectrum level corresponding to the 50th percentile (solid). Thin lines represent the percentiles of the power 
spectral density levels (gray: 1st and 99th, black: 5th and 95th). Monthly average power spectral density for (b) the median spectrum level and (c) the mean 
intensity spectrum. (d) Box and whisker plot of the monthly sound pressure levels in a frequency band between 10 Hz and 10 kHz. Red lines within the boxes 
are the median values, the tops and bottoms of the blue box represent the 25th and 75th percentiles, respectively, and the whiskers represent the minimum 
and maximum sound pressure levels. Dashed and solid gray lines show the annual median sound pressure level and the noise floor, respectively. (e) Daily 
sound pressure level (black line) in a frequency range of 10 Hz to 10 kHz with daily sea ice concentrations (SIC) (green line). (f) Daily sound pressure levels in 
frequency bands from 10 to 50 Hz (cyan), 50 to 300 Hz (red), 200 to 2,000 Hz (magenta) and 2,000 to 10,000 Hz (black), respectively. Dots and bold lines indicate 
the daily average sound pressure levels and the corresponding 5-day moving average.
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of 16 km (10 miles) from the measurement location (MarineTraffic, 2018). The recorded data during the 
period of mooring deployment and recovery were excluded from the analysis.

2. Results
2.1. Temporal Variation in the Ambient Sound Level in One Year

The spectral probability densities and the average spectrum levels for one year are shown in Figure 2a, and 
the monthly spectrum levels are presented in Figures 2b and 2c. The median spectrum levels below 300 Hz 
were higher from August to February than from March to July. In particular, the average spectrum levels 
of September were strongest in terms of both metrics, except for the mean intensity spectra below 50 Hz 
from October to December. In September, the fluctuations in the spectrum peaks between ∼50 and 300 Hz 
were shown in both metrics which indicates that strong sounds were often produced. The spectrum levels 
between ∼200 and 2,000 Hz increased gradually from February to May and then decreased until July. Below 
50 Hz in the mean intensity spectrum, the relatively strong noise, which was recorded almost throughout 
the year, showed two frequency peaks of 14 and 39 Hz from September to December when the ocean current 
speed was relatively high. Then, it gradually decreased and showed a single peak of 39 Hz in other months. 
The monthly sound pressure levels in a frequency range of 10 Hz and 10 kHz are represented in Figure 2d, 
and they show the highest value of 106 dB re 1 μPa in September and the lowest value of 84 dB re 1 μPa in 
June, respectively. Sound pressure levels divided into four bands of 10–50 Hz (band-1), 50–300 Hz (band-2), 
200–2,000 Hz (band-3) and 2,000–10,000 Hz (band-4) based on the mentioned frequency characteristics 
are presented as the daily median values (Figure 2f). The daily sound pressure levels and their relationship 
with environmental data are shown in Table S1 and Table S2 by the Pearson correlation coefficient. Band-1 
was best correlated with the ocean current speed (  0.42r ,  0.001p ), and band-2 (  0.56r ,  0.001p ), 
band-3 ( r −0.62,  0.001p ) and band-4 ( r −0.54,  0.001p ) exhibited strong negative correlations with 
the SIC.

2.2. Acoustic Events and Their Impact on Ambient Sound Levels in September and October

The acoustic data in September and October were intensively investigated since the SIC varied greatly dur-
ing these periods, and the average spectrum levels were higher than those in the other months (Figure 3). In 
September, the SIC was less than 50% for 22 days, and the open water period lasted for 16 days. The airgun 
sounds, including intervals between airgun pulses, were at ∼68% and 26% of the acoustic data in September 
and October, respectively, and were recorded most often from September 9 to 13 and 17 to 28 (Figure 3b, 
Figure S2). Airgun sounds were recorded in August, September, October and November 2017 (Figure S3), 
and the monthly rate of acoustic data containing airgun sound was high when the SIC was low (  0.89r , 
 0.001p ). The duration and interval of airgun pulses measured in our recordings were over a range of 1–5 s 

and 10–15 s, respectively, and the sweep frequency range varied between ∼20 and 1,000 Hz. Among several 
types of airgun pulses, the spectrum levels of 30 airgun pulses, their intensity average and ambient noise, 
and spectrogram of the prior two pulses measured on September 19 are shown in Figures 4a and 4b. The ef-
fective frequency range of airgun sounds was from ∼15 Hz up to 1 kHz, and the airgun sounds increased the 
ambient sound levels by 19 dB re 1 μPa. Figure 4c shows the comparison of the median spectrum levels in 
September for acoustic data with and without seismic airgun sounds which were detected by using matched 
filtering a representative single pulse to every 10 min recordings (Text S2, Kim et al., 2019); consequently, 
airgun sounds were effective from ∼15 to 800 Hz and increased the ambient sound level by 3 dB re 1 μPa 
compared to that without airguns. The days when the airgun sound was recorded show significantly strong 
energy below 800  Hz, and the higher spectral frequency seems to be positively correlated with the SIC 
inverted in the y-axis (Figure 3b). Interestingly, the SIC abruptly decreased on October 14, sea ice cover dis-
appeared, and the spectra showed much higher levels. The large scale of sea ice extent in the Arctic Ocean 
increased from the end of September and passed through the measurement site in mid-October (Movie S1). 
The negative correlation between the sound pressure level and SIC in one year was obviously confirmed by 
these features.
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3. Discussion
The increase below 800 Hz was affected by the airgun sounds, but the median spectrum level acquired 
from the period without airgun sounds was also significantly high in the measured frequency range. It can 
be affected by broadband wind-driven noise, as the decrease in the sea ice extent and concentration could 
increase the probability of being affected by sound sources through the sea surface. During an open-water 
period in September, the underwater acoustic environment at the measurement site was similar to the am-
bient noise of the open ocean directly affected by wind, cavitation bubbles and rainfall. In this regard, the 
measured spectrum level was compared to the Wenz curve corresponding to the prediction model of the 
open ocean sound level, which was dependent on ship density and sea state (Wenz, 1962). The gray dashed 
line in Figure 4c shows the prediction when an average wind speed of 6.6 m/s during the open-water period 
is applied to the model for the sea-state variable. The spectrum level of the Wenz curve is strongly depend-
ent on the ship density below 500 Hz and the sea state above 500 Hz. The prediction above either 500 or 
800 Hz was the best fit with measurements when the wind speed was 6 m/s, similar to the monthly average 
of 6.3 m/s. The other factor could be sea-ice-induced noise. Different types of sounds, presumed to be sound 
emitted from sea ice including broadband and frequency-modulated transient noise (Kinda et al., 2015), 
were measured in our recordings (Figure S4), and it has been reported that the ambient sound level in a 
frequency band from 10 to 500 Hz measured in the eastern Beaufort Sea has a high correlation with sea 
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Figure 3. (a) The long-term spectrogram of ambient sound measured in the East Siberian Sea (ESS) from August 21, 2017 to August 13, 2018. Spectrograms of 
the ambient sound with the variation in the sea ice concentrations (SIC) (white lines with circles) for (b) September and (c) October.
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ice drift ∼300 km from the recording location and large-scale circulation 
(Kinda et al., 2013). However, further study on the quantitative contri-
bution of noise generated from sea ice distinguished from wind-driven 
noise to the ambient sound level is needed. Since the SIC was kept high 
throughout the year except for September and the difference in annu-
al sound pressure level with or without acoustic data of September was 
less than 1  dB re 1  μPa, the median spectrum level in September was 
compared with the annual median spectrum level. The sound pressure 
levels with and without airgun sounds in September were 16 and 13 dB 
re 1 μPa higher than the annual average, respectively, in the frequency 
bands from 10 Hz to 10 kHz. The ambient sound level increased by both 
geophony and anthrophony, and the airgun was a conspicuous anthropo-
genic sound source that increased ambient sound levels. This finding also 
implies that ambient sound can be increased significantly by geophony 
even without anthrophony.

PAME (2019) reported the results of regional median spectra of underwa-
ter noise in the Arctic Ocean based on previous studies from 1965 to 2018. 
Figure 5 shows the median spectrum level in the ESS and a comparison 
to the median values of the spectra for other regions in the Arctic Ocean. 
The date and duration of each measurement were spatially different, so 
those spectra are depicted as shaded areas in Figure S5. The Bering Sea, 
Greenland Sea and Fram Strait, which are passages to the Arctic Ocean, 
show much higher levels than the other regions. The Beaufort Sea, Chuk-
chi Sea and Barents Sea are the next, and Ulukhaktok and Sachs Harbor 
in the eastern Beaufort Sea are the quietest regions. The ESS is a relatively 
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Figure 4. (a) Power spectral densities of 30 airgun pulses (thin gray lines) measured on September 19, their intensity average (thick cyan line) and the ambient 
noise (thick red line). (b) Spectrogram of the prior two airgun pulses among the 30 airgun pulses (8,192 fast Fourier transform (FFT) points, 50% overlap, 
Hanning window). Ambient noise data were used between airgun pulses where reverberation completely disappeared. (c) Median spectrum levels in September 
(solid yellow-green line) and those acquired from the periods without airguns (dashed yellow-green line). Annual meidan spectrum level is expressed by the red 
solid line. Wenz model prediction is shown as gray dashed line corresponding to a ship density of 0 and a wind speed of 6.6 m/s.

Figure 5. Median power spectral density measured in the East Siberian 
Sea (ESS) (red solid line) compared to that for other regions in the Arctic 
Ocean.
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quiet region, although it shows a large seasonal variation in the sound pressure levels with the SIC. The me-
dian spectrum in June is similar to that in Ulukhaktok and Sachs Habour, and the annual average is similar 
to that in the central Arctic Ocean. Measurements represented by the black discrete lines were conducted in 
the central Arctic Ocean over a relatively short time of less than 1 day. Therefore, the values are insufficient 
to represent the temporal variability.

The source of the sound discriminated in the frequency range of ∼200 to 2,000 Hz from April to July was 
bearded seal vocalizations (Figure  S6). The bearded seals of the Beringia distinct population segment 
occur in the ESS, and they migrate seasonally with changes in the sea ice extent and climate (Cameron 
et al., 2018; Chou et al., 2020). According to recent PAM results, bearded seal calls were detected nearly 
year-round in the Beaufort Sea and Chukchi Sea (MacIntyre et al., 2015) and were more likely to be pres-
ent when the SIC was high (Halliday et al., 2017). The seasonal migration of bearded seals and their vocal-
izations influence the ambient sound level in the Canadian Arctic (Heimrich et al., 2021). In addition, the 
sound of sea ice melting has been reported to be between 1 and 3 kHz and the 3-kHz peak in the measure-
ments in September seems to have originated from sea ice melting (Mahanty et al., 2020). The frequency 
peaks at 3 kHz appeared evidently in September (Figure 2b) when the SIC was low, when the variation was 
large, or in open water. According to the trends in the mean intensity spectrum peaks of 3 kHz, relatively 
quiet ice melting sounds were produced sporadically throughout the year. Finally, conspicuous frequency 
peaks near 14 and 39 Hz were identified as cable strum noise. Typically, cable strum noise is found to be 
on the order of 10 Hz when cables are pulled taut by ocean currents (Robinson et al., 2014). The annual 
trend in the pseudonoise was in close agreement with the fluctuation in the current speed from strong in 
September to December to weak in April to July. The spectrogram and daily current speed are shown in 
Figure S7.

4. Conclusions and Implications
Underwater sound was measured in the ESS from August 2017 to August 2018 using an autonomous pas-
sive acoustic recorder. This is the first study to conduct underwater acoustic observations in the ESS and 
to verify the effects of geophony and anthrophony on the underwater acoustic environment. Our results 
imply that the ambient sound level can increase with accelerated sea ice melting in the Arctic Ocean as 
well as the ESS, and the increased ambient noise produced by human activities can have negative effects 
on the Arctic marine ecosystem. However, the impact of anthropogenic noise on marine species should be 
carefully discussed based on ambient sound level with the help of multidisciplinary assessments. Our re-
sults can be used to develop a mitigation strategy for anthropogenic noise and may be applied to ecological 
marine mammal monitoring for the conservation of biological diversity. In addition, our results may be 
applied to studies on performance prediction and optimal operation of the sonar system in the ESS. Sonar 
performance can be predicted quite precisely using a performance model based on the sonar equation. The 
ambient sound level and their temporal and spatial variability are important factors determining the signal-
to-noise ratio in the sonar equation. When in situ ambient noise data are used, sonar system performance 
can be more accurately predicted in the ESS.
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