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Abstract: A model for predicting shallow depth soil temperatures is important and effective to assess
the changes in soil conditions related to global climate change and local disturbances. Shallow-depth
soil temperature estimation model in cold region in Alaska is developed based on thermal response
using air temperature and shallow-depth soil water content during active layer development period
of 160 days from May to October. Among the seven soil temperature measurement sites, data
from four sites were used for model development, and the remaining three sites were used for
model validation. Near the middle of the seven measurement sites, air temperature is monitored
at one location. The proposed model implemented concepts of thermal response and cumulative
temperature. Temperatures and soil water contents were measured using automated remote sensing
technology. Consequently, it was confirmed that the developed model enables fast and accurate
assessment of shallow-depth soil temperature during active soil layer development period.

Keywords: air temperature; soil temperature; soil temperature modelling; permafrost dynamics; soil
water content

1. Introduction

The evidence for climate change in the high-latitude ecosystems of Arctic regions is increasing [1–7].
It has been reported that soil warming has a greater impact on climatic changes than global atmospheric
warming [8]. Soil warming is closely related to the changes in active soil layer properties caused by
changes to non-freezing soil temperatures that occur in seasons outside of winter. Soil temperature plays
an important role in the physical, chemical, and biological processes of terrestrial ecosystems [9–14]
and serves as an important indicator of climatic change, as well as an important parameter for
numerical weather and climate predictions [15–17]. Therefore, it is necessary to accurately measure
soil temperatures and to develop effective simulation models [18,19].

In general, soil temperature is predicted during the active soil layer generation period, which is
important for capturing sensible and latent heat fluxes (for soil temperatures ≥ 0 ◦C), the heat energy
from the geothermal system, assessing sea ice and permafrost, determining CO2 and NH4 emissions
patterns, microbial decomposition, and rates of organic matter decomposition, mineralization, and
plant growth [20,21]. Several models have been proposed to simulate soil temperatures in various
regions and environments [18,22–24]. Most of these models have been successful to some extent;
however, their prediction algorithms are complex and contain many fitting parameters, thus requiring a
large amount of time for predicting soil temperatures. Therefore, a more practical and efficient model for
estimating soil temperature is needed to rapidly capture the spatial changes in soil temperatures across
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large geographic areas [25]. Efforts to predict soil temperatures and to develop theoretical estimates
using previously measured data, such as air temperature, are also needed [13,19]. Assessment of the
effects of wind, solar operation, air humidity and others on soil temperature may be also important.
However, in this study, these effects are assumed to be reflected indirectly on air temperature.

Soil water content has a tremendous impact on soil temperatures, even though it largely depends
on snow, rain, air temperature, and the physical properties of the soil itself [26–31]. Therefore, the soil
water content must not be neglected during the simulation of soil temperatures [32]. Additionally,
the soil water content must be considered in the predictive models for soil temperature to improve
simulation accuracy [33].

Many studies have recently been conducted to evaluate environmental changes using the concept
of thermal response. The main foci of such studies have been: (1) the prediction of ground heat fluxes
for permafrost using cumulative air temperature (e.g., Abbey et al. [34]), (2) the prediction of future
warming (e.g., Isaksen et al. [35]), and (3) the prediction of remaining litter mass during decomposition
(e.g., Portillo-Estrada et al. [36]). As measurements of the thermal properties of various soils are limited
by restricted timelines and research efforts, they cannot be strictly assessed by measured parameters,
such as the maximum, minimum, and mean temperatures. Several studies on soil temperature
have been focused on assessing the maximum/minimum air temperatures; however, continuous soil
temperature over time can be better explained by the thermal response determined from the cumulative
air temperature (i.e., the sum of soil temperatures over time) [37].

In this study, the air and soil temperatures of the active soil layer were identified from the active
development periods in late spring, summer, and early autumn to more realistically describe the
dynamic responses of the active layer to temperature changes in Council, west-central Alaska (Figure 1).
During the study period, when the temperature of the upper ground was ≥ 0 ◦C, the temperatures
according to the soil depth were measured at various sampling sites, and air and soil temperatures were
analyzed from various perspectives. When the soils freeze the thermal response is very complicated
due to latent heat near freezing temperature of 0 ◦C. In addition, at the environment of the soil
temperatures higher than 0 ◦C is highly associated with heat flux, heat energy productivity, heat
productivity from thermal system, thawing of permafrost region, decomposition of microbes and
organic matter, and plant growth.
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In particular, to predict soil temperatures through the correlation of air and soil temperatures by
depth, the model proposed by Park et al. [21] was modified and employed. The model of Park et al. [21]
predicts the bottom soil temperature using the topsoil temperature.

Thermal response was presented using air temperature, for which sufficient measurement data
are available. Further improvement to the results of Park et al. [21] involved the proposal of a new
model for efficiently estimating changes in soil temperatures from the air temperature and soil water
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content at a depth of 15 cm. The main purpose of this study was to use air temperatures and soil
water contents, which are easy to measure, to predict the soil temperature at a shallow depth (15 cm)
in an adjacent location. To achieve this goal, three fitting parameters required for predicting soil
temperatures using the proposed model were determined and an assessment method that used the soil
water content was developed. The accuracy of the proposed temperature model was also evaluated
through regression analysis.

2. Materials and Methods

2.1. Thermal Response

Cumulative air temperature (CATm) has been proposed as an index for effectively measuring
thermal responses to climate change and the potential impacts thereof [34,35,38]. Therefore, CATm was
defined as the integral of changes in soil temperature over a certain period (i.e., the cumulative air
temperature), such that:

CATm =
m∑

t=1

(ATt − Tre f ) (1)

where m is the cumulative number of days when temperature measurements were performed, t is the
daily time (or duration), ATt is the daily mean soil temperature for t days, and Tref is the reference
temperature. In this study, CATm indicated the temperature history over which the measured upper
ground temperature was up ≥0 ◦C and corresponded to the thermal responses for evaluating the
development and assessment of soil temperature predictions. Unlike the maximum, minimum, and
mean temperatures, CATm reflects the overall characteristics of the thermal responses transmitted from
the soil by including temperature throughout the study period.

2.2. Study Area

The study area (Figure 1) in which air and soil temperatures were measured is located on the
Seward Peninsula, in Council, Alaska. The altitude is approximately 30 m, and the mean annual
temperature and precipitation are −3.1 ◦C ± 1.4 ◦C and 258 mm, respectively [39]. The sieve analysis
of soil particles conducted by Park et al. [21] revealed that the ranges of clay, silt, and sand contents in
this area are 6.4%–19.0%, 55.1%–70.0%, and 16.2%–38.5%, respectively, depending upon the sampling
depth and location. The test sites were leased from the natives of Council Native Corporation, and
there was restriction of moving soils out of the study area. Therefore, taking out of soil samples was
possible for limited area, locations of M1, M2, M3, and M4. The sampled locations are not exactly
the same of locations of soil temperature measurements because sampling at the same locations will
influence soil temperature measurement. The soils of the site have colors of gray-brown, dark black,
or reddish brown. The sieve analysis for these soils are summarized in Table 1. Although thermal
properties were not measured, it is presumed that there exists spatial heterogeneity in soil particle
size distribution or other thermal properties. The spatial heterogeneity may also influence the spatial
variability of water content.

Table 1. Composition ratios of averages of sand, silt, and clay.

Location No. of Samples Sand (%) Silt (%) Clay (%)

M1 1 36.0 56.6 7.4
M2 1 38.5 55.1 6.4
M3 2 16.8 64.2 19.0
M4 2 16.2 70.0 13.8

The devices used to air and soil temperatures and soil water content were installed in the ground
in Council, Alaska, as shown in Figure 2. The measurement sites had a plain topography. In the 100 ×
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100 m2 study area, seven measurement locations (P1–3 and M1–M4 in Figure 2) were selected. At each
location, soil temperature was measured at depths of 5, 10, and 15 cm.
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Figure 2. Sensor locations (P1–P3; M1–M4) for air and soil temperature measurements. The red “x”
marks the location of above-ground temperature measurements.

Each measurement instrument consisted of a battery-powered sensor node and a flash memory
interface circuit (sink node) that stored and remotely transmitted receiver data. The sensors used for
soil temperature measurements (107 temperature probe, Campbell Scientific, Inc., Logan, UT, USA)
had a temperature resolution of 0.01 ◦C. Air temperature measurements (TMC6-HD, Onset Computer,
Bourne, MA, USA) were made at a 1.2-m height from the ground surface at the same time interval as
soil temperatures (Figure 2).

The soil water content was measured at a depth of 15 cm at the same points used for soil
temperature measurements. The sensor used was a soil water content reflectometer (CS650, Campbell
Scientific, Inc., Bourne, MA, USA). The measurement data of the soil water content sensors were stored
in the same way as the soil temperatures were stored. Measurements were continuously taken for
160 days, from 10 May to 14 October in 2015. A model for estimating soil temperatures was developed
based on the soil and air temperature and soil water content data at locations M1–M4 (Figure 2); the soil
water content and soil temperature data at locations P1–P3 were used to validate the developed model.

3. Results

3.1. Field Measurements of Air and Soil Temperatures and Soil Water Content

Figure 3 shows the air temperatures continuously measured for 160 days from 10 May to 14
October of 2015 and the soil temperatures measured at locations of M1–M4 during the same period.
The air temperature measured at point x fluctuated from the beginning and reached a maximum
value of 24.1 ◦C around the 42nd day. It continued fluctuating until the 131st day, when it fell below
0 ◦C, but then fluctuated again until the 157th day, when it once again fell below 0 ◦C (three days
before the end of the study period). During the measurement period, air temperature was generally
> 0 ◦C, except for a few days (days 131–136, 144–145, and 157–160). During the same period, the soil
temperatures at depths of 5–15 cm were > 0 ◦C. This appears to be due to the snow accumulated on the
ground surface acting as an effective insulator, thereby causing a difference between the soil and air
temperatures [40,41].
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The air temperature measured at point x and the soil temperatures measured at locations M1–M4
during the same period showed a tendency to slowly increase at the beginning and then gradually
decrease after reaching the maximum values on approximately the 45th day. In Figure 3, the maximum
soil temperature at location M1 is shown to be 15.4 ◦C. The maximum soil temperatures at locations
M2, M3, and M4 were 23.5 ◦C, 23.1 ◦C, and 16.0 ◦C, respectively. These maximum temperatures are
indicative of summer in Alaska.

The soil temperatures at locations M1–M4 differed, even at the same depth. This appears to be
because of the differences in the soil properties with depth and in the heat transfer of soil. In particular,
the amplitude of the daily mean soil temperature changed more drastically as the depth was shallowed
when compared to a depth of 15 cm due to the heat from the surface moving toward deeper positions
and thus shallower depths were more affected by the heat from the surface. The changes in soil
temperatures showed a tendency to decrease as the depth increased, and the maximum soil temperature
decreased as the depth increased. Additionally, the soil temperatures of M2 and M4 at a depth of 15 cm
showed different patterns of variation, as compared to those of M1 and M3, and temperature changes at
other depths (Figure 3). The reason for this difference may be that there are different thermal properties
between the soil and water contents due to spatial heterogeneity in the soil layering and particle size
distribution. Moreover, slight time delays between the maximum air temperature and the maximum
soil temperature were observed from a depth of 5 cm. According to the observed temperature data
during the same period, soil temperature changed from positive to negative values in October and
increased to positive values in April–May, even though air temperature had changed significantly.

Figure 4 shows the relationships between air temperature (ATt) and soil temperatures (STi,t) at
depths of 5, 10, and 15 cm; subscripts i and t represent the depth from surface and number of days
from the start of the study period, respectively. As air temperatures increased, the soil temperatures
also showed a tendency to increase. The fitting line equations in Figure 4 were represented to show
of different correlation degrees of soil temperature with air temperature with increasing soil depth.
The decrease of gradient of the fitting equation with increasing soil depth in Figure 4 indicate decrease
of correlation between soil temperature and air temperature with increasing depth. The intercept
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points (soil temperature expected at air temperature of 0 ◦C) on y axis also increases with increasing soil
depth. The fact also implies that soil temperature is less dependent on air temperature for deep depth.
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temperature for sites (a) M1, (b) M2, (c) M3, and (d) M4.

The slopes of the changes in soil temperature for points M2 and M4 at a depth of 15 cm were
found to be smaller, when compared to those of M1 and M3 and temperature changes at the same
depth (15 cm; Figure 4). This is because the measured soil temperatures for sites M2 and M4 at a
depth of 15 cm were significantly lower, as shown in Figure 3. Soil acted as a thermal insulator due
to the significant differences in the heat transfer characteristics of the soil caused by the different soil
properties of locations M2 and M4. The relationship between the two measurements (ATt and STi,t)
could not be described using a simple mathematical form due to the scattering of the temperature
data measured at each point (Figure 4). This result agrees with the previous findings of Ahmad and
Rasul [42] and Barman et al. [43].

In Figures 3 and 4, the soil temperatures higher > 0 ◦C with increasing depth were measured
based on the active layer development period. Based on the results shown in Figure 3, the active layer



Appl. Sci. 2020, 10, 1058 7 of 22

development period was estimated to be between the 1st and 160th days (10 May–14 October in 2015).
During this period, a model was developed to predict soil temperatures, which are important for the
physical, chemical, and biological processes of terrestrial ecosystems, as noted by Wang et al. [20]
and Park et al. [21]. To examine changes in soil water contents due to changes in the atmospheric
environment, the soil water content was measured over time at a depth of 15 cm (Figure 5). The soil
water content was continuously measured at locations M1–M4 for the same period. The maximum soil
water contents at a depth of 15 cm were 23.96% for M1, 11.29% for M2, 37.53% for M3, and 34.81% for
M4. At M1, M2, and M3, the soil water content tended to increase and then decrease around the 15th
day, increasing again on around the 100th day.
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In the case of location M4, the overall soil water content increased until the 23rd day and
then remained nearly constant. For location M4, the area was slightly topographically lower in
comparison to other locations and thus, rainwater was stored, and snow melted later at this site.
This delayed evaporation relative to the other locations, thereby causing the soil water content to be
constantly maintained. It appears that the measured soil water contents were also different because
the permeability coefficient varied depending on the ground composition, as with soil temperature.
However, measurement of field permeability was not possible. This difference in soil water content
resulted from the water transmitted to the soil from rain or snow melting on the ground surface.
In other words, it occurred because the water content of the ground surface dominated that of the soil.
While soil water contents may vary depending upon the flow of groundwater, no groundwater level
was detected between the ground surface and a depth of 15 cm at the locations of this study. Therefore,
it appears that the soil water content was dominantly affected by rain or snow on the ground surface.

The characteristics of soil particle size distributions and pore sizes among soil particles can be
reflected by the standard deviation of the soil water content (wSD). When water is added into soil a
medium, it is trapped within the voids (pores) among soil particles. Changes in water content with
the moisture or humidity of adjacent environments are highly influenced by the sizes of soil particles
and voids. Soils with smaller particles or well-graded soils are more likely to hold water; therefore,
the water contents of these soils are less influenced by changes in the environment. Consequently,
assessing the variability in water contents, such as the wSD, is important for reflecting temperature
changes, considering the relative measures of particle size distributions and sizes of soil pores.

Variability in the soil water contents with time at the sample sites was evaluated and the results
are summarized in Table 2. The mean water contents at the M2 and M4 locations were the lowest and
the highest, respectively. The wSD, which we considered to be the most effective measure for reflecting
changes in temperature, was the highest at the M3 location and the lowest at M2.
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Table 2. Means and standard deviations of measured soil water contents (w).

Depth Location Mean w Standard deviation of w (wSD)

15 cm

M1 10.63 4.07
M2 5.33 1.91
M3 20.62 6.11
M4 31.10 5.84

3.2. Thermal Response Transfer Process

If air temperature is continuously transferred to the ground, temperature changes will occur at
shallow depths in the soil. According to Park et al. [21], temperature changes in a certain area will
induce increases in the size of the heat-transferred zone and decrease that of the zone lacking heat
transfer. Assuming that the heat transferred by air temperature can be expressed as the cumulative
temperature transfer, the thermal response to heat transferred to a soil can be characterized by the
cumulative air temperature. Therefore, cumulative air temperature (CATtr,m), which is the thermal
response measured for m days using Equation (1), can be defined as follows:

CATtr,m =
m∑

t=1

(ATtr,t − Tre f ) (2)

where ATtr,t is the daily mean air temperature and Tref is the reference temperature (0 ◦C in this study).
Normalized cumulative air temperature, CAT*tr,m, is used to express the cumulative air temperature
measured in the atmosphere from the start of the measurement period to m days, as a uniform thermal
response can be expressed as:

CAT∗tr,m =
CATtr,m

CATtr,mmax

=

m∑
t=1

(ATtr,t − Tre f )

mmax∑
t=1

(ATtr,t − Tre f )

(3)

where mmax is the number of days (160 days in this study) of the entire measurement period (i.e.,
the total number of samples for the daily mean temperature). On the basis of the mth measurement
day, the expected future normalized thermal response, RCST*tr, m (where RCST represents Reverse
Cumulative Soil Temperature), for the rest of the measurement period (mmax − m days) can be defined
using the CAT*tr,m for the measurement period of m days as:

RCAT∗tr,m = 1−CAT∗tr,m (4)

The relative expression for representing the portion of net heat transfer is denoted as RCAT*tr,m

(where RCAT denotes Reverse Cumulative Air Temperature), and indicates the future normalized
thermal response. In other words, and RCAT*tr,m of unity (i.e., equal to 1) indicates that the net heat
transfer (cumulative air temperature) for the first m days is zero. When RCAT*tr,m = 0, this implies the
maximum cumulative air temperature and no additional net heat transfer will occur after the mmax

measurement day.
Thermal response was defined in this study based on the air temperature because air temperatures

greatly influence soil temperatures. Air temperature has been measured over a long period of time and
in various regions. However, there has been relatively little effort made to measure soil temperatures,
as the measurement of soil temperature is more difficult than that of air temperature [33,34]. It is
because and involves considerably higher costs and time investments [17,26]. Therefore, a model
for predicting soil temperatures uses air temperatures may play an important and effective role in
assessing the changes in soil conditions related to global climate change and local disturbances.
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3.3. Accumulation of Soil Temperature Characteristics via CAT*tr,m

Abbey et al. [34] and Dyrness [44] defined cumulative air temperature to effectively analyze the
effects of changes in ground heat flux on the environment. Isaksen et al. [35], Olivero and Anderson [45],
Ferrant et al. [46], and Isaksen et al. [38] further developed cumulative air temperature into a parameter
for assessing environmental changes (i.e., thermal responses) using integral-based air temperatures.
In this study, the CSTRCAT15,m (Cumulation of Soil Temperature multiplied by Reverse Cumulative
Air Temperature at depth of 15 cm for the first m days) that was used was based on the sum of thermal
responses, which is related to the cumulative air temperature. The CSTRCAT15,m equation is the sum
of the product of the expected normalized thermal response (RCAT*tr,m) values until m days and soil
temperatures (STi,t) at a depth of 15 cm.

CSTRCAT15,m =
m∑

t=1

RCAT∗tr,t(ST15,t − Tre f ) (5)

In Equation (5), the CSTRCAT15,m during the entire measurement period (mmax) can be expressed
as CSTRCAT15,mmax, where CSTRCAT15,mmax is the maximum cumulative air temperature at depth
of 15 cm. Both RCAT*tr,t and (ST15,t−Tref) for any mth day were >0 during the testing period.
Figure 6 shows the relationship between CATtr,m and CSTRCAT15,m by substituting the air temperature
measured at point x and the soil temperatures measured at locations of M1–M4 into Equations (2) and
(5). As shown in Figure 4, the scattered relationship between ATt and STi,t was better expressed by
implementing the relationship between CATtr,m and CSTRCAT15,m.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 23 
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Figure 6. The sum of the product of the expected normalized thermal response (RCAT*tr,m) values
until m days and soil temperatures (STi,t) at a depth of 15 cm (CSTRCAT15,m) and the cumulative air
temperature measured in the atmosphere from the start of the measurement period to m days (CATtr,m)
for different locations, M1–M4.

To normalize the relationship between CATtr,m and CSTRCAT15,m shown in Figure 6, CSTRCAT15,m
was normalized by CSTRCAT15,mmax at the same depth during the entire measurement period, mmax,
as follows:

CSTRCAT∗15,m =
CSTRCAT15,m

CSTRCAT15,mmax

, (6)

where CSTRCAT*15,m is the sum of the product of the expected normalized thermal response
values measured until m days, and soil temperature and CSTRCAT15,mmax is the maximum value of
CSTRCAT15,m at a depth of 15 cm during the entire measurement period, mmax.
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Figure 7 shows the relationship between CAT*tr,m and CSTRCAT*15,m for locations M1–M4 obtained
using Equations (3) and (6). As shown in the figure, all data rapidly increased at the beginning and
gradually converged at a specific point after a slow increase. Moreover, the results shown in Figure 7
demonstrate that the correlations were improved relative to the ATt–STi,t relationship shown in Figure 4
and the relationship between CATtr,m and CSTRCAT15,m shown in Figure 6. This finding indicates
that the quantification of air and soil temperatures using Equations (3) and (6) was more suitable and
improved the correlations observed in Figure 7.
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All of the curves shown in Figure 7 exhibit similar shapes and unique relationships were observed,
even though the soil temperatures were measured from different locations. The good fit of the data
to these curves indicates that such thermal responses were well expressed by CAT*tr,m. It appears
that the relationship between air and soil temperatures can be theoretically expressed by representing
the correlations between CAT*tr,m and soil temperatures, as shown in Figure 7. Moreover, it was
determined that the cumulative soil temperature was suitable for quantifying heat transfer using
thermal responses. In particular, the measured CSTRCAT*15,m values of M2 and M4 were quite low
because the measured temperatures of M2 and M4 were lower than those of M1 and M3 at a depth
of 15 cm. Additionally, the prediction curves shown in Figure 7 accurately reflected the measured
temperature differences, confirming that they reasonably represent the changes in temperature and the
magnitudes of such changes over time.

The measured soil temperatures at a depth of 15 cm at sites M1 and M3 were lower than those at
M2 and M4. The reason for this difference may be that these locations had different soil characteristics
(e.g., soil particle size distributions and pore sizes). These soil characteristics were indirectly reflected
by the wSD. It was inferred that the void ratios, defined as the volume of pore spaces over the volume
of soil, for sampling sites M2 and M4 were lower than those of M1 and M3; therefore, interactions
between the soil water content and air moisture for M2 and M4 were expected to be less than those of
M1 and M3. Consequently, the higher soil particle densities of M2 and M4, compared with those of M1
and M3, rendered these sites less dependent on air temperature, which has a lower heat transfer when
compared to soils [47] and more dependent upon underground soil temperatures below a depth of
15 cm.
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3.4. Soil Temperature Dynamic Model Using CAT*tr,m

As shown in Figure 7, a curve representing the relationship between CSTRCAT*15,m and CAT*tr,m

can be approximated using a simple exponential function, as follows:

CSTRCAT∗15,m = 1− EXP(−α ·CAT∗tr,m
β), (7)

where α and β are fitting parameters. In Equation (7), α and β represent the scale and overall geometry
of the relationship between CSTRCAT*15,m and CAT*tr,m, respectively. As CSTRCAT*15,m represents a
cumulative value in Equation (7), the actual soil temperature at a certain time point can be obtained by
differentiating Equation (7). The mathematical difference between CSTRCAT*15,m and CSTRCAT*15,m-1
can be expressed as follows:

∆CSTRCAT∗15,m = CSTRCAT∗15,m −CSTRCAT∗15,m−1. (8)

By multiplying all of the items in Equation (8) by the denominator (CSTRCAT15,mmax) of Equation
(6), the former may be modified into the product of the expected normalized thermal response and the
current temperature, as follows:

CSTRCAT15,mmax ∆CSTRCAT∗15,m = CSTRCAT15,mmax(CSTRCAT∗15,m −CSTRCAT∗15,m−1)

= CSTRCAT15,m −CSTRCAT15,m−1

= (STi,m − Tre f )(RCAT∗tr,m)

(9)

Summarizing Equation (9) using Equations (3), (4), (6), and (8) for the current temperature, the
soil temperature at a depth of 15 cm on the mth day can be expressed as:

STi,m = STi,m − Tre f

= CSTRCAT15,mmax

[
EXP(−α ·CAT∗tr,m−1

β) − EXP(−α ·CAT∗tr,m
β)
]
(1−CAT∗tr,m)

−1 (10)

In this instance, STi,m can be evaluated based on the values of α, β, CSTRCAT15,mmax, and CAT*tr,m.

3.5. Determination of the Fitting Parameters, α and β, for Evaluating CSTRCAT15,mmax

The proposed predictive model for soil temperature using air temperature should account for
the wide spatial heterogeneities of different soil properties (e.g., different properties and thermal
responses at each location). To represent this, a property that represents the ground is required. The
soil water content was selected to improve soil temperature modeling. The process of defining fitting
parameters using the wSD was included in this study. Equations (11)–(13) were employed to identify
fitting parameters for which the predicted values could be calculated by comparing the wSD measured
at a depth of 15 cm with α, β, and CSTRCAT15,mmax.

Table 3 shows the values of α and β in Equation (7) at a depth of 15 cm according to the wSD

and Figure 8 shows the α and β values based on Table 3. Specifically, Figure 8a,b shows αwSD and
β/wSD. In Figure 8, wSD represents the standard deviation of the soil water content for each location.
As the Pearson’s correlation coefficients (R2) of α and β for the wSD were > 0.967, α and β can be easily
evaluated if only the wSD is known.

Table 3. Values of model fitting parameters for the scale (α) and overall geometry (β) of the relationship
between CSTRCAT*15,m and CAT*tr,m with the standard deviation of w (wSD).

Depth Location α β α (wSD
4) β/(wSD

4)

15 cm

M1 4.2312 2.0416 1164.6 0.0074
M2 4.0853 2.7328 54.3 0.2057
M3 4.0581 1.7266 5663.9 0.0012
M4 4.4143 4.3087 5119.7 0.0037
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If the least squares method is used, the fitting parameters of α and β in Equation (7) can be
determined as a function of the wSD through regression analysis. They can be expressed as follows:

α = 4.0288(wSD)
4.0287(wSD

−4) = 4.0288(wSD)
0.0287; (11)

β = 2.6306(wSD)
−4.025(wSD

4) = 2.6306(wSD)
−0.025. (12)

Table 4 and Figure 9 show the relationship between the maximum cumulative soil temperature
normalized by parameter β (CSTRCAT15,mmax/β) and β at a depth of 15 cm. The correlation coefficient
between β and CSTRCAT15,mmax was 0.9274, indicating that the CSTRCAT15,mmax value can be easily
evaluated if only the value of β is given. Here, the CSTRCAT15,mmax value for β could be expressed as:

CSTRCAT15,mmax = 1082.9(β)−2.965(β1.1) = 1082.9(β)−1.865. (13)

Table 4. Values of model parameter CSTRCAT15,mmax.

Depth Location CSTRCAT15,mmax CSTRCAT15,mmax/β1.1

15 cm

M1 315.7 143.5
M2 101.6 33.6
M3 462.2 253.5
M4 89.4 17.9
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The values of α and β only account for when the wSD is within a range of 1.91–6.11, and β is also
limited to the range of 1.7266–4.3087. In the case of the fitting parameters of the model, the water
content or state variables of the ground must be fully considered. This requires further testing beyond
the scope of this study. Here, the spatial heterogeneity of the ground that could not be predicted using
air temperature alone was expressed using the soil water content at a depth of 15 cm. It appears
that the spatial heterogeneity caused by the differing soil properties measured for each layer can be
represented effectively, even if the fitting parameters are acquired by measuring the soil water content
at the other depths of 5 cm and 10 cm.

3.6. Summary of Soil Temperature Evaluation

The procedure proposed in this study for evaluating shallow-depth soil temperatures consists of
four main steps:

1. The thermal response of CAT*tr,m is calculated using Equation (3) and mean daily air
temperature data;

2. The expected thermal response, RCAT*tr,m, at the air temperature sampling location during the
remaining measurement period is calculated using Equation (4);

3. The fitting parameters of α and β are determined using Equations (11) and (12), and the
maximum cumulative soil temperature, CSTRCAT*15,mmax, during the entire measurement period
is determined using Equation (13);

4. Based on the CSTRCAT15,m and ∆CSTRCAT15,m calculated using Equations (7) and (8), the soil
temperature, STi,m–Tref is determined at the depth of interest.

Equation (3) can be used to calculate CAT*tr,m through the air temperature time history. Meanwhile,
RCAT*tr,m is obtained once CAT*tr,m is acquired, and CSTRCAT*15,m can be obtained using Equation
(7). In this instance, α, β, and CSTRCAT15, mmax are determined using Equations (11)–(13) and the wSD.
Finally, the soil temperature, STi,m–Tref, is predicted for the target area.

4. Validation and Discussion

Figure 10 shows the air temperatures measured at location x (Figure 2) and the soil water content
measured at a depth of 15 cm at locations P1–P3. The additionally obtained wSD = 6.7723 for P1, wSD =

8.9907 for P2, and wSD = 6.4885 for P3. In accordance with the procedure presented in Section 3.6, the
parameters of α, β, and CSTRCAT15, mmax were obtained using the wSD values obtained from locations
P1–P3 (Table 5). The developed model was implemented using the values shown in Table 5, and the
measured soil temperatures were compared with the predicted STi,m–Tref data (Figure 11).
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Table 5. Values of parameters for model validation.

Location wSD α β CSTRCAT15,mmax

P1 6.7723 4.2562 2.5078 195.0
P2 8.9907 4.2909 2.4901 197.5
P3 6.4885 4.2509 2.5105 194.6
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As shown in Figure 11, dynamic changes in soil temperatures at a depth of 15 cm over time were
effectively predicted. In particular, although the temperatures measured for validation at a depth
of 15 cm had different tendencies than those measured for the main investigation at the same depth
(Figure 3), the proposed model exhibited excellent predictive performance for all of the three locations.
For location P1, the measured mean and maximum soil temperatures were 2.002 ◦C and 4.687 ◦C,
while the predicted values were 1.8768 ◦C and 4.7486 ◦C, respectively. For location P2, the measured
mean and maximum soil temperatures were 5.954 ◦C and 11.409 ◦C, while the predicted values were
5.1139 ◦C and 13.0350 ◦C. Finally, for location P3, the measured mean and maximum soil temperatures
were 2.747 ◦C and 6.165 ◦C, while the predicted values were 2.5548 ◦C and 6.7359 ◦C.

The difference between the measured and predicted mean soil temperatures was 0.125 ◦C for
P1 and 0.190 ◦C for P3, while the difference between the measured and predicted maximum soil
temperatures was 0.061 ◦C for P1 and 0.571 ◦C for P3. These differences in predicted soil temperatures
appear to have been caused by the incompleteness of the model. However, the results indicate that it is
possible to effectively predict the soil temperatures of all points for depths up to 15 cm at an adjacent
location using three simple fitting parameters if air temperature is measured at a location and the wSD

of the adjacent location can be measured.
To measure the suitability of the predicted and measured temperature data, the root mean

square error (RMSE), mean absolute error (MAE), and R2 were calculated for the corresponding data.
The RMSE is the performance indicator of a regression equation in which the RMSE value increases
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as the error increases. Mean average error is an indicator of whether there are many or few areas
that appear to be outliers [48]. Table 6 shows the R2, MAE, and RMSE values of the measured and
predicted soil temperatures. As shown, the RMSE value for the data of the proposed model and the
measured data ranged from 0.800–2.233, and the MAE ranged from 0.535–1.750. Location P1 exhibited
the highest accuracy, as the MAE and RMSE values were 0.535 and 0.743, respectively. The results
of P1–P3 exhibited better RMSE and MAE results than those of a previously proposed model [49].
Figure 12 presents a comparison of the measured and predicted soil temperature data with one-to-one
data (blue dotted lines) for each location. Through regression analysis, high R2 values (0.769–0.809)
between the measured and predicted values were obtained. This result is more also more promising
than that of another model previously proposed by Abbey et al. [34] and Hu et al. [33].

Table 6. Correlation coefficients (R2), root mean square error (RMSE), and mean absolute error (MAE)
for validation sites P1–P3.

Location R2 RMSE MAE

P1 0.809 0.800 0.535
P2 0.769 2.233 1.750
P3 0.804 1.132 0.801Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 23 
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In Figures 11 and 12, P1 and P3 exhibited smaller ranges of variation in their maximum temperatures
and soil temperatures than P2, as the soil temperatures were less affected by the dynamic changes in
the air temperature. This is because the soil temperatures of P1 and P3 were dominantly affected by the
soil water content and properties (i.e., thermal conductivity or diffusivity), and thus the uncertainty of
soil temperatures [19] was slightly reduced. Meanwhile, predictions of the soil temperatures at site P2
at a depth of 15 cm exhibited the highest uncertainty, the highest degree of scattering, and the lowest
R2 value. Especially for P2, the predicted temperatures deviated from the measured values in late
spring and early summer. During this period, the proposed model underestimated soil temperatures
when compared to the measured values (Figure 11b).

Differences between measured and predicted soil temperatures have also been reported by other
researchers (e.g., Romanovsky and Osterkamp [50,51]; Jiang et al. [52]). In general, when the soil
water content and air temperature increase, soil temperatures increase due to changes in the soil
water content, which plays a larger role than temperature alone. The increase in soil water content
increases the thermal conductivity of the soil, thereby directly affecting soil temperatures. In contrast,
air temperatures indirectly affect soil temperatures as they change the energy available for heating the
soil into soil water content [52]. Such dynamics may have caused the differences observed between the
parameters measured at M1–M4 and those measured at P2 [33], thereby resulting in underestimated
soil temperatures in the late spring and early summer.

As shown in Figure 11a,c, the initial portions of soil temperatures at a depth of 15 cm for locations
P1 and P3 were closed to 0. In regression analyses, data concentrated near a certain value would produce
a bias result or a better correlation between measurements and predictions. For the examination of the
effect of using concentrated data on a certain value (here, temperatures near 0 ◦C) on model prediction,
the first 40 data points from the start of the temperature measurements at locations P1 and P3 were
excluded. The same procedure proposed in this study was implemented. The optimal parameters
determined from regression analysis are summarized in Table 7. Comparison between the prediction
and measurement of soil temperatures at a depth of 15 cm with increasing time is represented in
Figure 13. At the beginning of the prediction, the model underestimates the soil temperatures; however,
the underestimation trends diminished with increasing time.

Table 7. Values of parameters for additional model validation.

Location wSD α β CSTRCAT15,mmax

P1 3.7527 4.1847 2.5451 189.7
P3 3.3165 4.1698 2.5529 188.6
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Figure 14 shows point-to-point comparison between predicted and measured soil temperatures at
a depth of 15 cm for locations P1 and P3. From the comparison between R2 values [0.809 in Figure 12a
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and 0.804 in Figure 12c] of the data including the first 40 points and those [0.702 in Figure 14a and 0.734
in Figure 14b], the model prediction of the data including the first 40 data points was the better that that
excluding the first 40 data points. However, it was concluded that the prediction model implemented
in this study reasonably predicts shallow depth soil temperatures based on air temperature and
water content.Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 23 
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When developing models, long-term data, such as daily mean temperatures from spring to
autumn, are used to reduce the biases of predictions and the variability of temperatures caused
by climatic and ground factors, as proposed by Dwyer et al. [53], and because studies predicting
future global soil temperatures have been conducted for spring, summer, autumn, and winter [24,54].
Moreover, compared to the models for predicting soil temperatures on a monthly basis [55,56], the
temperatures predicted on a daily basis are important for studies on sea ice [57,58] and crop growth [35],
which are highly temperature-sensitive.

In this study, experimental validation and regression analysis were conducted using long-term
data, and important results for the suitability and utility of the proposed soil temperature model were
obtained. In northern, high-latitude permafrost regions (e.g., central–northern Alaska), changes in soil
temperatures may have serious impacts on the long-term stability of infrastructure, even though they
do not present an immediate threat to natural or human systems [35]. Therefore, the model here can be
utilized in various ways and applied to areas where temperatures must be rapidly predicted.

An effective and practical shallow-depth soil temperature model was developed, and its use makes
it possible to estimate soil temperatures for adjacent areas and ground layers if the air temperature
and wSD are available for a given location. In previous studies, the measurement of soil temperature
has required many parameters [22,25], including environmental conditions (e.g., solar radiation, air
temperature, and albedo) and soil characteristics (e.g., thermal conductivity, diffusivity, and soil
properties), or long analytical periods, such as that used in the Weather Research Forecast model. In
contrast, our newly developed model enables rapid analysis with fewer parameters and has a high
degree of accuracy for estimating soil temperatures.

Predicting the spatial and temporal patterns of soil temperatures is important because it can
promote the understanding of the physical and biological processes of plants, the properties of
permafrost and sea ice, and CO2 and NH4 emission patterns [20,21]. Additionally, the model proposed
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her is able to determine the most suitable period, work timing, and productivity for field work related
to soil heat flux, as well as the heat energy from the geothermal system, biomass, crop flowering time,
and appropriate drought monitoring procedures by predicting the soil temperatures of adjacent areas
in a rapid and reasonable manner [59]. As the wSD is an important factor for determining the model
parameters, the application of the wSD must not be neglected in the estimation of soil temperature.

The developed model has several limitations, despite its simplicity and user-friendliness. Although
the mathematical procedure is independent of the measurement locations, at least three standard
deviations of soil water content values are required at the target location to determine the three model
fitting parameters, α, β, and CSTRCAT15,mmax. This is because these three parameters vary depending
upon the temperature changes and soil properties (e.g., thermal conductivity, soil density, and moisture
content). Further research is needed to quantify the effects of temperature changes and soil properties
on the developed model. Moreover, the continuous measurement of air temperature is required for
this model. If air temperature is not measured for a few days, the accuracy of the proposed model will
be reduced. Additionally, the model may have prediction errors at shallow depths (depths < 15 cm
from the ground surface) due to the spatial variability of soil properties (e.g., soil structure, fabric,
or texture). In most cases, it was found that the proposed model can predict soil temperatures for areas
where there are differences in soil water contents because it can be assumed that the spatial variability
is somewhat uniform at shallow depths. Therefore, it is possible to predict the soil temperatures of
areas adjacent to locations at which the air temperature has been measured with some degree of spatial
heterogeneity using the soil water content and the measured air temperature.

The proposed model can be used to predict long-term daily mean soil temperature for daily
mean air temperature and to evaluate changes in soil temperatures caused by the reactions of spatially
heterogeneous (e.g., soil properties and thermal conductivity) soils to the climatic changes expected
over a regional scale. The accuracy of the proposed model was improved by including the soil water
content, which can reasonably represent soil properties. Therefore, it is expected that the model will
be applied to evaluate temperature changes due to soil reactions (soil water content), which require
further understanding [19], as well as to predict daily mean soil temperatures under the influence of
climate change, and the resultant changes in soil hydraulic properties (i.e., soil water content).

5. Conclusions

In this study, shallow-depth soil temperatures were measured in Council, Alaska from late spring
to early autumn (i.e., the period in which soil temperatures up to a depth of 15 cm exceeded 0 ◦C).
A predictive model of soil temperature for the soil layer located at a depth of 15 cm from the ground
surface was developed. This model was developed to predict soil temperatures using air temperatures
and soil water contents alone. The proposed model used the concept of thermal responses and the
cumulative air temperature. In particular, thermal response (i.e., cumulative air temperature) was
used instead of directly using air temperature, so that the soil temperature at a certain depth could be
estimated over time in a more consistent and reliable manner.

The mathematical relationship between CSTRCAT*15,m and CAT*tr, m was developed based on
the measurement results, and a procedure for predicting soil temperature was proposed. The model
was capable of reducing the analytical time needed using only three parameters and yielded accurate
prediction results for adjacent locations, even though they had different soil properties. To evaluate
the dynamic behavior of soil temperature, the proposed model was validated using soil temperature
data obtained from additional locations. When the measured and predicted soil temperatures were
compared, it was found that the proposed model accurately predicted soil temperature at a 15 cm
depth for various locations. Moreover, soil water content significantly affected soil temperatures.
Therefore, the soil water content must not be neglected in the estimation of soil temperatures because
the wSD is an important factor for determining the parameters of the proposed model.

The model developed in this study can contribute to the fast and accurate measurement of soil
temperatures in the active soils layer of permafrost at various locations, and can provide useful
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information for studies related to spatial changes in soil environments. It will also be helpful for
determining the most suitable periods, work timing, and productivity for field work when planning crop
flowering times and drought monitoring. However, further research is needed to generate additional
spatiotemporal information related to the variability of soil temperatures over large geographic areas.
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