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Paleoenvironmental reconstruction of the
Southern Ocean based on sediment trap and
sediment cores
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SUMMARY

(3 & 2 o B

I. Title

- Paleoenvironmental reconstruction of the Southern Ocean based on

sediment trap and sediment cores

[l. Purpose and Necessity of R&D

- To reconstruct the paleoceanographic environment in the Southern
Ocean based on the sediment trap particles sinking through the water

column and on the core sediment properties

IIl. Contents and Extent of R&D

- To reveal the particle properties of sediment traps in the Ross Sea

- To reveal the core sediment properties in the Ross Sea

IV. R&D Results

- Total mass and biogenic opal flux of sediment trap particles show the
distinct seasonal change; high during March and April and low during
the rest of year.

- The seasonality of biogenic opal flux was supported by the §C and &



N values of organic particles as well as the diatom flux.

- Variation of CaCOs; and organic carbon flux follows the similar seasonal
pattern.

- All these flux data are characterized by the inter-annual variation

- The sediments of a gravity core KI-13-GCZmostly consist of silty mud
to sand with ice rafted debris.

- Among the fine-grained clay mineral compositions, illite is highest(59.1
~76.2%), followed by chlorite(12.4~21.4%), kaolinite(4.1~11.6%), and
smectite(1.2% ~ 22.6%).

- Illite and chlorite originated from the Transantarctic mountains
(metamorphic rocks and granitic rocks) situated to the south of the Ross
Sea, whereas kaolinite might be supplied from the sedimentary rocks of
Antarctic continent underneath the ice sheet.

- The provenance of smectite was considered as McMurdo volcanic group
around the Victoria Land in the western part of the Ross Sea.

- Chlorite content was higher and smectite content was lower during the
glacial periods, although illite and kaolinite contents are almost consistent
between the glacial and interglacial periods.

- Although the source areas of the clay minerals in the Central Basin
have not changed significantly between the interglacial and glacial
periods, the transport pathways and delivery mechanism of the clay
minerals were different between the glacial and interglacial periods in

response to the growth and retreat of Ross Ice Sheet in the Ross Sea.

V. Application Plans of R&D Results

- Application to the interpretation on the long-term history of ice sheet
evolution by the deep-sea drilling data in the other regions of the
Southern Ocean

- Utilization to prepare for the international scientific paper
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H 1 & ME

3= 159 oF 97%= I WA (Antarctic Ice Sheet)oll o]a] Ho] 9lon,
AFoz FFHE 999 T8 A3 9SS i (Anderson et al, 1984). & A
= AR 13609 km?Y WA HiF 2 kme FAE FA8L QoW (Barker
et al, 1999), W=ZFth2ab9 (Transantarctic Mountains)S 7|50 & A= WA

(WAIS)¥ 5= WAHEAIS) o= 29t F5 WS doA-=garAde] 44
A FAE olF d AFHem 7|Fo Wy A EEedth(Franke and
Ehrmann., 2010). = "7 &> WAil(ceberg)el P o= <13k ®at g
(calving)”} F2 dlojx gHlgrol] o3 A KAzl gelo]y A
~28%°] "] &S AA 3R Rignot et al., 2013). o]# 3k F= WA Ay A
A ATA e Wk ik ek 2ea ASF A A 2HI AAVE
S Wnk oyt A VIFE dste wl o MF Fad adoem gy
(Abreu and Anderson, 1998; Barker et al., 1999; Mackensen, 2004).

Mg A4S S HAEASRE iAo g THo] Ak 7ukek o Fo
glow HAFo] fREO g=m olge] A drHDrewry, 1983). WA olsL&nw
© TET HAERY duAer waw WA ols tiEE WekF(ice stream)

o] de& veldti(Anderson et al, 2002). B4 = HAS
=]

O FEE WA 1%7F 3 3200~4000 mE AlES WA v]E] =2 Aol &
Aot (Drewry, 1983). =23 (Ross Sea)oll = =W & (Ross ice shelf)o] @estar
Hed &0z dueol §A 44 dthFig. 1). 223 thHAHES ojdd FH
(Iselin Bank)E ZAA= %3 AHow AFH 5Ho] FEEAH. F HFAIES

FE,

s Xotshs AG7kA aEa 5HoRE A
t(Budillon et al., 2011). 22
she we 49 HaAss
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7| gzt wE B WA wda SE Ay HA%E 3 skl ¥
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H 2 de Zls/e A&

i
XN
re

H (Denton and Hughes, 2002),
A= WA AHAD WeRe FHEZE MY B2 des sedd
(Bindschadler, 1998). Z2 **H(Ross Ice Sheet)& wlA9 W 3}7] (Last
Glacial Maximum)&<t 74°S7A] A3k 5 @Ae §X7b4 FH s At Licht et
al., 1996; Shipp et al., 1999; Howat and Domack, 2003). 713 W3lo] w2 ®A+e]
A FE e 2ad Qe 40 2 S 3o, od uwet tfEEolA
HAEE H4FE2 Domack et al. (19999 28] oh53 o] A Ak 1) |
A 3+ (subglacial setting)2 A A= 42| tho]ojulElo] E(diamictite), ii) “LE}
©9 #ol(grounding line)o| A 5-E] Wdo] TEat7] Al=tat w), 3| AW A HAo]
Hojzl W5 ofgfe] S Wt @ oA AME-UH Y AR FAE HA
=, 1) ek d el s dE H A4S 8= W ak-alfe] A4 oS

ﬂJ

i‘l
oh',
A
>

, 1v)

<
7174 QFA F-2ev]7](basal debris)®] FFS oA ¥ WE olde] B}AS AAE}
= AEA HES v) 22 W59 #e W37t gojA 2= A H(calving front)
LA oA WAL s A vkgke] ol RkE HAH=o] FHE L £HI HAF,
vi) &3l (open marine) 745 A Ak Fx Y HAS

A B A AAFEY Fdorw FTIFEHE FEFEL 92 oo Zg A
T et el T3S AAIE] wite AEFE Zzte] FAY e woko &
Aol wE 7)Ao #9-EH(Chamley, 1989). B &9 HEFELS &4 3749 7]
T 20E FEEA wgsteE i HA=e] FAEZES 17]F Ao #F8&9

S 2 AFgE T (Robert and Maillot, 1990; Hambrey et al., 1991; Ehrmann and
Mackensen 1992; Ehrmann et al, 1992). @A 9] P= 4 = dubd oz 24l
7149l HEZE] YPAgo] FAsa =€ %@rﬂ A7) W ol (Petschick et
al., 1996; Fagel, 2007), d= EHEFZFEHH HAES HEZE 242> HAEY F

TEAL olsd=2E FAHstE Wl F&3th(Hillenbrand and Ehermann, 2001;
Hillenbrand et al., 2009; Ehrmann et al., 2011). F=3] T3 s dubx ol HE
v 4ol E9t KA o] A THEhrmann et al, 1992). A 94 HE
of o]stH olZA s (Amundsen Sea)® &% FEAE 5HAoE F}
o] greFo]l dAol wHla] Wetr] =<k =A el TH(Hillenbrand et al,
obEAE THEE HAEY 7IHdAVE AdAet W]
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S A AlgHtH(Ehrmann et al, 2011). ¥ & 2~ 3}-9-4 &) (Bellingshausen Sea)
ANM FdE HEZ= A7 AdolMr= Wy HAZY A HAES HEZE
71(9A7F A2 g2 A HoFd(Hillenbrand et al, 2003). 282 H$ F=2
W EH(McMurdo  Sound)ell Al HEZE gt A5 A3yt TasAv(eg.
Ehrmann et al., 2005; Giorgetti et al., 2009; Frank and Ehrmann, 2010). ©] A<
& Z2WEo] ES} deto] EVE AgHH dEfo]lEx FSF A o B A Qe 7wkt
o] Fa 7]YA ¢l ®hHo, AHWEo]Ex MWu L 3Pikto] Fo Y[AA R AEgn
(Frank and Ehrmann, 2010).
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H 3 & dxgdsd e 3 22t

1 4. AMEA3 Heledld E3E JAAAAEe] AE 4 4
Y w3} (2014-2016)

1. A&

22 G GAAY BEFEZE Tl dABAY B AAZE g =2
oz M (Arrigo et al. 2008a; Hoppe et al. 2017). 2238 = L4
4 WE 2o X, 5o 2g-stet a4, a9 H ead 2SI W+
|A3 ] BAE FAFe =Y oA T3 AFer R FHY. o] HE 24AES
AEEFAE HA, sEZFAE A2, A5 F3oly A dA 9 'aAa BHED
A Z(retention and export)oll &S v X th(Frignani et al. 2000). § 4% X3

=]
E ol &3 AR A= &4 29 AETH adlo] AAl oGA HT | YlA
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fru
>,
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ol
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wn
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fru
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rL
I
k=l
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r\"
o
o
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N
-
=
2
~
o
&

ATE wl$ FFstH(Takahashi et al. 2009). F=alol 58 EHA 59 ELHAXA
ARE wB-oF AEEEAE WY =2 JAEH S Aol AAAR] =2 AT
A& AA S (Collier et al. 2000; Anadon and Estrada 2002; Fischer et al. 2002;
Arrigo et al. 2008b; Ducklow et al. 2008, 2015; Honjo et al. 2010; Forest et al.
2011; Sampei et al. 2012; Weston et al. 2013).

of A HAS MRz o] AT Hgpuinte] =ato]daT] A A 5
212 QArEE 2] Al Az Wsol] gk AA A XS Foli 2 =49 &
I Aol IS F= 88 oldist= Aotk oY g HA S flaA, 2014 A

20163 7-=] A
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2. A7 A

dl

22de WY HEHSFE, FLa) ol Alo](Cape Colbeck at
158°W and Cape Adare at 170°E)ell ]| gth. FZol= 785°SolA =2~ W &3t
Heffdeh, 22 e A9 589 v oS i Jom, HHEdEZH= o 250
me] T o] Eth(Budillon et al. 2002). &2~3l= H o] 500 me] Wi
55l SAAelt. fEEdAY g2 AN Efetal, 39 44 54
st B3OA vtg7bA] FAAQ 25 2T AFAGES FFoEHE Y
S AEZH(Langone et al. 2003)2F Hlgbwewpwk EZ W (Terra Nova Bay
polynya) 255 S8 o= vtge] oFst & (Mangoni et al. 2017)7F 574 o]t}
Aol A o8 ALE= AR S A AP} HHEN FrIed FA4S
el gtoh (29 2; Langone et al. 1998). o] oA dlF+ ol <Fsh7] wtol & ¢
e AAE X2y o FHE20 km)oll ZFEFeEAl - th(Jaeger et al. 1996;
Frignani et al. 2000). 7 A3 =2 UxAPAAHo] dutdo=z FH EHAE A&

& rlo

Hir

o

719 A FEY & =48 =3 (Jaeger et al. 1996). FEF WHA L 23|
oA FH3A Aoy (Smith and Nelson 1985; Leventer and Dunbar 1996), 3f
Wol Fow X7 HAL Iuk4e] o F diFE &<t 35 ¥ (marginal ice zone)

o Al dojtti(Ravaioli et al. 1999). ¥ s HollA FaH A= F27F7F T9
AL Aol 1 Z 2= AA vttt e o wid W s Stal(Leventer and Dunbar
1996) += a7 Al="le] W3tel #eo] Qo B 39 tH(Frignani et al. 2000).
3. AdHy

FaTAATE AFA LTS Hepenphe] setolzay] {29 nitte] 9
28k A X1(74°50.27°S, 166°15.89°E, 1,050 m)oll Al 2014\ 3€HEH 201613 12€7}
A EEHAHH 3). viged 22 JdAH" AFAIEHS FA 250 mol|l A
a, 13718 HHeol AAER &85+ HAE XA Seaguard RCM 47,
SBE Micro CAT conductivity/temperature 7] A2 FA AT 2 o] o] &3l
ANAE H4E LHAAE= 137019 A12¥ S 2t McLane PARFLUX Mark 7Go]
AT = A s AFs7] A, B ESR(sodium borate) 0.2 F3tE  oF

T el go F3IAAYATE FalHA =S sl

AAAA Algme Ak #A4S fste] WSD-10(Wet  Sample

H b
Divider-10, McLane)& o] &3le] tA S8 stgon, o & U /ME ZHF2 A
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Ao=m T WHIE HAT oJFHS 1-39dl+ 3556 mg m—2 day—15-H 2642.8
o e wolv 74eEQ) 4690 A4 Fase,

[e)
o
e ZYas I 5. Ats =Y é, FH7 e e

Z2Ys adal g EY el wske F AFEY 2] wske g frAleie A
A2l Wsh 8 A WSy FslekA B

o] Aagko] YERGE A7lwr

o] Wizt vHAEY kel Wstel w9 dASa tEo] ©AFE ke Wske F
71gkae] ®ighel dA st 1, 201499 201619 Bk EE b ghabed g
ol FHargkol UrE]r‘/P‘ T AZIALelel BRSO At AT d At BaEda @
= 2 ZolE Bl & AFEE 2] of 50% olde AA sk Aita E929
WAstolk= t2A Aatd FY2e] Haglo] AsE ARG A Bk EE s
of Haglo] vetve= A2 F 7HA Mz & AEY &4 WAds ordt
Hlefmnprtol A Agta o] WSkl gty Zelse] Wt HE AAE Fa
e ol d =xbA Q] ML o] A He] ' 8ol mig % 4TS ofv|
gt

Aata 2] ¥t AR 55 sl MAske e WA vg
FAT #do]l yetdthi(® 7). 2016199 Aarh EY 2] Wste e T
= EYaeh sds wstEn. webd Ayae FYas 238 it Ak
S ot oj#f st Fxo] WAL AlV]e mEtA AR e FTEO HAPoR W
Astct 1299 12 AL g5 Chaetoceros spp. FHXEAF] &8 3102 1}
Efupe] &5 efjaro] =k Wbl wel o] HAE g2 YEhdh

Chiarini et al. (2019)¢] el oJstd, sfo] H2 WH o] =i FAA
AL S HAE EFolA g A2 EAS £ 9, g0 HAE Ef
Mz AEE ol Edo] TAEAY. o7 At F& 73t ARFEHAY F
S FHAHQ o]Fo] dojd Aoz FAHrh o5 Ao 2005 WAt
B-15% 7 At 2005 8] 917d AR

Uelbdt ®AE FREOgA mdue s B4 sEo] Fbstttal Hagd o
TEo WA (Shaw et al. 2011; Sherman et al. 2011; Smith et al. 2011), ©] =4k
o] At 4o §4VIYEY 7] EE4E& TS Aol s et Algrt, shE-
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M= A Et
m2dfo] 7|E ARAAN F AHgISE 29

4 Fooll debd vk 20080l = 22 & vk eyt kA RE, 2 2ol A
A A Z chl-a sk 98 89 s S5t
}a(Nelson et al. 1996; Smith et al. 2000; Arrigo and van Dijken 2004), A2FA
A 7hd B A7 55 Alololi= 2-370€ ] Az Aot Al A E o]
olg gt W52 oln] o] A Ao FPHE A= (Dunbar et al. 1998; Collier et al.
2000; Langone et al. 2003)& -8 H 1% o] gkx|ut olo] #3t A EWHI A&
it w59 AR Aolol #ATVE s F e AW AFEY] JHEEN Fa
g AEEe g 2k ) AEEHAEY] A sEEEAE o 349 A
7+4 ZFo](Dunbar et al. 1998; Smith and Dunbar 1998; Boyd and Newton 1999);
i) vkgelu Heol Fsol] #AE A Aot qrx9 WA (Collier et al. 2000;
Peloquin and Smith 2007); iii) 3 WHolA 7teghets 27 = ALY 9
Ao FetAy dAE (Smith and Dunbar 1998; Bacquevort and Smith 2001).
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7HA o2 FH Tt (Collier et al. 2000): A= o 71LGEIH e g3,
A A VLA ZNE ugol] o3 F=FH)ow FuEo] iR "ol u%xsz}
&l 7 (e.g., Modified Circumpolar Deep Water current, MDCW)ell ]t A 55 =}
. sHAI R, FHEe]l A9l Winton et al. (2016)> 719 5 24 WAINOE = vhA
B22fjoM AEEFAE A4S 24T F= vl AAskRT =3 HS B
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AoAAE EFF Zo] 241 ecm9 FE:o| KI-13-GC2E 23] o]
g o5 A%l AW FYEA AH KI-13-C271525° S, 177481 W, F4
1,300 m)ellA] 20131 ofeh2e & o] &3 W= AHANAOIB) &<t A F kA =2
) A% gEFwEe ox s 2dRAA FEE ZEFo] KI-13-GC2oA] =}
&, YEPY, Jen JEFE 2 PG A5F A4RE B 2a H F
FEANA Wetvlsk y1e]l AE HAE 194 Baks dlety, 2o 55
PEFHE AELBE Ao 2po]S B B2y AZ 7YX doldt 4= 9
T 9AE §5F g o] FolAe Zad uEFuRe HEDE 24 A
58 FHo® =oang & Aolth ad LA =2 & dFTure] AP 3
Hgolz =3 AL Ho AT},

HUAo| FgHor By, o] F AEFESS T2 WAl #(glacial scour)

of o& 53] &= E WA X 4

H(Ehrmann et al. 1992, 2005; Fagel 2007). 3tH 712 yolE

A=A 471 wiol, 7t Ul EVE =4 #xstE g3 usTFEte 7hEE

UelEES X3e edd HAEY =94 Fshdt nEYe Ao os) A H

$HkEl Ao 7 W uE Qi (Hambrey et al. 1991; Ehrmann et al., 1992). Z=rs] toj
I

STHE9 2YElolEs ISl e 7]dA el g A rp FSepAn
ditgor sbrld &2 Fstel o&) FAdE= Aem dH A (Robert and

Mailot, 1990; Ehrmann et al., 1992).

22goA] FaAE dFEY HAEFZE AT dS5E Aol AgEo
b 1EATY] Aol ostd s wWwmvte] E¥Es
F HUAS 22 FEe] dFoZTE WA
™
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ol FE HEZE A AFELS UFE Zad 55 FAZKd A%
WM Ewk 2] Ao A =3kE o] 9 TtHEhrmann et al. 1992, 2005; Ehrmann 1998; Setti
et al. 2000; Giorgetti et al. 2009; Franke et al. 2010). &3] = 23&]9] thHAH
fEsdE 28 dsTFHFelr F3dd JEFE A7 vs Pt H 2
a5 (2018)2 Ezd FF WEAMEY HEFZEC] JdA AFE Fote] et
=

E=

offt
2
2
N
off

el ols) dIFAAAARE g5l o3

N
-

ol E7} FEFEYL, W7o Z7te AdEle] E9l F&u}o) Wol 5538t
o daFgakme] ko] FojEa F= A F(Antarctic Slope Current)”} ‘23}3s}
of 223 £ dugs TA MERRY FaERs Aojgta A ofd
AT HAL2 2 EFHEETY AE giEAdH X3 FSEA A 5T
Folo] AEFE =4 W3E T3 AEd HAES] 7dAE gRlsh= 3ot o
o] Wal7|-7k 7] Aol =2~ HAH(Ross Ice Sheet)o] Wyl Ado] whE 2 43|
FFHGF A& 55 299 HEZE 7|LAE vlustal EoT Aot}

2. 930 4 A%

KI-13-GC29] HAE& W5 A& (ice-rafted debris: IRD)
EoA B A7 YdAE FAAEHA JH(ay 2). Zo] AgHolA ¥t Ao EH

o
24
o
QL
B
jutn)

Aol vetyr, o= e HAEI ¥ A4 FHAHEo| I’Liﬂ“ﬂ Ef ot
R Jpe] S dnbHow 3 BAZAA E=A ey, A4 545 43
o] Al 10 ecm® 90 cmolA FASA ZF7sth giAEe 2y YAE x3s
2Hd HAES 3 Wgtel vzshA MEshAR HAH9 190 cm oA B
A AR TR FIFSAINE dAbE S SUFsHAl etk tiAbE S 2 ol gkl o
EFUE= 90 cm H2olA 4 cm 379 HSHAESo] oyl A dow b
W71 HAzeA deprin 2 dxket JeH A= g haso] A4 dE

KI-13-GC29] HEZE FdF Ao E(59.1~76.2%)7F 714 $-Al5hH,

YA (12.4~214%), 7+l EM1~11.6%), 2HEFIE012~226%)2] A= U}
Bth(ad 2). defo]lEE 15% ol & WEE Holxuh H:o] AAHow o
sh7]1-zr 7)ol wE ®sk= FElEhA] @k YA e AF9 170~140 cm B 70 cm
oA HAR7A Bitel] Hla] AHAHOoR e 7h(19.2%)0] vEa o] 9ol= A
1). 29Eo]Ex= 210~190 cmoll Al Aol

Mo e F99%)°] YERYIL o]F 140 ecmol Al w4 3HAl S7Hske] 80 cm7t

JPF

=
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A = FR14.9%)s HolARE, tiFEe] it A= e 3EF3.6%)0] YERE
th FhEEvol Ex dEtolE9 npVHA R tgE HEFZEC H|3] o] dAH R
ARG 7H(75%)S A Fet.

KI-13-GC29] W3al7] HAEe HEFJE Hit FF& ~wElo|E(54%), o
2}l E(68.7%), 7F= e Ubo]l E(7.0%), L8 H1U4(188%) 2 et vk 7hd
Az Hit FFE ~HE|E(9.2%), ATOlE(67.5%), 7ol E(7.9%),
g YA (164%) 02 derskn wekA PV HA e Wekr] BA s v
ste] ~HElo|E ghafo] oF 6% T7Fetal wyA el ko] oF 4% FrAadshe =
wlvh 2Eu olefg ztolE FEFES] vk BAe] oWl s3] Wi

of AAl= ehke] Wb yEues A= 5o AA s elof gk

7

—_

|t

3. Bo] & A&

T8 alo] KI-13-GC29] 7= H2siolel A 3tst 2k o] Hlale] ofs) =

ofo] HAH 7L 4" AL AN tHKhim et al., 2017). gt o] F-F3to] H

[-13-GC2¢] o} HAFF-9 AMS 14C dd+=

of AHE TE2AH HHES RESHKhim et al. 2017). LvH4

HAEol F71ekas ZAHEH AMS 14C A= 2,0000014 3,000 yr

BP Atol2 SAHW, HAE] v tfF A HA = = 5000014 10,000 yr

BP7HA = A " th(Domack et al. 1989; Licht et al. 1996). d=ral Al 3] F et
Z+Aol AAa gdel] et B 1,200014 1,3001d 0] A qE o] AFoA A

AHEEAA fF71EARY AMS 14C dAdle= AYGHd BN 2o %%*3(1,900~

) ol AN AES A e kth(Andrews et al. 1999). Khim et al. (2017)

= AMS 14C duist ol H A &) A gst ZAARE o] &ate] FH7IEat At

e

& PPl FAF S wEe Festm KI-13-GC29 FHE

(Licht et al. 1999). 23] W5
o] Fm WREAHES FaFo] a1 tixEo] Srri(Licht et al. 1999; Salvi et al.
2006). SHl 7ot 7rHl 7)o &3k 7]

(calving)= B2 WAils AAste] =y WeHAEo 59 55T 8ol
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el al § 4 "1t (Grobe and Mackensen 1992). o] KI-13-GC20l A4 Atha o=
Akl tiAbEo] 7] EA A St (L™ 2), H 7ol 2l st
2]

of oJeto] B WEHAE] TUEA Ader gud Aow ot

Mo

Mo o

Sl A Eo] X3 ~dElolEE A E Yo s FREE, duby

o7 Ao A LAst= Ak Ao 3184 WA 2 (halmyrolysis) S &
st A2 2HEo]|EVE A EE Ao® deA dvk(Chamley 1989; Robert
and Chanmley 1991). ®bH, 44 2WEoEE 24 58/ %%M]/H 3hd qte
sfstd Fstol o AHHI Yoz FYEH(Chamley 1989). HF= dlSoll =
= W] dA ol F et FaEo =24 F37F SAsH LJrEPUrﬂ o]
SEEA A st FtE B3 2B ES gES 719 glom FE S

ool Fsl W A o Aoz I A AtH(Ehrmann et al. 1992; Ehrmann

-

e

% (Beacon Supergroup) ol A
shd o3t &R (mica group)s EFE A Ee FSTEAMY] wEd AAHG
o] 84 Fg&Eol YaA F2 FHEAtHChamley 1989; Ehrmann et al. 2005,
2011; Fagel 2007). 7FZ2UolES] A%, Sttt Aol F3 7] 5o &gk 554
F3tatgol oste] A= Aom delA 7] wWEel A A= A A
AEA e g5 uEFHER FEEe Yo Es dads &9
&t7] o] dol §]r6”§u 37 Sl S A 27]el P =] dA Wstel o
597 F3= =8 ¥FAHEhrmann et al. 1992; Dingle and Lavelle 1998;
Forsherg et al. 2008; Welke et al. 2016). YAl dutd o g J= &2 Ky
= EFeta = WS AN AduA e EelA T3kl o8 sEHu
(Chamley 1989; Ehrmann et al. 2011).

= d5olM AEZES 7194 el g A= FALS s des

¢l &} "FZ‘%‘O] Aol BE7bset AFdHor FPHAY. I F=o FAL WA
A F3E Wellste fjlow FE =94 T3V AEZEZ VdA W3t

= Fa% 9FS dcR(Salvi et al. 2006; Hillenbrand et al. 2009;
Ehrmann et al. 2011). Ehrmann et al. (2011)> F=51Ht=2] of A s o &5 5o
Exshs H4= AEZE 249 Aolo B3 Aol 7t UolEs F2 9
S Ao @l HERWAHEX(Byrd Subglacial Basin)®} vl =¥ =(Marie Byrd
Land)oll #¥38t= Ul EES I3 Ao N E ofAlso] & T
AFog FHEI deolEE wWEZ WA Z(Bentley Subglacial Trench)oll A =L
g 2dElo]EE FE9 dxdsdl=(Ellsworth Land)9 o}2W % (Abbot Ice

Shelf)¥} #2222 H W H(Cosgrove Ice Shelf)oll A g ol o ztzt o} &3 2

o |
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& Ador FaEH, mUAL oA gEFHEA dAAH ez vz
gheFol wxstH, w5 tlFo] 7IRkQlel Al Wate] o tEFHIE FFEE A
o= wustyrt

228 FYEANA ANFHE ;o] KI-13-GC29 HEFELS dglolE X1
A, FhEEvelE, agla AdEle]ER AT LY 2). 7]E AT A wEd

2238 QE5FoR FFEE ~2UEolER HEol dgtd &AM FAdH
HE Akt A] FaEE Ao®2 HuEdti(Kyle 1990, Ehrmann et al. 1992;
Setti et al. 1998, 2000). ¥etolEet HUAM S F2 G504 otge F=FHAik
o] 7|gkgkeolut E AN FRTE Sl 22 HHEE TuyHe AR 73
HoH(Smellie 1998; Ehrmann et al. 2005). 7F&2lvo]E2] 45 Zadfo e 719
Aol gk A= F53 Ao A JhEeUolEE FHietal v F=Ad of
e 1EF T HAGAA ¥
Hol X3 FHEAY FAEFEER - 58 otdlY 5T dAb ] 7]
rolut ® A S 2o Wk sbto] Al E A
KI-13-GC29 HEZ= A4 TolA deolES 7h&gvolEx (7]t
Wat7] Atolell & Ws7E YERA] AW Teup ~dE Ol E SheEe sty 3
25, mUA e stEe ZSrketti(y 3, Table 1). ZLEv} o} Aol Z 24
(MIS 1) 7#3F2 3ot HAgHo 4= <dste] ojefdt 54 o] FElstA #EHA
gt 2vEolEx M7 B FEHE QS X tEe AE% HEF
of qAgtel X3k W= sPabitol A T (1E 4a). m2E O] iR Tl dH

=)

Lo

|l
i,
rlr
pay
|o
fr
ox
=
)
ui
=)
AC)
>
fr
[
=
A
N
(B

r]I

AMEE Ay gElE wmAdurbe sl od AWElolEVE FYEAR FaETh
(Orsi et al. 1999). s+A ®W 375 WA Aoz Q3] 2289 gSFgoA o
AL S A 77 FtEo] TUYEA R FHtE = ~dElE g

=y e] 49 #d ZF(Pennell trough)oﬂ J 23 Salvi et al. (2006)9] 2 x<}
FrAbstth ol 59 AT AIAE gstH Hetrle dEssor EI 2 WA
ojste] HEFHHom BE HUAMo Fygo]l 223 HRETOE o Fo]l ¥y
Ko, FYEA A 1 Gl FUtE Aoem FAHEAT AAHOZ JHE =2
TS BHolv detolEx e dF9 IaFwabme] 7|nkete] W] A3 &
Wpo] oJdte] 2o FYEARZ FEIA FEEH7] WEdd Aoz A HET
Tt ol E Al Z2d G A3 Ador FAYE JEEYUolESE 2T
HAGNA A&EHow T dow FAHAG wos 2rdl FEEAR FEH
= AEZEY 7dA = AAA 2 Wepreh H 7)o & Wstr glow dS5Fd
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o 2 HE 2 R HEPE
H3lels= Ao R AekAt(2d 4).
3 & (2018)
Toll Al 228 AE UHFTH
A 2}o] E(61.8~76.7%)7F 7+
~15.4%), Z="EIE(09~51%)%E H

g

-

H

a

_Y&S.:—IN

OSL‘

OE‘W'

_30_



g 1. 22 3 g S5 KI-13-GC2 (71°52’ S, 177048’ E, depth
1800 m)+= 22 3 A% gis+H JER A2 A KI-13-C204 55Ut
A&l A LGM A7l WAol &gk A& YEdTE (Shipp et al., 1999).
3 & (2018)9] AFAA A& FE Ao RSI4-C2v =22 & 5% USTWHHE9

t}. (AABW: Antarctic Bottom Water, CDW: Circumpolar

S5 A H A F5HS
Deep Wate, HSSW: High Salinity Shelf Water)

. %9

A = =L
o T4

o -
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a¥ 2. 839 KI-13-GC29) ARz, X-ray AHY, tiAbg, 9%, HEZFE T2 1
gol 3a¥E= IRD  (icerafted debris)E YEFH  Aolth. (MS: magnetic
susceptibility, S: sand, Z: silt, C: clay, S: smectite, I. illite, K: kaolinite, C:

chlorite)
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KI-13-GC29} RS14-C29] A &3%2 dtakS el 2zk tho]o]
W] KI-13-GC2 31019} 5 U5 -Zr o] RS14-C2 ool A
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M4 AL =E 24 2 27|

Atk 3d 7ko] A =3 F ot wrASER] 298, FjstER] 18 18 S
9] stEUglo] olgel o] W Wy AHE Yo A Ex dAHEE 100%E
e Avde A3E AFAY
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IODP 383: Dynamics of Pacific Antarctic Circumpolar Current (DYNAPACC)

The Antarctic Circumpolar Current (ACC) is the world’s strongest zonal current system
that connects all three major ocean basins of the global ocean and therefore integrates
and responds to global climate variability. Its flow is largely driven by strong westerly
winds and constricted to its narrowest extent in the Drake Passage. Transport of fresh
and cold surface and intermediate water masses through the Drake Passage (cold-water
route) strongly affects the Atlantic Meridional Overturning Circulation together with the
inflow of Indian Ocean water masses (warm-water route). Both oceanographic corridors
are critical for the South Atlantic contribution to Meridional Overturning Circulation
changes. In contrast to the Atlantic and Indian sectors of the ACC, and with the
exception of drill cores from the Antarctic continental margin and off New Zealand, the
Pacific sector of the ACC lacks information on its Cenozoic paleoceanography from
deep-sea drilling records. To advance our knowledge and understanding of Miocene to
Holocene atmosphere-ocean-cryosphere dynamics in the Pacific and their implications for
regional and global climate and atmospheric CO2, International Ocean Discovery Program
(IODP) Expedition 383 recovered sedimentary sequences at (1) three sites located in the
central South Pacific (U1539, U1540, and Ul541), (2) two sites at the Chile margin
(U1542 and Ulb44), and (3) one site from the pelagic eastern South Pacific (U1543)
close to the entrance to the Drake Passage. Because of persistently stormy conditions
and the resulting bad weather avoidance, we were not successful in recovering the
originally planned Proposed Site CSP-3A in the central South Pacific in the Polar
Frontal Zone. The drilled sediments at Sites Ul541 and Ul543 reach back to the late
Miocene, and those at Site U1540 reach back to the early Pliocene. High sedimentary
rate Pleistocene sedimentary sequences were drilled both in the central South Pacific
(Site U1539) and along the Chile margin. Taken together, the sites represent a depth
transect from ~1100 m at the Chile margin site (U1542) to “4070 m in the central South
Pacific (Site U1539) and allow investigation of changes in the vertical structure of the
ACC, a key issue for understanding the role of the Southern Ocean in the global carbon
cycle. The sites are located at latitudes and water depths where sediments will allow
the application of a wide range of siliciclastic—, carbonate—, and opal-based proxies to

address our objectives of reconstructing with unprecedented stratigraphic detail surface
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to deep—ocean variations and their relation to atmosphere and cryosphere changes
through stadial to interstadial, glacial to interglacial, and warmer than present time

intervals.

IODP 382: Iceberg Alley and Subantarctic Ice and Ocean Dynamics

International Ocean Discovery Program (IODP) Expedition 382, Iceberg Alley and
Subantarctic Ice and Ocean Dynamics, investigated the long-term -climate history of
Antarctica, seeking to understand how polar ice sheets responded to changes in
insolation and atmospheric CO2 in the past and how ice sheet evolution influenced
global sea level and vice versa. Five sites (Ul1534 - U1538) were drilled east of the
Drake Passage: two sites at 53.2°S at the northern edge of the Scotia Sea and three
sites at 57.4° -59.4°S in the southern Scotia Sea. We recovered continuously deposited
late Neogene sediment to reconstruct the past history and variability in Antarctic Ice

Sheet (AIS) mass loss and associated changes in oceanic and atmospheric circulation.

The sites from the southern Scotia Sea (Sites U1536 - U1538) will be used to study the
Neogene flux of icebergs through “Iceberg Alley,” the main pathway along which
icebergs calved from the margin of the AIS travel as they move equatorward into the
warmer waters of the Antarctic Circumpolar Current (ACC). In particular, sediments
from this area will allow us to assess the magnitude of iceberg flux during key times

of AIS evolution, including the following:

e The middle Miocene glacial intensification of the East Antarctic Ice Sheet,
e The mid-Pliocene warm period,

o The late Pliocene glacial expansion of the West Antarctic Ice Sheet,

e The mid-Pleistocene transition (MPT), and

e The “warm interglacials” and glacial terminations of the last 800 ky.

We will use the geochemical provenance of iceberg-rafted detritus and other glacially
eroded material to determine regional sources of AIS mass loss. We will also address
interhemispheric phasing of ice sheet growth and decay, study the distribution and
history of land-based versus marine-based ice sheets around the continent over time,

and explore the links between AIS variability and global sea level.

By comparing north - south variations across the Scotia Sea between the Pirie Basin
(Site U1538) and the Dove Basin (Sites U1536 and U1537), Expedition 382 will also
deliver critical information on how climate changes in the Southern Ocean affect ocean
circulation through the Drake Passage, meridional overturning in the region, water mass
production, ocean - atmosphere CO?2 transfer by windinduced upwelling, sea ice
variability, bottom water outflow from the Weddell Sea, Antarctic weathering inputs, and

changes in oceanic and atmospheric fronts in the vicinity of the ACC.
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Comparing changes in dust proxy records between the Scotia Sea and Antarctic ice
cores will also provide a detailed reconstruction of changes in the Southern Hemisphere
westerlies on millennial and orbital timescales for the last 800 ky. Extending the ocean
dust record beyond the last 800 ky will help to evaluate dust-climate couplings since
the Pliocene, the potential role of dust in iron fertilization and atmospheric CO2
drawdown during glacials, and whether dust input to Antarctica played a role in the
MPT.

The principal scientific objective of Subantarctic Front Sites U1534 and U1535 at the
northern limit of the Scotia Sea is to reconstruct and understand how ocean circulation
and intermediate water formation responds to changes in climate with a special focus on
the connectivity between the Atlantic and Pacific basins, the “cold water route.” The
Subantarctic Front contourite drift, deposited between 400 and 2000 m water depth on
the northern flank of an east - west trending trough off the Chilean continental shelf, is
ideally situated to monitor millennial- to orbital-scale variability in the export of
Antarctic Intermediate Water beneath the Subantarctic Front. During Expedition 382, we
recovered continuously deposited sediments from this drift spanning the late Pleistocene
(from ~0.78 Ma to recent) and from the late Pliocene (73.1-2.6 Ma). These sites are
expected to yield a wide array of paleoceanographic records that can be used to
interpret past changes in the density structure of the Atlantic sector of the Southern
Ocean, track migrations of the Subantarctic Front, and give insights into the role and
evolution of the cold water route over significant climate episodes, including the

following:
e The most recent warm interglacials of the late Pleistocene and

e The intensification of Northern Hemisphere glaciation.

IODP 379: Amundsen Sea West Antarctic Ice Sheet History

The Amundsen Sea sector of Antarctica has long been considered the most vulnerable
part of the West Antarctic Ice Sheet (WAIS) because of the great water depth at the
grounding line and the absence of substantial ice shelves. Glaciers in this configuration
are thought to be susceptible to rapid or runaway retreat. Ice flowing into the
Amundsen Sea Embayment is undergoing the most rapid changes of any sector of the
Antarctic Ice Sheet outside the Antarctic Peninsula, including changes caused by
substantial grounding-line retreat over recent decades, as observed from satellite data.
Recent models suggest that a threshold leading to the collapse of WAIS in this sector
may have been already crossed and that much of the ice sheet could be lost even under

relatively moderate greenhouse gas emission scenarios.

Drill cores from the Amundsen Sea provide tests of several key questions about controls
on ice sheet stability. The cores offer a direct record of glacial history offshore from a

drainage basin that receives ice exclusively from the WAIS, which allows clear
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comparisons between the WAIS history and low-latitude climate records. Today, warm
Circumpolar Deep Water (CDW) is impinging onto the Amundsen Sea shelf and causing
melting of the underside of the WAIS in most places. Reconstructions of past CDW
intrusions can assess the ties between warm water upwelling and large-scale changes
in past grounding-line positions. Carrying out these reconstructions offshore from the
drainage basin that currently has the most substantial negative mass balance of ice

anywhere in Antarctica is thus of prime interest to future predictions.

The scientific objectives for this expedition are built on hypotheses about WAIS
dynamics and related paleoenvironmental and paleoclimatic conditions. The main

objectives are

1. To test the hypothesis that WAIS collapses occurred during the Neogene and

Quaternary and, if so, when and under which environmental conditions;

2. To obtain ice—proximal records of ice sheet dynamics in the Amundsen Sea that
correlate with global records of ice-volume changes and proxy records for atmospheric

and ocean temperatures;

3. To study the stability of a marine-based WAIS margin and how warm deep—water

incursions control its position on the shelf;

4. To find evidence for earliest major grounded WAIS advances onto the middle and

outer shelf;

5. To test the hypothesis that the first major WAIS growth was related to the uplift of
the Marie Byrd Land dome.

International Ocean Discovery Program (IODP) Expedition 379 completed two very
successful drill sites on the continental rise of the Amundsen Sea. Site U1532 is located
on a large sediment drift, now called Resolution Drift, and penetrated to 794 m with
90% recovery. We collected almost-continuous cores from the Pleistocene through the
Pliocene and into the late Miocene. At Site U1533, we drilled 383 m (70% recovery) into
the more condensed sequence at the lower flank of the same sediment drift. The cores
of both sites contain unique records that will enable study of the cyclicity of ice sheet
advance and retreat processes as well as bottom-water circulation and water mass
changes. In particular, Site U1532 revealed a sequence of Pliocene sediments with an
excellent paleomagnetic record for high-resolution climate change studies of the

previously sparsely sampled Pacific sector of the West Antarctic margin.

Despite the drilling success at these sites, the overall expedition experienced three

unexpected difficulties that affected many of the scientific objectives:

1. The extensive sea ice on the continental shelf prevented us from drilling any of the

proposed shelf sites.

2. The drill sites on the continental rise were in the path of numerous icebergs of
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various sizes that frequently forced us to pause drilling or leave the hole entirely as
they approached the ship. The overall downtime caused by approaching icebergs was

50% of our time spent on site.

3. An unfortunate injury to a member of the ship’s crew cut the expedition short by
one week.

Recovery of core on the continental rise at Sites U1532 and U1533 cannot be used to
precisely indicate the position of ice or retreat of the ice sheet on the shelf. However,
these sediments contained in the cores offer a range of clues about past WAIS extent
and retreat. At Sites U1532 and U1533, coarse-grained sediments interpreted to be
ice-rafted debris (IRD) were identified throughout all recovered time periods. A dominant
feature of the cores is recorded by lithofacies cyclicity, which is interpreted to represent
relatively warmer periods variably characterized by higher microfossil abundance, greater
bioturbation, and higher counts of IRD alternating with colder periods characterized by
dominantly gray laminated terrigenous muds. Initial comparison of these cycles to
published records from the region suggests that the units interpreted as records of
warmer time intervals in the core tie to interglacial periods and the units interpreted as

deposits of colder periods tie to glacial periods.

The cores from the two drill sites recovered sediments of purely terrigenous origin
intercalated or mixed with pelagic or hemipelagic deposits. In particular, Site U1533,
which is located near a deep-sea channel originating from the continental slope, contains
graded sands and gravel transported downslope from the shelf to the abyssal plain. The
channel is likely the path of such sediments transported downslope by turbidity currents
or other sediment-gravity flows. The association of lithologic facies at both sites
predominantly reflects the interplay of downslope and contouritic sediment supply with
occasional input of more pelagic sediment. Despite the lack of cores from the shelf, our
records from the continental rise reveal the timing of glacial advances across the shelf
and thus the existence of a continent-wide ice sheet in West Antarctica at least during

longer time periods since the late Miocene.

Cores from both sites contain abundant coarse-grained sediments and clasts of plutonic
origin transported either by downslope processes or by ice rafting. If detailed provenance
studies confirm our preliminary assessment that the origin of these samples is from the
plutonic bedrock of Marie Byrd Land, their thermochronological record will potentially
reveal timing and rates of denudation and erosion linked to crustal uplift. The
chronostratigraphy of both sites enables the generation of a seismic sequence
stratigraphy not only for the Amundsen Sea rise but also for the western Amundsen

Sea along the Marie Byrd Land margin through a connecting network of seismic lines.
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IODP 374: Ross Sea West Antarctic Ice Sheet History

The marine-based West Antarctic Ice Sheet (WAIS) is currently retreating due to
shifting wind-driven oceanic currents that transport warm waters toward the ice margin,
resulting in ice shelf thinning and accelerated mass loss of the WAIS. Previous results
from geologic drilling on Antarctica’s continental margins show significant variability in
marine-based ice sheet extent during the late Neogene and Quaternary. Numerical
models indicate a fundamental role for oceanic heat in controlling this variability over at
least the past 20 My. Although evidence for past ice sheet variability has been collected
in marginal settings, sedimentologic sequences from the outer continental shelf are
required to evaluate the extent of past ice sheet variability and the associated oceanic
forcings and feedbacks. International Ocean Discovery Program Expedition 374 drilled a
latitudinal and depth transect of five drill sites from the outer continental shelf to rise in
the eastern Ross Sea to resolve the relationship between climatic and oceanic change
and WAIS evolution through the Neogene and Quaternary. This location was selected
because numerical ice sheet models indicate that this sector of Antarctica is highly
sensitive to changes in ocean heat flux. The expedition was designed for optimal
data-model integration and will enable an improved understanding of the sensitivity of
Antarctic Ice Sheet (AIS) mass balance during warmer—than-present climates (e.g., the
Pleistocene “super interglacials,” the mid-Pliocene, and the late early to middle Miocene).

The principal goals of Expedition 374 were to

e Evaluate the contribution of West Antarctica to far—field ice volume and sea level

estimates;

e Reconstruct ice-proximal atmospheric and oceanic temperatures to identify past polar

amplification and assess its forcings and feedbacks;

e Assess the role of oceanic forcing (e.g., sea level and temperature) on AIS
stability/instability;

e Identify the sensitivity of the AIS to Earth’s orbital configuration under a variety of

climate boundary conditions; and

e Reconstruct eastern Ross Sea paleobathymetry to examine relationships between

seafloor geometry, ice sheet stability/instability, and global climate.
To achieve these objectives, we will

e [Use data and models to reconcile intervals of maximum Neogene and Quaternary

Antarctic ice advance with far—field records of eustatic sea level change;

e Reconstruct past changes in oceanic and atmospheric temperatures using a

multiproxy approach,

e Reconstruct Neogene and Quaternary sea ice margin fluctuations in datable marine

continental slope and rise records and correlate these records to existing inner
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continental shelf records;

e TExamine relationships among WAIS stability/instability, Earth’s orbital configuration,

oceanic temperature and circulation, and atmospheric pCO2; and

e (Constrain the timing of Ross Sea continental shelf overdeepening and assess its

impact on Neogene and Quaternary ice dynamics.

Expedition 374 was carried out from January to March 2018, departing from Lyttelton,
New Zealand. We recovered 1292.70 m of high—quality cores from five sites spanning
the early Miocene to late Quaternary. Three sites were cored on the continental shelf
(Sites U1521, U1522, and U1523). At Site Ul521, we cored a 650 m thick sequence of
interbedded diamictite, mudstone, and diatomite, penetrating the Ross Sea seismic
Unconformity RSU4. The depositionalreconstructions of past glacial and open-marine
conditions at this site will provide unprecedented insight into environmental change on
the Antarctic continental shelf during the early and middle Miocene. At Site U1522, we
cored a discontinuous upper Miocene to Pleistocene sequence of glacial and glaciomarine
strata from the outer shelf, with the primary objective to penetrate and date seismic
Unconformity RSU3, which is interpreted to represent the first major continental shelf -
wide expansion and coalescing of marine-based ice streams from both East and West
Antarctica. At Site Ulb523, we cored a sediment drift located beneath the westerly
flowing Antarctic Slope Current (ASC). Cores from this site will provide a record of the
changing vigor of the ASC through time. Such a reconstruction will enable testing of
the hypothesis that changes in the vigor of the ASC represent a key control on
regulating heat flux onto the continental shelf, resulting in the ASC playing a

fundamental role in ice sheet mass balance.

We also cored two sites on the continental slope and rise. At Site U1524, we cored a
Plio - Pleistocene sedimentary sequence on the continental rise on the levee of the
Hillary Canyon, which is one of the largest conduits of Antarctic Bottom Water delivery
from the Antarctic continental shelf into the abyssal ocean. Drilling at Site Ul1524 was
intended to penetrate into middle Miocene and older strata but was initially interrupted
by drifting sea ice that forced us to abandon coring in Hole U1524A at 399.5 m drilling
depth below seafloor (DSF). We moved to a nearby alternate site on the continental
slope (U1525) to core a single hole with a record complementary to the upper part of
the section recovered at Site Ul524. We returned to Site U1524 3 days later, after the
sea ice cleared. We then cored Hole Ul524C with the rotary core barrel with the
intention of reaching the target depth of 1000 m DSF. However, we were forced to
terminate Hole U1524C at 441.9 m DSF due to a mechanical failure with the vessel that
resulted in termination of all drilling operations and a return to Lyttelton 16 days earlier
than scheduled. The loss of 39% of our operational days significantly impacted our
ability to achieve all Expedition 374 objectives as originally planned. In particular, we

were not able to obtain the deeper time record of the middle Miocene on the continental
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rise or abyssal sequences that would have provided a continuous and contemporaneous
archive to the high—quality (but discontinuous) record from Site U521 on the
continental shelf. The mechanical failure also meant we could not recover sediment cores
from proposed Site RSCR-19A, which was targeted to obtain a high-fidelity, continuous
record of upper Neogene and Quaternary pelagic/hemipelagic sedimentation. Despite our
failure to recover a shelf-to-rise transect for the Miocene, a continental shelf-to-rise
transect for the Pliocene to Pleistocene interval is possible through comparison of the
high—quality records from Site U1522 with those from Site U1525 and legacy cores from
the Antarctic Geological Drilling Project (ANDRILL).
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