BSPN17130 - 007 - 13

# 네오디뮴 동위원소를 이용한 북극해 퇴적물 기원지 변화 복원: 플라이스토세 중/후기 북극해 빙하 양상에 대한 고찰

The variation in the sediment provenance of the Arctic Ocean: implications for middle to late Pleistocene glacial history in the Arctic Ocean

# 극지연구소

2018. 11. 15

## 한 국 해 양 과 학 기 술 원 부 설 극 지 연 구 소

## 제 출 문

### 한국연구재단 귀하

본 보고서를 "네오디뮴 동위원소를 이용한 북극해 퇴적물 기원지 변화 복원: 플라이스토세 중/후기 북극해 빙하 양상에 대한 고찰"과제의 최종보고서로 제출합니다.



연구책임자 :장광철

# 이공분야 학문후속세대양성사업 결과보고서

| 세부 사업명    |     | 박사후국내연수(추경)                                                                                                                                         | 과제번호 | 2017R1A6A3A01076729 |
|-----------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------|
| 연구수행기간    |     | 2017.11.1.~2018.10.31.                                                                                                                              | 제출일자 | 2018.11.15.(목)      |
| 연구<br>과제명 | 국 문 | 네오디뮴 동위원소를 이용한 북극해 퇴적물 기원지 변화 복원:<br>플라이스토세 중/후기 북극해 빙하 양상에 대한 고찰                                                                                   |      |                     |
|           | 영 문 | The variation in the sediment provenance of the Arctic Ocean:<br>implications for middle to late Pleistocene glacial history in the Arctic<br>Ocean |      |                     |

#### 1. 당초 연구목적 및 배경

- 북극해 지역은 해빙(解氷) 또는 대륙 빙상 등과 같은 ice의 성장 및 후퇴 과정에 따라, ice albedo feedback(Curry et al., 1995), 해양-대기 간의 열교환(Overland and Pease, 1982), 북극해 심층수 형성(Schlosser et al., 1991) 등에 영향을 끼치며 전 지구적 기후 시스템에 매우 중요한 역할을 한다.
- 때문에, 북극해 해빙 역사를 비롯한 고해양환경변화 연구는 전 지구적 기후변화의 역사서를 해석하는 것과 같으며, 지구온난화로 대변되는 현재의 기후 변화를 심도 있게 이해하고 미 래 기후 변화를 예측하는데 필수불가결이다.
- 북극해 해빙 또는 대륙 빙상의 성장 및 후퇴 과정은 주로 빙하기원 쇄설성 퇴적물 (ice-rafted debris, IRD)의 유입 사건 혹은 부유성 유공충의 산소 동위원소 비의 대비를 통해 주로 복원되었으나(Darby et al., 2006; Knies et al., 2007; Poore et al., 1999; Stein et al., 1994a, 1994b), 이러한 방법들은 상대적으로 근거리에서 일어난 빙하 후퇴 과정만을 복원할 수 있거나, 퇴적속도가 느린 지역에서는 활용이 제한되고 융해된 얼음의 기원지 파악이 불가능해 추가적인 자료 해석을 요구한다는 단점이 있다.
- 본 연구에서는 이러한 단점을 보완하는 지시자로서 <u>네오디뮴 동위원소 비</u>(<sup>143</sup>Nd/<sup>144</sup>Nd, ɛ<sub>Nd</sub>; ɛ<sub>Nd</sub>은 표준시료인 CHUR의 <sup>143</sup>Nd/<sup>144</sup>Nd에 대한 상대값임)를 활용하였다. 이 지시자는 생물 활동이나 속성과정, 그리고 풍화과정에서의 동위원소 분별작용이 거의 없어 모암의 동위원 소 비가 퇴적물에 그대로 전달되기에 퇴적물 기원지 추적에 매우 용이하다 (Hemming et al., 1998; Jang et al., 2017; Pimentel et al., 2001; Roy et al., 2007). 북극해 퇴적물 기원지 추적은 해당 지역의 해빙 및 대륙 빙상의 성장 및 후퇴 과정과 큰 연관성이 있다.
- 예를 들어, <u>북아메리카</u>를 이루는 주요 지괴(e<sub>Nd</sub> ~ -13)는 <u>시베리아</u> 지역의 지괴(e<sub>Nd</sub> ~ -5)
   에 비해 상대적으로 낮은 네오디뮴 동위원소 비를 가지기에 퇴적물 내의 네오디뮴 동위원
   소 비를 분석한다면, <u>두 지역에서 성장한 대륙 빙상의 상대적인 거동을 유추</u>할 수 있으며,
   더불어 오늘날 북극해 지역의 화두 중 하나인, <u>동시베리아 지역 거대빙하의 형성 시기</u>에 대
   한 실마리를 제공할 수 있을 것으로 여겨진다.

 본 연구에서는, 2015년 「아라온」 호 제 6차 북극해 탐사 동안 북극해 Chukchi Borderland 지역에서 획득한 <u>ARA06C-04JPC 퇴적물 코어</u>를 대상으로 쇄설성 네오디뮴 동위원소 비를 분석하였다 (그림 1). 해당 코어는 북극해 최장 길이 코어로서, 과거 <u>플라이스토세 중/후기</u> 북아메리카와 유라시아 대륙 및 동시베리아 대륙붕에 발달된 대륙 빙하의 거동을 복원하는 데 매우 적합하다.



 그림 1. 샘플링 지역 (ARA06C-04; 붉은 삼각형). 타원안의 숫자는 각 대륙으로부터 유출되는 강물의 대표적인 €Nd 값을 나타낸다. 그림 출처: Jang et al. (2013) in *Earth Planet. Sci. Lett.* 를 일부 수정.

#### 2. 당초 연구내용, 범위 및 방법

 본 연구에서는 과거 플라이스토세 중/후기 빙하기와 간빙기 동안 북극해 주변 대륙에 발달 했던 빙하의 확장과 후퇴에 따른 북극해의 기후환경변화를 네오디뮴 동위원소 비를 이용한 해저퇴적물의 기원지 복원을 목표로, 아래와 같은 세부 계획을 당초 수립하였다.

| 시기    | 연구목표                         | 평가 착안점                                                                                                      |
|-------|------------------------------|-------------------------------------------------------------------------------------------------------------|
| 약 1개월 | 예비 자료 확보 및 시료선별              | - 층서 모델 확립 및 XRF 데이터 확보<br>- 분석 시료 선별                                                                       |
| 약 3개월 | 분석 프로토콜 구축                   | - 자생성분 분리 - 쇄설성분 용해<br>- 네오디뮴 분리 - 네오디뮴 동위원소 비 분석                                                           |
| 약 4개월 | 북극해 시추 코어의<br>네오디뮴 동위원소 비 분석 | - 북아메리카 및 시베리아 대륙으로 대표되는<br>기원지 변화 복원                                                                       |
| 약 4개월 | 북극해 빙하 양상 유추                 | <ul> <li>기원지 변화와 대륙 빙하 발달과의 연관성 평가</li> <li>플라이스토세 중/후기 북극해 주변 대륙 빙하<br/>발달과정 복원</li> <li>논문화 작업</li> </ul> |

#### 3. 연구내용 및 결과

가. 예비 자료 확보 및 시료 선별

 Line scanning 자료 및 X-ray fluorescence (XRF) 분석 결과, 북극해 퇴적물의 전형 적인 층서 구조인 갈색층(Brown or B layer)-회색층(Gray layer)의 교호와 함께 칼슘 이 풍부한 흰색-분홍색 빛깔의 탄산염 및 돌로마이트 층(W or PW layer)이 삽입층으 로서 반복적으로 관찰되는 것을 확인할 수 있었다 (그림 2).



- 그림 2. ARA06C-04JPC 코어퇴적물의 line scan images 및 L\* 값 비교. 갈색층과 회색층의 교호하에 간헐적인 탄산염층이 삽입층으로 나타나는 것이 특징적이다. L\*값은 퇴적코어의 밝기도를 나타내며, 북극해 퇴적물 간의 층서를 비교하기에 용이한 지표이다. 본 코어에서는 이러한 결과를 바탕으로 기존 문서들에서 보고된 B1부터 B16층, 그리고 W3, PW층 등을 확정할 수 있었다. B16층 이하에서도 갈색층이 관찰되었으나, 이들에 대한 코드네임 (e.g. B17 등)은 부여하지 않았다. 코어 하부의 매우 두꺼운 회색층이 특징적이다. 붉은 화살표는 선별된 시료 위치를 가리킴.
- 북극해 퇴적물의 갈색층은 일반적으로 간빙기 퇴적물로, 회색층은 빙하기의 것으로 여 겨지는데, 이는 간빙기 시기 대륙붕 지역으로부터 유입되는 망간(Mn) 함유량과 관련이 깊다 (Jakobsson et al., 2001; März et al., 2011). 이러한 배경 하에, 본 코어의 갈색 층들을 기존 북극해 코어의 퇴적층인 B1-B16층 등과 비견하였고 (그림 2), 이는 다시 연대 모델의 기초자료로서 활용되었다. 함께 관찰되는 W 및 PW층은 역시 기존 층서모 델과 비교되었는데 (그림 2), 이 탄산염 층들은 캐나다 군도(Archipelago)지역의 Bank/Victoria 섬에서 유입되는 것으로 알려져 있으며 로렌타이드 유빙에 의한 퇴적의 강력한 증거로서 활용된다 (Adler et al., 2009; Jang et al., 2013; Stein et al., 2010).
- 분석 시료는 갈색층 및 탄산염 층에서 주로 선별되었고, 추가적으로 9미터 이하에서 관 찰되는 두터운 회색층에서 역시 시료가 선택되었다 (총 40개). 예상되는 시료의 연대 범위는 약 50만년으로 Marine Isotope Stage (MIS) 13이 이에 해당한다 (그림 3).
- 나. 분석 프로토콜 구축
  - 모든 실험은 극지연구소 내 청정실험실에서 진행되었다. 우선, 0.02M hydroxylamine hydrochloride in 25% acetic acid를 활용하여 시료 내 자생(authigenic)성분을 제거하

는 과정을 거쳤고, 이후 남겨진 쇄설성 퇴적물을 Bayon et al. (2009)에 소개된 알칼리 용융법을 이용하여 용해시켰다. Column chromatography법(TRU 및 Ln 레진 사용)을 통해 용해물로부터 순수한 네오디뮴만을 분리하였고 (e.g. Jang et al., 2018), 극지 연 구소 내 열이온화질량분석기(TIMS)를 활용하여 네오디뮴 동위원소 비를 성공적으로 분석할 수 있었다. 암석 표준 시료인 BHVO-1과 JB-2를 통해 동일 실험을 진행했을 때의, <sup>143</sup>Nd/<sup>144</sup>Nd은 각각 0.512980 ± 0.000010 (2σ, n =2), 0.513090 ±0.000009 (2σ, n =2)으로 기존 보고된 문헌 값과 오차범위 내에서 일치했다.

- 다. 북극해 시추 코어의 네오디뮴 동위원소 비 분석
  - ARA06C-04JPC 코어에서 분석된 네오디뮴 동위원소 비는 평균 ɛ<sub>Nd</sub> = -9.0 ± 3.1 (1o)
     을 나타냈다 (그림 3). 이 값은 북아메리카의 주요 지괴와 시베리아 지역의 주요 지괴
     에서 분석된 ɛ<sub>Nd</sub>의 중간 값으로서, Chukchi Borderland에 위치한 현 코어가 북아메리카
     및 척치/시베리아 모두로부터 퇴적물을 공급받고 있음을 의미한다. 최대 -17.4까지 떨어지는 unradiogenic ɛ<sub>Nd</sub> 피크들 (여기서는 trough의 의미로 사용)은 대부분 탄산염 층에서
     획득된 시료들로서 (그림 3의 노란별 표시), 해당 퇴적물들이 북미 지역에서 유래되었음을
     재차 강조하였다. 전반적으로 회색층에서의 ɛ<sub>Nd</sub> 값들은 갈색층에 비해 값이 높았으며, 이는
     빙하기에 시베리아 지역으로부터 퇴적물 유입이 상대적으로 우세하였음을 시사한다.



그림 3. 네오디뮴 동위원소 비 분석 결과 (붉은 다이아몬드)와 L\* (검은선), IRD counts (파란선)
 및 XRF 자료 (Mn/Al : 갈색선, Ca/Al : 녹색선) 간의 비교. ε<sub>Nd</sub> 값은 -17.4에서 -3.3
 에 이르기까지 넓은 범위에 걸쳐 나타났으며, 대부분의 unradiogenic peak 들은 탄산
 염 층에서 관찰됨 (노란별). 단, 주황별은 기존에 보고되지 않은 탄산염층. 층서 모델을
 기반으로 한 연대모델이 함께 표기되었음.

라. 북극해 빙하양상 유추

- Chukchi Borderland 지역은 시간에 따른 퇴적물 유입 양상의 변화가 매우 크다. 빙하기 에는 상대적으로 척치/동시베리아 지역으로부터의 퇴적물 유입이 원활한 반면, 해빙기 혹은 간빙기 시기는 이벤트적인 로렌타이드 유빙에 의한 퇴적이 특징적이다.
- 탄산염 층 혹은 높은 Ca/Al 비를 보이는 퇴적층에서 획득한 시료는 대부분 낮은 &Md 값 들을 보였는데 (그림 3), 이는 앞서 밝혔듯이 <u>로렌타이드 유빙에 의한 퇴적</u>을 가리킨다 (e.g. Bazhenova et al., 2017; Jang et al. 2013). 이러한 기록은 후기 MIS 5.4 와 후 기 MIS 8을 제외하고는 주로 간빙기 시기(<u>MIS 3, 5.1, 7, 9, 11 및 13</u>)에만 나타나는 데, 이는 당시 로렌타이드 유빙이 Chukchi Borderland 지역까지 충분히 도달할 수 있을 만큼 **해빙 영역이 축소**되었음을 시사한다.
- 반면, 대부분의 빙하기에는 로렌타이드 빙상이 계속적으로 성장하는 과정에서 유빙이 생성되었다 하더라도, 코어 지역까지 도달할 수 없었을 정도로 <u>영구해빙(perennial sea</u> ice)이 확장하였을 것으로 여겨진다.
- <u>후기 MIS 5.4와 8</u> 시기의 경우는 낮은 <sub>ENd</sub> 값을 고려하였을 때 일반적인 빙하기에 비해 <u>해빙영역이 축소</u>되었음을 예상할 수 있는데, 실제 해당 시기 퇴적코어에서 높은 생물교란작용(bioturbation)의 흔적이 관찰된다는 것을 보면(not shown) 퇴적 당시 북극해가 상대적으로 따뜻하였음을 짐작할 수 있다.
- 탄산염 층에서 분석된 ٤<sub>Md</sub> 결과를 제외하더라도 빙하기 퇴적물의 ٤<sub>Md</sub> 값은 간빙기의 것 에 비해 상대적으로 낮은 값을 나타내는데 (e.g. MIS 6 및 12; 그림 3), 이는 빙하기 시기 북아메리카 퇴적물의 유입이 감소함과 동시에 <u>척치해 혹은 동시베리아해에 성장</u> 한 해빙 혹은 거대빙하가 코어 지역까지 퇴적물을 운반하며 나타난 결과로 여겨진다. 영구해빙의 존재를 고려하였을 때, 서시베리아 지역으로부터의 퇴적물 유입은 미미했을 것으로 여겨진다.

#### 4. 향후 연구결과의 기대효과 및 활용 방안

- 극지연구소에서 확립된 쇄설성 네오디뮴 동위원소 비 분석 프로토콜은 다양한 연구 지
   역 (e.g. 인도양)에서 퇴적물 기원지 유추를 토대로 한 고환경 연구 (e.g. 몬순변화)에
   적용될 수 있는 여지가 있으며, 기술 홍보를 통해 국내 다양한 연구진들과의 협업을 기
   대할 수 있음.
- 본 연구에서 복원된 주변 대륙 빙하 및 해빙의 거동 관련 기록은, 현재까지 보고된 서 북극해 최장 기록으로서 향후 미래기후 예측 모델링 등에 활용될 가능성이 다분함.
- 서북극해 지역 선도적인 고환경 연구를 통해, 향후 국제공동해저시추프로그램 (2023년 이후 추진예정) 등과 같은 거대지구과학 프로그램에 참여 기회 확대.
- 내년 상반기 저널 투고 및 학회 발표 예정.

#### 5. 참고문헌

- Adler, R.E., Polyak, L., Ortiz, J.D., Kaufman, D.S., Channell, J.E., Xuan, C., Grottoli, A.G., Sellén, E. and Crawford, K.A., 2009. Sediment record from the western Arctic Ocean with an improved Late Quaternary age resolution: HOTRAX core HLY0503-8JPC, Mendeleev Ridge. Global and Planetary Change, 68(1), 18-29.
- Bayon, G., Barrat, J.A., Etoubleau, J., Benoit, M., Bollinger, C., Révillon, S., 2009a. Determination of rare earth elements, Sc, Y, Zr, Ba, Hf and Th in geological samples by ICP-MS after Tm addition and alkaline fusion. Geostand. Geoanal. Res. 33, 51-62.
- Bazhenova, E., Fagel, N. and Stein, R., 2017. North American origin of "pink-white" layers at the Mendeleev Ridge (Arctic Ocean): New insights from lead and neodymium isotope composition of detrital sediment component. Marine Geology, 386, 44-55.
- Jakobsson, M., Løvlie, R., Al-Hanbali, H., Arnold, E., Backman, J. and Mörth, M., 2000. Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology. Geology, 28(1), 23-26.
- Curry, J.A., Schramm, J.L., Ebert, E.E., 1995. Sea ice-albedo climate feedback mechanism. J. Climate 8, 240-247.
- Darby, D.A., Polyak, L., Bauch, H.A., 2006. Past glacial and interglacial conditions in the Arctic Ocean and marginal seas—a review. Prog. Oceanogr. 71, 129-144.
- Hemming, S., Broecker, W., Sharp, W., Bond, G., Gwiazda, R., McManus, J., Klas, M., Hajdas, I., 1998. Provenance of Heinrich layers in core V28-82, northeastern Atlantic: <sup>40</sup>Ar/<sup>39</sup>Ar ages of ice-rafted hornblende, Pb isotopes in feldspar grains, and Nd-Sr-Pb isotopes in the fine sediment fraction. Earth Planet. Sci. Lett. 164, 317-333.
- Jang, K., Han, Y., Huh, Y., Nam, S.-I., Stein, R., Mackensen, A., Matthiessen, J., 2013. Glacial freshwater discharge events recorded by authigenic neodymium isotopes in sediments from the Mendeleev Ridge, western Arctic Ocean. Earth Planet. Sci. Lett. 369-370, 148-157.
- Jang, K., Huh, Y., Han, Y., 2017. Authigenic Nd isotope record of North Pacific Intermediate Water formation and boundary exchange on the Bering Slope. Quat. Sci. Rev., 156: 150-163.
- Jang, K., Huh, Y. and Han, Y., 2018. Diagenetic overprint on authigenic Nd isotope records: A case study of the Bering Slope. Earth and Planetary Science Letters, 498, 247-256.

- Knies, J., Matthiessen, J., Mackensen, A., Stein, R., Vogt, C., Frederichs, T., Nam, S.-I., 2007. Effects of Arctic freshwater forcing on thermohaline circulation during the Pleistocene. Geology 35, 1075-1078.
- März, C., Stratmann, A., Matthießen, J., Meinhardt, A.K., Eckert, S., Schnetger, B., Vogt, C., Stein, R. and Brumsack, H.J., 2011. Manganese-rich brown layers in Arctic Ocean sediments: composition, formation mechanisms, and diagenetic overprint. Geochimica et Cosmochimica Acta, 75(23), 7668-7687.
- Overland, J.E., Pease, C.H., 1982. Cyclone climatology of the Bering Sea and its relation to sea ice extent. Mon. Weather Rev. 110, 5-13.
- Pimentel, M., Dardenne, M., Fuck, R., Viana, M., Junges, S., Fischel, D., Seer, H., Dantas, E., 2001. Nd isotopes and the provenance of detrital sediments of the Neoproterozoic Brasılia Belt, central Brazil. J. S. Am. Earth Sci. 14, 571-585.
- Poore, R.Z., Osterman, L., Curry, W.B., Phillips, R.L., 1999. Late Pleistocene and Holocene meltwater events in the western Arctic Ocean. Geology 27, 759-762.
- Roy, M., van de Flierdt, T., Hemming, S.R., Goldstein, S.L., 2007. <sup>40</sup>Ar/<sup>39</sup>Ar ages of hornblende grains and bulk Sm/Nd isotopes of circum-Antarctic glacio-marine sediments: Implications for sediment provenance in the southern ocean. Chem. Geol. 244, 507-519.
- Stein, R., Nam, S.I.I., Schubert, C., Vogt, C., Futterer, D., Heinemeier, J., 1994a. The Last Deglaciation Event in the Eastern Central Arctic Ocean. Science 264, 692-696.
- Stein, R., Schubert, C., Vogt, C., Fütterer, D., 1994b. Stable isotope stratigraphy, sedimentation rates, and salinity changes in the Latest Pleistocene to Holocene eastern central Arctic Ocean. Mar. Geol. 119, 333-355.
- Stein, R., Matthiessen, J., Niessen, F., Krylov, A., Nam, S.I. and Bazhenova, E., 2010. Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean). Polarforschung, 79(2), 97-121.
- Schlosser, P., Bönisch, G., Rhein, M., Bayer, R., 1991. Reduction of deepwater formation in the Greenland Sea during the 1980s: Evidence from tracer data. Science 251, 1054-1056.

