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Abstract
To evaluate recent changes in anthropogenic Pb pollution and its sources and origins in Antarctica, Pb
andBa concentrations and Pb isotopic compositions were determined in a continuous series of 40
snow samples from a 2-mdeep snowpit, covering 4 full years from2011/12 summer to 2015/16
summer, at theHerculesNévé plateau inVictoria Land, Antarctica. The results show thatmore than
90%of the atmospheric Pb deposited inVictoria Landwas of noncrustal origin. This result implies the
persistence of a significant human impact on the atmospheric cycle of Pb in themost remote places on
Earth, despite a substantial reduction in anthropogenic Pb emissions in the SouthernHemisphere
during recent years. The Pb isotopic fingerprints indicate that SouthAmerica, particularly Brazil and
Chile, has become amajor source of anthropogenic Pb reachingVictoria Land.Our data highlight the
need for both national and internationalmeasures to further reduce Pb emissions.

1. Introduction

Lead (Pb) is one of themost problematic and toxic heavymetals, can affectmany human organs and can be
released into the environment through human activities such asmining, smelting, andmanufacturing processes
(Needleman 2004, Rauch and Pacyna 2009, Csavina et al 2012, Klochko 2016, Rahman and Singh 2019). The
widespread use of Pb has released large amounts of Pb into the atmosphere. In particular, after the SecondWorld
War, Pb emissions rapidly increased due to themassive use of Pb alkyl additives in gasoline (hereafter referred to
as leaded gasoline), reached a peak between the late 1960s and the early 1970s in theUnited States, and accounted
for approximately two-thirds of global Pb emissions during the same period (Nriagu 1990). Since the 1970s, Pb
pollution has declined inmost of theworld following the phase-out of leaded gasoline and implementation of
strict emission standards in Renberg et al (2001).

Fineparticulate Pbpollutants can be transported over long distances through the atmosphere, even reaching
Antarctica,which is themost remote area onEarth, andAntarctic surface snowresponds to the changing
deposition of anthropogenic Pb.Thus, Antarctic snow layers provide records of past changes inPbdeposition,
which helpsus understand the global nature of atmosphericPbpollution and recent changes in response to efforts
to reducePb emissions (Wolff and Suttie 1994, Barbante et al1997, 1998, Planchon et al2002, Chang et al2016). A
few reliable records have demonstrated that peakPbpollution inAntarctica occurred in the 1970s and 1980swith a
small time difference between the regions; the late 1970s–1980s in theAtlantic sector ofAntarctica (Coats Land)
(Wolff and Suttie 1994, Planchon et al 2003), the late 1980s in thePacific sector (Victoria Land) (Barbante et al
1997, 1998,VandeVelde et al2005), and the 1960s–1980s in the Indian sector (LawDome) (Vallelonga et al 2002,
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VandeVelde et al 2005) (figure S1 available online at stacks.iop.org/ERC/4/055006/mmedia). This result reflects
thedifference in relative contributions of different source regions toPbpollution inAntarctica.

During recent decades, Pb isotope systematics have beenwidely used to characterize the geographical
features of the potential source regions that affect the trend and extent of anthropogenic Pb accumulation in
Antarctica (Rosman et al 1994, Rosman et al 1998, Planchon et al 2003, Van deVelde et al 2005,Mcconnell et al
2014, Chang et al 2016, Bertinetti et al 2020). These studies generally linked substantial changes in relative
contributions from twomajor source regions, SouthAmerica andAustralia to sampling locations near each
source region. For example, the dominance of SouthAmerican contributions persisted inCoats Land and the
central East Antarctic Plateau (Dome Fuji andDomeA) (Planchon et al 2003), while Australian sources
dominated Pb inputs toVictoria Land, LawDome, andDomeC,which is an inland site facing the IndianOcean
(Vallelonga et al 2002, Van deVelde et al 2005, Bertinetti et al 2020). However, a composite Pb isotopic record
froman extensive array of 16 ice cores across Antarctica suggested that Australia was consistently responsible for
the inputs of anthropogenic Pb over Antarctica (Mcconnell et al 2014).

Considering the aforementioned features, the source apportionment of Pb is very important for
understanding the underlying transportmechanisms and relative contributions of different sources and source
regions to the anthropogenic Pb input inAntarctica at different temporal and spatial scales. However, the
investigation of such changes has proven to be very difficult because Pb concentrations inAntarctic snow are
extremely low at the picogramper gram level (1 pg g–1=10–12 g g–1) (Wolff and Suttie 1994, Barbante et al
1997, 1998, Planchon et al 2002, Chang et al 2016). Herein, we present a new record of the atmospheric fallout of
Pb and its isotopic signatures from a 2-m snowpit, which covered4 full years from2011/12 summer to 2015/16
summer, at theHerculesNévé Plateau inVictoria Land, Antarctica. Themain objectivewas to evaluate the
atmospheric Pb level in recent Victoria Land snow and identify the sources and origins of Pb in this region
between the Pacific and IndianOceans (figure S1).

2.Materials andmethods

2.1. Sampling
During the 2015–2016KoreanAntarctic Expedition, a snow pit was dug in theHerculesNévé (73° 03′10.57″ S,
165°24′38.72″E, 2864 m above sea level) in Victoria Land (figure S1). A continuous series of 40 samples was
obtained at 5 cm froma 2-m-deep shallow pit by horizontally pushing an ultraclean cylindrical Teflon container
(5 cm in diameter and 35 cm in length). To prevent artificial contamination thatmay occur during the
collection, handling, and storage of samples, only acid-cleaned sampling tools and clean protocols were used as
described in detail byHong et al (2000).

2.2. Chronology
The dating of snowuses changes in the stable isotopes of water (δ18O and δD) andmajor ions that showdistinct
seasonal changes (Legrand andMayewski 1997). The values of δ18O and δDprimarily depend on themean air
temperature at the snow deposition site withmore enriched values in summer (Dansgaard 1964).
Methanesulfonic acid (MSA) is the only sulfur compound of biological origin produced fromdimethyl sulfide
(DMS) emitted by ocean plankton through oxidation and is used as a proxy for summer snowfall, as it shows a
marked increase in Antarctic snow (Minikin et al 1998). Following previouswork on the Styx glacier inVictoria
Land, Ca2+ in the samples accounts formore than 75%,mainly from crustal dust, which implies that Ca2+ can
be used as a crustal dust proxy (Kwak et al 2015).

The δ18O and δD isotope compositions ofmelted snowweremeasuredwith an L2140-i isotopic water
analyzer (Picarro, Inc.)usingwavelength-scanned cavity ring-down spectroscopy (WS-CRDS). Themeasured
ratios were calibrated usingmeasurements of three referencematerials from the International Atomic Energy
Agency (VSMOW2,GISP, and SLAP2), and the precisions were 0.04‰ and 0.1‰ for δ18O and δD, respectively.
Themethanesulfonate (CH3SO3

-; hereafter referred to asMS-) andCa2+ concentrations were obtained using a
two-channeled ion chromatography (IC) systemwith aDionex ICS-2000 and ICS-2100 (ThermoFisher
Scientific) in a class-1000 laboratorywith class-10 laminar flowbenches at theKorea Polar Research Institute
(KOPRI). An ICS-2000with an IonPac AS15 (2×250 mm) analytical columnwas used forMS-, and an ICS-
2100with an IonPacCS12A (2×250 mm) analytical columnwas used for Ca2+. The calibration curvewas
obtained by diluting stock solutions fromThermoFisher Scientific (P/N046070 for cations and P/N057590 for
anions) except forMS−.MS−was diluted from a stock solution (∼1000 μg g−1) preparedwithCH3SO3Na
(Sigma-Aldrich, USA). The accuracy of the analysis for anions and cationswas∼1.3–5.6 and∼4.5%–12%,
respectively (Hong et al 2012). The age of the top depth samplewas set to the austral summer of 2015when snow
pit samplingwas performed. The depthwithminimal water isotopeswas set towinter, and the depthwith
maximal water isotopeswas set to summer. TheMS− peakwas confirmed in summer, and aCa2+ peakwas
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confirmed in spring (figure 1). Considering the stratigraphic patterns of water isotopic and ionic variations,
dating from the surface to a depth of 2 mwas estimated to span 4 full years from2011/12 summer to 2015/16
summer.

2.3. Lead and barium concentrations andPb isotopes
Sample handling and ultraclean procedures were performed in clean laboratories at KOPRI. Subsequent
cleaning of the labwarewas conducted in a class-10 laminar airflowbooth in a class-1000 clean room.Analytical
procedures were performed on a class-10 bench in a class-100 clean room (Han et al 2015).

The Pb andBa concentrations were analyzed using an Element2 inductively coupled plasma sectorfieldmass
spectrometer (ICP-SFMS, Thermo Fisher Scientific) coupledwith anAPEXdesolvating nebulizer system
(APEX-HF, ESI). The detection limits were 0.139 pg Pb g−1 and 0.028 pg Ba g−1, whichwere defined as three
times the standard deviation of the blank. The differences between certified andmeasured concentrations of
SLRS6 reference water (National ResearchCouncil of Canada)were better than 10% for Pb andBa.

For Pb isotopes,∼10 g of the samplewas evaporated to dryness with amixture of 10 μl of 65%HNO3 (Fisher
‘Optima’ultrapure grade), 20 μl of 48%HF (Merck ‘Ultrapur’ grade) and 4 μl of dilutedH3PO4 (Merck
‘Suprapur’ grade;∼5%byweight) on a Teflon-coated hot plate at∼80 °C.Then, evaporated residuewas
transferred in a droplet of a PL-7 silica gel to a degassed (4 A, 30 min) zone-refined rhenium filament (99.999%
Re, 0.7 mmwide, 0.04 mm thick,H. Cross Company) and dried by passing an electric current through the
filament. Pb isotope analyses were performed at KOPRI using TRITON thermal ionizationmass spectrometry
(TIMS, Thermo Fisher Scientific). All reported values of 206Pb/207Pbwere corrected for the natural and
analytical stable isotope fractionation to 206Pb/207Pb= 1.093, which is the value of the commonPb isotope
standardNIST SRM981. Themeasurements were precise to 0.003 at the 95% confidence level. Detailed
analytical procedures for Pb isotopemeasurements have been described byHan et al (2015).

3. Results

3.1. Lead and barium concentrations
Figure 2 shows the Pb andBa concentrations and Pb isotope ratios from theHerculesNévé snowpit samples.
Themean concentrations (± s.d.) of Pb andBawere 6.2±5.5 pg Pb g−1 and 8.5±16 pg Ba g−1, respectively
(table 1). Ba has been considered a proxy for dust input and enables the determination of crustal Pb
contributions (Rosman et al 1998).We observed that themaximumBa concentration (99 pg g−1)was at a depth
of 100 cm andwas approximately 12 times higher than the average Ba concentration. The Ba concentrations
were approximately two times lower (average of 4.0 pg g−1 and range between 0.46 and 12 pg g−1) at depths
greater than 100 cm than at depths (average: 8.4 pg g−1; range: 0.64–34 pg g−1) below 100 cm. This situation
reflects the strong seasonal and interannual variations in dust inputs. Pb concentrationsmostly originated from
natural sources, such as crustal dust and volcanic activity found in the preindustrial Victoria Land ice,
representing the time period fromnear the last glacialmaximum (∼27,000 years BP) to the lateHolocene
(∼1,300 years BP) (Matsumoto andHinkley 2001,Hinkley 2007). The natural background levels of Pb andBa

Figure 1.Vertical profiles of stable isotopes (a) δ18O, (b) δD, and (c) deuterium excess (DE) and concentration profiles of (d)MS− and
(e)Ca2+. Gray bars and dark gray bars represent the summer andwinter seasons, respectively.
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concentrations inVictoria Land from three TaylorDome ice samples were determined to be 5.5 pg g−1 and
11 pg g−1 on average, respectively (Matsumoto andHinkley 2001). The natural Pb concentrationwas slightly
lower than that reported here for Victoria Land, while the natural Ba concentrationwas slightly higher.

3.2. Pb/Ba ratios
The natural background Pb/Ba ratio of the EPICADomeC ice in the earlyHolocenewas 0.032. This value is
similar to the upper continental crust value, which implies thatmost of the Pbwas introduced from rock and soil
dust (McLennan 2001). In contrast, the Pb/Ba ratio of TaylorDome ice inVictoria Landwas∼0.5 due to
additional Pb inputs, which probably originated from volcanic emissions (Matsumoto andHinkley 2001).
Figure 2(c) shows the variations in the Pb/Ba ratio from theHerculesNévé snow pit samples with depth. The
average Pb/Ba ratio of all 40 sampleswas 1.6, approximately three times higher than the reported value of
Victoria Land for the TaylorDome.Not one of the samples from the 1980s–1990s inVictoria Landwas reported
to have a Pb/Ba ratio of 3 ormore (Van deVelde et al 2005). Among theHerculesNévé snowpit samples, six
samples with a Pb/Ba ratio of 3 ormore had top depths of 25, 85, 135, 160, 180, and 190 cm.Of these samples,
the three taken fromdepths of 25, 85, and 160 cm,which showmore radiogenic Pb isotope ratios, are considered
to be influenced by volcanic inputs. The remaining three samples (fromdepths of 135, 180, and 190 cm) show
Pb/Ba values higher than 8, which are thought to reflect contamination fromChileanCu smelting (135 and
190 cm) andAustralia (160 cm) based on source tracing using Pb isotope ratios (see next section). Except for the
three samples with relatively high Pb/Ba values of 8 or higher, whichwere influenced by anthropogenic Pb, the
average Pb/Ba value of the remaining samples was approximately 0.9, similar to those of the 1980s (∼1.1) and
1990s (∼0.85) in Styx ice (Van deVelde et al 2005).

3.3. Lead isotopes
The 206Pb/207Pb and 208Pb/207Pb ratios were 1.1515–1.2386 (mean value 1.1953) and 2.4132–2.4951 (mean
value 2.4582), respectively. TheHolocene background values of 206Pb/207Pb and 208Pb/207Pbwere 1.2319 and
2.4818 in TaylorDome ice, respectively (table 1). Although not ofHolocene age, the oldest three Styx ice samples
corresponding to the preindustrial period and one TaylorDome ice sample dated to 1300 years BP had
206Pb/207Pb values of 1.23–1.24, which indicated the natural background level of the earlyHolocene and
preindustrial periods (table 1) (Van deVelde et al 2005).

The bottomof theHerculesNévé snowpit is considered to represent early 2012with a 206Pb/207Pb value of
approximately 1.16 (figure 2(d)). Thefirst 206Pb/207Pb increase was observed at 150–165 cm,where the Pb
isotope ratios were high (approaching 1.24). The ratios then declined untilmid-2013 (depth of 120 cm), when
they reached their lowest value at a depth of 120 cm.Until early andmid-2014 (depth of 80 cm), the 206Pb/207Pb
valueswere approximately 1.18–1.21. The depths between 40 and 80 cm correspond to early to late 2014 and
show radiogenic values overall (mean 206Pb/207Pb and 208Pb/207Pb are 1.2288 and 2.4867, respectively).

Figure 2.Variations in concentrations of (a)Pb and (b)Ba, (c)Pb/Ba ratios, (d) 206Pb/207Pb and (e) 208Pb/207Pb isotope ratios from
theHerculesNévé snow pit samples.
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Table 1.MeanPb andBa concentrations and Pb isotopes inHerculesNévé snow pit samples and selected samples fromTaylorDome and EPICADomeC ice for the natural background ofVictoria Land and central East Antarctica. Selected
Styx ice for preindustrial values inVictoria Land. Previous data obtained atDomeC snow for the same investigated time period are also shown.

Concentration (pg g−1)

Site Age

Number of

samples Pb Ba 206Pb/207Pb 208Pb/207Pb Reference

HerculesNévé AD2012–2015 40 Mean±s.d. (min

-max)
6.2±.5.5 (0–23) 8.5±.16 (0.46–99) 1.1953±.0.0277

(1.1515–1.2386)
2.4582±.0.0230

(2.4132–2.4951)
Thiswork

TaylorDome 2200–7000 years BP 3 Mean±s.d. (min

-max)
5.5±.3.0 (3.3–8.9) 11±12.3

(8.1–12)
1.2319±.0.0099

(1.2208–1.2400)
2.4818±.0.0101

(2.4702–2.4882)
Matsumoto and

Hinkley 2001

EPICA

DomeC

6939–6951 years BP 2 Mean±s.d. (min

-max)
0.22±.0.002

(0.216–0.219
6.8

±.0.71

(6.3–7.3)

1.1962±.0.0013

(1.1952–1.1971)
2.4731±.0.0083

(2.4672–2.4789)
Vallelonga et al 2010

Styx AD1872–1882 3 Mean±s.d. (min

-max)
2.2±1.0 (1.3–3.2) 17±12 (6.9–30) 1.2373±0.0015

(1.1360–1.2390)
2.4983±0.0104

(2.4900–2.5100)
VandeVelde et al 2005

DomeC snow AD2012–2015 9 Mean±s.d. (min

-max)
5.9±8.1 (2.1–27) — 1.1672±.0.0163

(1.1350–1.1810)
2.4293±.0.0171

(2.3910–2.4440)
Bertinetti et al 2020
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Radiogenic characteristics can be considered to reflect volcanic Pb fromAntarctic and ocean island volcanoes
(Hinkley 2007). Sample depths of 25–35 cm showed the lowest values in the entire section. Aftermid-2015
(depths between 0 and 25 cm), 206Pb/207Pbwas distributed over awide range of 1.17–1.21.

4.Discussion

4.1. Comparison of reported datawith previous Antarctic research
The concentration level of Pb in theHerculesNévé snow pit sample (6.2±5.5 pg g−1) ismuch higher than that
of theHolocene background atDomeC (0.22 pg g−1) and is similar to that of the TaylorDome (5.5 pg g−1)
(table 1).Meanwhile, the averaged Ba concentration (8.3 pg g−1) of theHerculesNévé snow is slightly lower than
the value of 11 pg g−1 for theHolocene background of Ba inVictoria Land (Matsumoto andHinkley 2001). In
otherwords, themineral dust input is less than before, while the Pb input is increased. An earlier study of natural
Pb inputs inHerculesNévé snow indicated that noncrustal Pb accounted for at least 2/3 of the total natural Pb
deposited inVictoria Land, while crustal Pb sources likely contributed less than 1/3 of the total natural Pb
(Barbante et al 1997). The noncrustal Pb ofHerculesNévé snowpit samples was calculated using elemental
proportions of the upper continental crust (McLennan 2001), whichwas 56%–100% (mean= 92%).
Noncrustal Pb includes Pb from volcanic activity, sea salt spray and anthropogenic sources, and the proportion
of anthropogenic Pb can be expected to increase significantly (Wolff and Suttie 1994, Barbante et al 1998). The
HerculesNévé snowpit samples had Pb concentrations similar to those ofDomeC snow (5.9±8.1 pg g−1)
during the same period (Bertinetti et al 2020) (table 1). However, the Pb isotope ratios show considerably
different indicating that Pb comes fromdifferent sources.

Figure 3 shows the Pb isotope compositions ofHerculesNévé snow, previously reported Antarctic snow
samples fromvarious locations, Patagonian dust, potential source area samples from the SouthernHemisphere,

Figure 3. Lead isotope compositions inHerculesNévé snow fromAD2012 to 2015with various reference data.HerculesNévé snow
(this work and (VandeVelde et al 2005)), Styx ice (VandeVelde et al 2005), Dome Fuji andDomeA (Chang et al 2016), DomeC
(Bertinetti et al 2020),Mt. Erebus lavas (Sun andHanson 1975) and Patagonian dust and soil (Gili et al 2016, Khondoker et al 2018).
Various aerosols and lichens fromAustralia (Kristensen et al 2016,Wu et al 2016), Brazil (Gemeiner et al 2017, Souto-Oliveira
et al 2018), SouthAfrica (Khondoker et al 2018), andChilean copper smelters (Puig 1988). Pb ores fromBrokenHill (Cooper
et al 1969),Mississippi Valley (Doe 1970), and Peruvian/Mexican ores (Chow et al 1975).
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andMt. Erebus lavas. The locations of the sampling sites of Antarctic snow samples and potential source regions
are provided infigure S1. Pb isotope compositions inHerculesNévé snowpit samples are consistent with the
majormixing line of Antarctic snowwith a radiogenic endmember that has 206Pb/207Pb of 1.25–1.30 and
208Pb/207Pb of 2.50–2.55 and a less radiogenic endmember that has 206Pb/207Pb of∼1.10 and 208Pb/207Pb of
∼2.38. Some samples fromVictoria Land showmuch higher Pb isotope values than others (figure 3). This
contrast appears to be related to the amount of volcanic Pb input inAntarctica, according to the differences in
distance and elevation from volcanoes (Zreda-Gostynska et al 1997).

The 206Pb/207Pb ratios of theHerculesNévé snowdata for 2012–2015 showmore radiogenic values than the
HerculesNévé snowdata dated 1986–1994 (figure 3). The 206Pb/207Pb ratios ofHerculesNévé snowdata for
1986–1994were relatively less radiogenic, which indicates the predominant use of alkyl-lead additives
manufactured from the less radiogenic Australian type Pb (BrokenHill) in Argentina andChile. In Argentina
andChile, the use of Pb additives in gasolinewas completely phased out in 1997 and 2001, respectively
(Tchernitchin et al 2006,Oudijk 2010). In contrast, leaded gasoline in Brazil was characterized by a relatively
high 206Pb/207Pb ratio because of its primary use ofMississippi Valley type Pb (Bollhöfer andRosman 2000,
Bollhöfer andRosman 2002,Muñoz et al 2004, Geraldes et al 2015). Because the ban on leaded gasoline in Brazil
started in 1975 and leaded gasolinewas phased out in the 1980s, this relatively radiogenic signature ofHercules
Névé snowdated 2009–2012was presumably due to Pb emissions from industrial sources (Wolff and
Suttie 1994, Paoliello andCapitani 2005). OurHerculesNévé snow data for 2012–2015 has illustrated that the
source of anthropogenic Pb inAntarctica shifted from leaded gasoline to industrial activities in northern South
America (figure 3).

4.2. Sources of anthropogenic Pb inHerculesNévé snow
Temporal changes in Pb isotopes in Antarctic snow samples from1970 to 2000 have been characterized by the
extensive release of anthropogenic Pb through the use of leaded gasoline (Rosman et al 1994,Wolff and
Suttie 1994). After the ban on leaded gasoline inmajor countries of the SouthernHemisphere fromNewZealand
in 1996 to SouthAfrica in 2006, the Pb concentrations in Antarctic snowdecreased. Chilean copper smelter
productionwas later identified as amajor source of Pb pollution inAntarctica (Chang et al 2016). To trace the
source region responsible for anthropogenic Pb reachingVictoria Land, we compared the isotopic data of the
HerculesNévé snow samples spanning the period 2012–2015with those of anthropogenic sources. Figure 3
shows the isotopic characteristics of a three-isotope plot (206Pb/207Pb versus 208Pb/207Pb) of the distinctive Pb
isotopefingerprints of anthropogenic Pb in the SouthernHemisphere. At the peak of leaded gasoline use in
Australia, Pb isotope ratios for environmental sampleswere less radiogenic 206Pb/207Pb of 1.060–1.072 and
2.339–2.346 of 208Pb/207Pb (Kristensen et al 2017). Australian sources becamemore radiogenic 206Pb/207Pb of
1.102–1.156 and 208Pb/207Pb of 2.368–2.456 following the ban on leaded gasoline in 2002 (Wu et al 2016,
Kristensen et al 2016). However, theywere lower than those fromother potential source regions. Australian
sources retained the second lowest isotope values after SouthAfrica (1.069∼1.116 for 206Pb/207Pb and
2.342∼2.447 for 208Pb/207Pb) among other anthropogenic sources (Khondoker et al 2018). In contrast, Pb
isotope ratios were higher (1.119∼1.189 for 206Pb/207Pb and 2.395∼2.455 for 208Pb/207Pb) in SouthAmerica
(Brazil, Argentina, andChile) (Puig 1988, Khondoker et al 2018). As shown infigure 3, the isotopic compositions
of the snow samples were closer to those of aerosol Pb isotopes fromBrazil andChile. This result indicates that
themain sources of anthropogenic Pb in theHerculesNévé snowwere anthropogenic emissions in Brazil and
Chile. In our four samples with the lowest Pb isotope ratios, those fromdepths of 25–35 cm, 115–120 cm, and
175–180 cm correspond tomid-2015,mid-2013, andmid-2012, respectively, and a value of 206Pb/207Pb
intermittently shows a less radiogenic value near 1.15, which indicates contamination fromAustralia.

In addition to the combustion of leaded gasoline, the largest source of Pb emissions to the atmospherewas
pyrometallurgical nonferrousmetal (Pb, Cu,Ni, Zn, andCd) production (Nriagu and Pacyna 1988, Pacyna and
Pacyna 2001). Accordingly, the amounts of atmospheric emissions of Pb from these sources in the Southern
Hemisphere were estimated by combiningmining and production data from theWorldMineral Statistics of the
BritishGeological Survey and emission factors (Nriagu andPacyna 1988). Figure 4 shows the estimated Pb
emissions fromnonferrousmetal production inmajor countries in the SouthernHemisphere. Starting in the
1970s, the estimated Pb emissions frommetal production began to steadily increase peaking in 2005,
maintaining high values until 2010, and subsequently decreasing. The contribution of Cu production inChile to
the total Pb emissions increased from20% in 1980 to∼90% in themid-2000s. TheDome Fuji andDomeA snow
pit data showed thatmore than 90%of the Pb deposited in the central EAP in themid-2000s remained of
anthropogenic origin (Chang et al 2016). The Pb isotope ratios of central EAP snow in the 2000s becamemore
radiogenic because of the dominance of Pb fromChileanCu smelters. Interestingly, the average apportionment
of noncrustal Pb in theHerculesNévé snow samples between 2012 and 2015was 92%,while Pb emissions
decreased by approximately 5%–7% from2005 to 2010, similar to the emissions in the early 2000s (figure 4).
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Given their limitations, our data did not confirm a reduction in Pb pollution inAntarctica, despite continued
efforts to reduce Pb pollutant emissions in the SouthernHemisphere.

The possibility of Australia as a source region could not be ruled out because someAustralian data
overlappedwith Brazilian sources. The amount of Pb emissions fromAustralian nonferrousmetal production
was the second highest after Chile (figure 4). In addition, previous studies at other sites in Antarctica, including
DomeC, point toAustralia as themain source of anthropogenic Pb inAntarctic snow (Mcconnell et al 2014,
Bertinetti et al 2020). However, whether Australia, as themajor source of anthropogenic Pb, strongly affected
Victoria Land, Antarctica, has remained unclear because our Pb isotope data showmore radiogenic values in
Victoria Land snow than inAustralia.

5. Conclusions

Our data show thatmore than 90%of the Pb deposited onHerculesNévé snow inVictoria Land in the first half
of the 2010swas of noncrustal origin. Combiningwith previous data, it is evident that Pb pollution in Antarctica
has not significantly decreased, despite continued international efforts to reduce Pb emissions in the Southern
Hemisphere during the corresponding period. The Pb isotopic fingerprints indicate that SouthAmerica,
particularly Brazil andChile, has become amajor source of anthropogenic Pb inHerculesNévé snow.Our
observations highlight the need for further investigation into the effect of the subsequent reduction in Pb
emissions fromSouthAmerica on Pb pollution across Antarctica.
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