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Abstract.—Widely used approaches for extracting phylogenetic information from aligned sets of molecular sequences rely
upon probabilistic models of nucleotide substitution or amino-acid replacement. The phylogenetic information that can be
extracted depends on the number of columns in the sequence alignment and will be decreased when the alignment contains
gaps due to insertion or deletion events. Motivated by the measurement of information loss, we suggest assessment of the
effective sequence length (ESL) of an aligned data set. The ESL can differ from the actual number of columns in a sequence
alignment because of the presence of alignment gaps. Furthermore, the estimation of phylogenetic information is affected by
model misspecification. Inevitably, the actual process of molecular evolution differs from the probabilistic models employed
to describe this process. This disparity means the amount of phylogenetic information in an actual sequence alignment will
differ from the amount in a simulated data set of equal size, which motivated us to develop a new test for model adequacy.
Via theory and empirical data analysis, we show how to disentangle the effects of gaps and model misspecification. By
comparing the Fisher information of actual and simulated sequences, we identify which alignment sites and tree branches
are most affected by gaps and model misspecification. [Fisher information; gaps; insertion; deletion; indel; model adequacy;
goodness-of-fit test; sequence alignment.]

Conventional information criteria such as the AIC
(Akaike Information Criterion; Akaike 1974) and the BIC
(Bayesian Information Criterion; Schwarz 1978) can be
used to compare models of sequence change (e.g., Posada
and Crandall 1998; Posada and Buckley 2004; Seo and
Kishino 2008, 2009). Relative to nucleotide substitution
or amino acid replacement, less attention has been
devoted to the effects of insertion and deletion when
applying information criteria. One option for treating
insertion and deletion is to explicitly include them in
probabilistic models of sequence change (e.g., Thorne
et al. 1991, 1992; Hein et al. 2000; Metzler 2003; Redelings
and Suchard 2005; Fleissner et al. 2005; Bouchard-Côté
and Jordan 2013; Holmes 2020; De Maio 2021). While
explicit treatment is biologically and statistically appeal-
ing, it can be accompanied by daunting computational
challenges.

A conventional and computationally convenient
alternative to explicit probabilistic insertion-deletion
models is to assume that the alignment between
sequences is known with certainty. This alternative treats
alignment gaps as data that are missing at random (e.g.,
see Felsenstein 2004) but can be especially problem-
atic when there is substantial alignment uncertainty.
Methods exist for identifying alignment columns that
are prone to alignment error so that these columns
need not be included in downstream analyses (e.g.,
Talavera and Castresana 2007; Dress et al. 2008; Capella-
Gutierrez et al. 2009). However, some studies have
questioned the value of filtering alignment columns in

this way because removing some columns will reduce
evolutionary information and may affect the reliability of
downstream analyses (Dessimoz and Gil 2010; Tan et al.
2015).

In this study, we quantify the informativeness of gap-
containing columns. Because gaps are being considered
as missing data, a simple and intuitive set of sum-
mary statistics regarding informativeness would be the
proportions of gap positions in each aligned column
and in each aligned sequence. Higher proportions of
gaps would represent more missing data. A limitation
of these summary statistics is they do not incorporate
correlations among aligned sequences that are due to
common ancestry. The effect on informativeness due to
the presence of a gap at one position in a single-aligned
sequence will depend on which other sequences share
the gap as well as on the phylogenetic relationships
between the sequences.

Here, we rely upon the Fisher information to assess
the impact of gaps. With an abundance of gaps, the
curvature of the log-likelihood function at the maximum
likelihood estimate (i.e., the Fisher information) becomes
gradual relative to the more extreme curvature with
an absence of gaps. By simulating sequence evolution
and then introducing gaps where data should be
missing, the information loss caused by gaps can
be quantified. However, the Fisher information is
affected both by presence-absence of gaps and model
misspecification. These can be difficult to disentangle.
Whereas the difference in Fisher information between
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complete (i.e., ungapped) and incomplete (i.e., gap-
containing) data is straightforward to assess via
simulation, actual aligned data are generated according
to an unknown process and ungapped versions of the
actual gap-containing data are unavailable.

To quantify the impact of gaps, our approach contrasts
simulated gap-containing data with the corresponding
complete version of the simulated data. To assess
model misspecification, the approach contrasts actual
gap-containing data with simulated gap-containing
data. Building upon previous work regarding model
adequacy (Goldman 1993; Duchêne et al. 2018), we show
that the ability to quantify model misspecification can
form the basis for a goodness-of-fit test with the observed
gap-containing data.

The ability to disentangle the gap and model mis-
specification effects permits us to compare physical
sequence length (PSL) and effective sequence length
(ESL). Whereas PSL is observable and is the number
of columns in the sequence alignment, ESL represents
the number of columns in an ungapped alignment that
would be needed to match the informativeness of an
alignment with the observed PSL and the observed gap
locations.

After introducing our statistical approach, we
characterize it via simulation and then apply it to
data sets of protein sequences from eukaryotes,
nucleotide sequences from ray-finned fish, and
nucleotide sequences from mouse lemurs. Based
on the simulations, our test of model adequacy has
low power but our ESL estimates are relatively robust
to model misspecification. We conclude by discussing
refinements and extensions of our approach.

THEORY

Basic Assumptions
Our approach has three key assumptions. First, it
assumes that the alignment relating the sequence data
is correct. Second, the aligned sequence columns are
assumed to be independently and identically distributed
random samples. Third, the approach assumes that no
information is contained in gaps and this implies that the
nucleotide substitution (or amino acid replacement) pro-
cess is independent of the insertion–deletion processes.
All three assumptions are standard in phylogenetics
and the first two are widely acknowledged (e.g., see
Felsenstein 2004).

The third assumption permits reliance upon
likelihood-based treatments of aligned sequence data
that include explicit models of nucleotide substitution
(or amino acid replacement) but that do not include
explicit models of insertion and deletion. Our likelihoods
represent the probabilities of aligned sequence data
conditional upon the substitution model, its parameter
values, and the evolutionary tree that relates the aligned
sequences. With this third assumption, likelihoods can
be calculated by treating the alignment gaps as data
that are missing at random. Rather than modeling the

missing data process, the likelihoods condition upon
which data are missing. In the Discussion section,
we discuss this assumption of independence between
substitution and insertion–deletion in more detail.

Measuring Fisher Information of Sequence Data
Consider the true and unknown data-generating mech-
anism g(·) and the adopted model f (·|θ), where θ is a
d-dimensional vector. Although the Fisher information
is represented by a matrix when there is more than
one parameter, we discuss the univariate case for the
convenience of explanation. A more general description
can be found in the Appendix and key mathematical
notation is summarized in Table 1.

Using the log-likelihood function l(·) at the maximum
likelihood estimate (MLE; θ̃), we represent the estimate of
Fisher information for the ith parameter �i of the adopted
model f (·|θ),

− 1
n

d2

d�2
i

l(θ̃) = − 1
n

n∑
j=1

d2

d�2
i

logf (x̃(j)|θ̃)=:̂ Ĩgfii (1)

≈ Eg

[
− d2

d�2
i

logf (X̃|θ̃)

]

≈ Eg

[
− d2

d�2
i

logf (X̃|θ∗)

]
=: Ĩgfii, (2)

where n is the sequence length and x̃(j) is the jth
potentially gap-containing (i.e., incomplete) sequence
column. The notation “=:” means the term on the right
is defined as the term on the left. The “ ˜ ” sign over the
data x̃(j) and over the Fisher information Ĩ(·) implies the
data may potentially contain gaps. The first and second
subscript indices of ̂̃Igfii and Ĩgfii respectively represent
the true and adopted models, while the third and
fourth indices represent the row and column position in
the Fisher Information matrix. Although only diagonal
elements of the Fisher information are considered here,
the theory can be generalized to incorporate the off-
diagonal elements (see Appendix [C]). To emphasize
this, we intentionally adopt double indices for the
explanation of univariate Fisher information.

As n increases, the MLE θ̃ approaches an unknown
value θ∗ that minimizes the Kullback–Leibler divergence
(KLD) between g(·) and f (·|θ) (White 1982; see Appendix
[B]). Importantly, the Hessian of the KLD is the Fisher
information and the KLD serves as a central connection
between the fields of information theory and statistics.
In the following, we describe our theory via Fisher
information rather than KLD for the convenience of
statistical description.

The empirically obtained̂̃Igfii in equation (1) can serve
as estimates of Ĩgfii in equation (2). In the definition of
Ĩgfii in equation (2), the expectation Eg[·] is performed
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TABLE 1. Summary of mathematical notation.

Notation Equation Definition

Igfii Fisher information of complete data
Data were generated with unknown g(·)
but analyzed with f (·|θ)

Unidentifiable in general
Ĩgfii (2) Fisher information of gap-containing data

Data were generated with unknown g(·)
but analyzed with f (·|θ)

Identifiable from given data
Iffii (3) Fisher information of complete data

Data were both generated and analyzed
with known f (·|θ)

Identifiable via simulation
Ĩffii (4) Fisher information of gap-containing data

Data were both generated and analyzed
with known f (·|θ)

Identifiable via simulation
Gi (5) Ratio of ESL with respect to PSL at branch

i, G-Factor, Ĩffii/Iffii
Mi (5) Model misspecification factor at branch i,

M-Factor, Ĩgfii/Ĩffii
G (6) Weighted average of Gi,

∑
uiGi

M (7) Weighted average of Mi,
∑

viMi
n PSL (physical sequence length)
n̂e (16 – 18) ESL (effective sequence length), defined as

nĜ
n̂(i,j)

e (16) sp-ESL (site-parameter-wise ESL), ESL for
ith parameter at jth site

n̂(i,·)
e (17) p-ESL (parameter-wise ESL), ESL for ith

parameter
n̂(·,j)

e (18) s-ESL (sitewise ESL), ESL at jth site

with respect to the true distribution g(·) because the x̃(j)

in equation (1) were generated by g(·) rather than f (·|θ).
Paralleling the definitions of̂̃Igfii and Ĩgfii for incomplete
data in equations (1, 2), we define the Fisher information
for complete data,

Igfii :=Eg

[
− d2

d�2
i

logf (X|θ∗)

]
,

where X is a random variable representing a complete
sequence column. That is, Igfii is the Fisher information
of �i when there are no gaps.

The ratio Ĩgfii/Igfii is the relative amount of information
from incomplete data when compared to complete data.
This ratio is not identifiable. Ĩgfii can be estimated from
given incomplete data via equation (1), but Igfii cannot
be determined because complete (ungapped) data are
unavailable. Igfii cannot be estimated via simulation
because the true process g(·) is unknown.

Using the adopted model f (·|θ), Iffii can be estimated
via simulation,

Iffii := Ef

[
− d2

d�2
i

logf (Y|θ∗)

]

≈ − 1
nm

nm∑
j=1

d2

d�2
i

logf (y(j)|θ̃)=:̂ Iffii, (3)

where m is a large integer that can be arbitrarily determ-
ined based on the preference of estimation precision and
computation time. For the convenience of calculation,
we set the simulated data size to be exactly m times the
original data size n.

Similar to the definition of Ĩgfii in equation (2), Ĩffii
and its estimate from simulated incomplete data can be
defined,

Ĩffii := Ef

[
− d2

d�2
i

logf (Ỹ|θ∗)

]

≈ − 1
nm

nm∑
j=1

d2

d�2
i

logf (ỹ(j)|θ̃)=:̂ Ĩffii, (4)

where ỹ(j) is generated by replacing some nucleotides
in y(j) with gaps. The data size of equations (3, 4) is m
times the original data size n, where the gaps in each
column of x̃ are copied into m columns when generating
ỹ. Specifically, the gap pattern of x̃(j)(1≤ j≤n) is copied
into sites j, {n+j}, {2n+j}, ···, {(m−1)n+j} of ỹ. These
sites are therefore correlated in terms of gap pattern
and these sites are resampled simultaneously during our
bootstrap procedure (see the following subsection).

Instead of the unidentifiable ratio Ĩgfii/Igfii, consider
the identifiable ratio Ĩgfii/Iffii,

Ĩgfii

Iffii
= Ĩffii

Iffii
· Ĩgfii

Ĩffii
=:Gi ·Mi,

≈
̂̃Iffii

Îffii
·
̂̃Igfiî̃Iffii

=: Ĝi ·M̂i (5)

where Gi will be referred to as the “Gap factor” or “G-
Factor” for the ith parameter of model f (·|θ) and where
Mi will be referred to as the “Model factor” or “M-Factor”
for the ith parameter. The G-Factor Gi represents the
proportion of information that remains after gaps are
inserted. The range of the G-Factor is 0≤Gi ≤1. Using
identical simulated data in conjunction with gap copying
as in equations (3, 4) is very likely to restrict the estimated
ratio of Ĝi to be equal to or less than 1. Furthermore,
Ĝi ≡0 when only gaps are present and Ĝi ≡1 for complete
data. Our empirical observation is that the G-Factor
is robust for different choices of the model f (·|θ) (see
Results section). Because of this robustness, we expect
that the G-Factor will be similar to the unidentifiable
ratio Ĩgfii/Igfii when some care is taken in choosing f (·|θ).

The M-Factor Mi represents the “goodness of fit” of
data to the model. When the adopted model is correct
(f =g), Mi ≡1. Whereas Ĝi is very unlikely to exceed 1,
M̂i varies around 1 when the adopted model is correct.
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If M̂i significantly deviates from 1, this indicates model
misspecification.

After the “parameter-wise’ G-Factors (i.e., the Gi’s)
and M-Factors (i.e., the Mi’s) are estimated, an “over-
all” G-Factor G and an “overall” M-Factor M for the
phylogeny can be inferred via weighted averages of
parameter-wise values,

G :=
d∑

i=1

uiGi ≈
d∑

i=1

ûiĜi =: Ĝ (6)

M :=
d∑

i=1

viMi ≈
d∑

i=1

v̂iM̂i =:M̂, (7)

where the ui and vi represent weights. As explained in
the Appendix [B], these weights are

ui :=
I2
ffii∑
i I

2
ffii

≈
Î2
ffii∑
î I

2
ffii

=: ûi (8)

vi := IffiiĨffii∑
i IffiiĨffii

≈ Îffiî Ĩffii∑
î Iffiî Ĩffii

=: v̂i. (9)

Bootstrap Procedure to Measure Uncertainty of G-Factors
and M-Factors

To assess the uncertainty of the overall G-Factor Ĝ
(equation (6)) and the overall M-Factor M̂ (equation
(7)), we develop a bootstrap procedure. A hierarchical
structure yields Ĝ and M̂ via first obtaining the MLE
(θ̃) from the original sequence data as in equation (1)
and then generating extremely long sequence data by
using θ̃ as in equations (3, 4). Therefore, our bootstrap
resampling procedure needs to reflect this hierarchical
structure. Our resampling approach is similar to the
resampling of estimated log-likelihood (RELL; Kishino
and Hasegawa 1989) approach. Instead of resampling
sequence columns and then re-optimizing MLEs as
would be done with a full bootstrap procedure, our
RELL-like procedure calculates sitewise second deriv-
atives once and saves computation by resampling these
second derivatives with replacement. When the sample
size n is small, the RELL-like procedure is prone to poor
performance and can result in dissatisfying estimates
such as negative G-Factors and M-Factors. In this case,
the more computationally demanding full bootstrap
is required. When n is large enough, the RELL-like
procedure is asymptotically similar to the full bootstrap.

Following convention, we employ the “∗” superscript
to indicate a bootstrap-resampled random quantity. For
notational convenience, the negative second derivatives
at the rth site for̂̃Igfii,

̂̃Iffii, and Îffii are respectively denoted
xr, yr, and zr. In a similar way, the sitewise resampled

negative second derivatives for ̂̃I∗gfii,
̂̃I∗ffii, and Î∗ffii are

respectively denoted x∗
r , y∗

r , and z∗
r . With this notation,

̂̃Igfii = 1
n

n∑
r=1

xr,
̂̃I∗gfii =

1
n

n∑
r=1

x∗
r

̂̃Iffii = 1
nm

nm∑
r=1

yr,
̂̃I∗ffii =

1
nm

nm∑
r=1

y∗
r

Îffii = 1
nm

nm∑
i=r

zr, Î∗ffii =
1

nm

nm∑
i=r

z∗
r . (10)

Resampling x∗
r follows a simple and conventional

RELL-like procedure with

x∗
r := xp(r) (r=1,...,n), (11)

where p(r) is a uniformly and randomly selected integer
from 1 to n. After obtaining the x∗

r , we reuse their p(r)
indices for generating the y∗

r and z∗
r . Because the gap

pattern of xj is copied to columns j, {n+j}, {2n+j}, ...,
{(m−1)n+j} of y, we mimic this dependency during
bootstrapping. To do this, we use the stored p(r) indices
and define the resampled y∗

(·) as

y∗
r+(k−1)n := yp(r)+(k−1)n +

{̂
Ĩ
∗
gfii −̂̃Igfii

}
(k =1,...,m), (12)

where r=1,...,n. The translocation factor
{̂

Ĩ
∗
gfii −̂̃Igfii

}
of equation (12) is necessary because we generate ̂̃Iffii

with θ̃. Therefore, ̂̃Iffii and ̂̃Igfii are correlated and this

correlation needs to be preserved for generatinĝ̃I∗ffii and̂̃I∗gfii (see Supplementary material [A] available on Dryad
at http://dx.doi.org/10.5061/dryad.zs7h44j9f).
Similar to the yr translocations, we translocate the zr to
resample z∗

r . Using the position of̂̃I∗ffii and the stored p(r)
indices, we define z∗

(·) as

z∗
r+(k−1)n := zp(r)+(k−1)n +

{̂
Ĩ
∗
ffiîIffii/̂Ĩffii − Îffii

}
(k =1,...,m).

(13)

The translocation factor
{̂

Ĩ
∗
ffiîIffii/̂Ĩffii − Îffii

}
of equation

(13) is necessary becausễIffii and Îffii are correlated and

this correlation needs to be preserved for generatinĝ̃I∗ffii

and Î∗ffii (see Supplementary material [A] available on
Dryad).

By applying equations (11, 12, 13), we generate the
x∗

(·), y∗
(·), and z∗

(·). From these, we derive the overall G-

Factor Ĝ∗ and the overall M-Factor M̂∗. Via iteration of
bootstrapping, we thereby approximate the distribution
of Ĝ∗ and M̂∗. These distributions can be used to estimate
the variances of Ĝ and M̂. The distribution of M̂∗
can be further used to test model adequacy (see next
subsection).
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Model Adequacy: Hypothesis Test of M-Factors
In equation (5), M=1 if g= f . Thus, large absolute values
of {M̂−1} suggest model misspecification. We develop a
hypothesis test in which the null hypothesis is g= f and

the test statistic is
∣∣∣M̂−1

∣∣∣. Here, we describe a test for
the overall M-Factor that has a null hypothesis of M=1,
but the approach also can be applied to parameter-wise
M-Factors (i.e., Mi’s).

To test for a deviation of M̂ from 1, we use the following
approximation of distributions,{

M̂−1
} d≈

{
M̂∗(i) −M̂∗

}
, (14)

where M̂∗(i) is the overall M-Factor estimate from the ith
resampled data, and M̂∗ is the average M̂∗(i). Following
the guideline of “bootstrap centering” (Hall and Wilson

1991), we measure the significance of
∣∣∣M̂−1

∣∣∣ via the

distribution of
∣∣∣M̂∗(i) −M̂∗

∣∣∣. For our two-tailed test of

M̂=1, the P value of
∣∣∣M̂−1

∣∣∣ is estimated as

1
B

B∑
i=1

I
(∣∣∣M̂∗(i) −M̂∗

∣∣∣> ∣∣∣M̂−1
∣∣∣), (15)

where B is the number of bootstrap samples and the
indicator variable I(·) is 1 if the condition within the
parentheses is satisfied and is 0 otherwise.

ESL versus PSL
We refer to the number of alignment columns n in
the observed data as the “Physical Sequence Length
(PSL)”. The information about parameter i in a simulated
incomplete data set of size n would be nĨffii. We let

n̂(i,·)
e be the number of simulated alignment columns

needed in a complete (gapless) data set to have the
same amount of information about parameter i as
the amount of information nĨffii in the simulated data

with gaps, nĨffii =n(i,·)
e Iffii. This leads to n(i,·)

e =nGi. We

refer to n(i,·)
e as the “parameter-wise Effective Sequence

Length” (“p-ESL”) of incomplete data with respect to
parameter i.

Paralleling the derivation of the overall G-Factor (G)
from individual G-Factors (i.e., Gi’s) in equation (6), an
overall ESL can be derived from individual p-ESL terms.
The overall ESL (ne) is ne :=nG where G is given in
equation (6). For a given incomplete sequence data set,
PSL can be directly observed whereas ESL is not directly
observable but can be estimated via Fisher information
and PSL.

We can also consider “sitewise ESL (s-ESL)” and
“site-parameter-wise ESL (sp-ESL).” The basic idea is to
separate the total ESL into components for each site or
into components that represent each combination of site

and parameter. To simplify notation, define l
′′(j)
ii as the

second derivative at the jth site of equation (1),

l
′′(j)
ii := d2

d�2
i

logf (x̃(j)|θ̃).

By using equations (5–9), we represent n̂e as

n̂e :=nĜ=n
d∑

i=1

ûiĜi

=
d∑

i=1

⎡⎣ûi

n∑
j=1

⎧⎨⎩ −l
′′(j)
ii

ÎffiiM̂i

⎫⎬⎭
⎤⎦=:

d∑
i=1

⎡⎣ûi

n∑
j=1

{̂
n(i,j)

e

}⎤⎦ (16)

=
d∑

i=1

⎡⎣ûi

⎧⎨⎩
n∑

j=1

−l
′′(j)
ii

ÎffiiM̂i

⎫⎬⎭
⎤⎦=:

d∑
i=1

[̂
ui

{̂
n(i,·)

e

}]
(17)

=
n∑

j=1

⎧⎨⎩
d∑

i=1

−ûil
′′(j)
ii

ÎffiiM̂i

⎫⎬⎭=
n∑

j=1

⎧⎨⎩
d∑

i=1

ûin̂
(i,j)
e

⎫⎬⎭=:
n∑

j=1

{̂
n(·,j)

e

}
,

(18)

where n̂(i,j)
e , n̂(i,·)

e , and n̂(·,j)
e will be respectively referred

to as estimators of the site-parameter-wise ESL (sp-
ESL), parameter-wise ESL (p-ESL), and sitewise ESL
(s-ESL). The sp-ESL, p-ESL, and s-ESL, respectively
represent informativeness of each parameter at each
sequence column, each parameter and each sequence
column. Although nĜ is positive, an sp-ESL or s-ESL
can be negative if it conflicts with the rest of the data.
When sp-ESL and s-ESL coincide with the information
in the overall data set, their values will be positive
(and potentially large). We note that the p-ESL n̂(i,·)

e of
equation (17) is the simple summation over sites of the

sp-ESL n̂(i,j)
e of equation (16) but that the s-ESL n̂(·,j)

e of

equation (18) is the weighted average of n̂(i,j)
e .

RESULTS

We studied our approach with simulations and
applied it to both DNA and protein sequence data.
As discussed in more detail in the Appendix [C], our
implementation only considers the diagonal elements of
the Fisher Information matrix and branch lengths are the
only parameters represented in our Fisher Information
estimates. We demonstrate with our empirical data
analyses that model violations can be detected via their
effects on Fisher information related to branch-length
parameter estimates.

Simulation Studies
We performed three-step simulations to evaluate our
procedure for estimating the G-Factor (G) and M-
Factor (M):
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FIGURE 1. Phylogeny of 12 taxa for simulation. All branch lengths
are 0.1 substitutions per nucleotide site.

Step 1: Sequence generation
Figure 1 shows a phylogeny of 12 taxa. All branch lengths
on this phylogeny are 0.1 nucleotide substitutions per
site. The PSL (n) of the simulated original data is 1000.
The odd-numbered taxa in Figure 1 have exclusively
gaps in their final n/2=500 sites. The ungapped nucle-
otide data were generated with the GTR+Gamma model
(Tavaré 1986; Yang 1994a, 1994b) and with nucleotide
frequencies of A, C, G, and T respectively being 0.2,
0.3, 0.2, and 0.3. The rate matrix parameters were set
to 0.7 (A↔C), 0.8 (A↔T), 10.0 (A↔G), 5.0 (C↔T), 0.9
(C↔G), and 1.0 (T↔G). A discrete-gamma model with
five categories and �=1.0 (Yang 1994b) was used to
incorporate rate heterogeneity among sites.

Step 2: Estimation
Each simulated data set was analyzed with the
GTR+Gamma, TN93+Gamma (Tamura and Nei 1993),
and JC+Gamma (Jukes and Cantor 1969) models. Using
each adopted model, we generated an extremely long
sequence data set with m=100 (see equations (3, 4)) and
then estimated the Gi’s, Mi’s, G, and M.

Step 3: Uncertainty assessment
After estimating the G-Factors and M-Factors, we
applied the RELL-like bootstrap procedure with B = 500
replicates. These replicates allowed precise estimation
of the variability of G-Factors and M-Factors as well as
testing of M=1.

Repetition: Steps 1–3 were repeated 500 times to yield
500 P values for the model adequacy test of M=1 as well
as 500 sets of M̂, Ĝ, M̂i’s, and Ĝi’s.

The simulated alignments and the underlying phylo-
geny (see Fig. 1) were designed to have three-fold
symmetry between the taxon subsets T1 – T4, T5 – T8,
and T9 – T12. Because of the symmetry and because all
odd-numbered taxa have gaps in their final 500 sites, we
focus only on the branches b1 – b4 (see Fig. 1). For each
of these branches, we obtained a Ĝi value for each of the
500 simulated data sets.

In the analysis with the GTR+Gamma model, the
average and standard deviations of Ĝi for b1 – b4 are
respectively 0.500 (±3.00×10−4), 0.673 (±1.35×10−3),
0.742 (±1.66×10−3), and 0.882 (±6.92×10−4). Because
T1 has gaps in half of its sites, Ĝ1 =0.500 is consistent
with the simulation setting. Although T2 is complete

(i.e., ungapped), Ĝ2 is less than 1 because of the effects of
gaps in other sequences. This illustrates the point made
in the Introduction section that a simple gap proportion
is a flawed measure for information loss. For the internal
branch b3, the average G-Factor Ĝ3 is less than 1 but

greater than Ĝ2. This suggests gaps have a stronger effect
on information in terminal than interior branches, pre-
sumably because information about interior branches is
more evenly distributed among sequences. The average

G-Factor Ĝ4 is presumably greater than Ĝ3 because
internal branch b4 is farther from the gaps of T1 than is
internal branch b3. Among the 500 simulated data sets,
the average overall Ĝ is 0.631 (±6.68×10−4) which is less
than the 0.75 proportion of alignment positions that are
ungapped.

For each of the 500 simulated data sets and for each of
the three substitution models, we tested model adequacy
via a null hypothesis of M=1. If the null hypothesis is
true and the model adequacy test functions as intended,
the distribution of M̂−1 should be well approximated

by M̂∗−M̂∗ so that P(M̂∗−M̂∗ <M̂−1.0) has a uniform
distribution between 0 and 1. First, we explored the
case where the null hypothesis was true because the
GTR+Gamma model was used for both simulating and
analyzing the data. For each of the simulated data
sets, M̂ was estimated and then 500 bootstrap replicates

were employed to approximate P(M̂∗−M̂∗ <M̂−1.0).
The concentration around 0.5 in Figure 2a differs from a

uniform distribution and indicates that the {M̂∗−M̂∗}
test statistic underestimates the tails of the {M̂−1.0}
distribution when the null hypothesis is true. This
suggests that our model adequacy test is conservative.
For a significance level of 0.05, our model adequacy test
rejects the null hypothesis of M=1 for 0.022 (11 of 500)
simulated data sets.

This conservative nature of the model adequacy test is
presumably because it relies upon “plug-in” parameter
estimates rather than actual values of parameters when
approximating the test statistic distribution. This “plug-
in” nature of our approach can produce conservative
or anti-conservative hypothesis tests (Robins et al. 2000).
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FIGURE 2. Histogram of the bootstrap approximation to the distribution of cumulative probabilities of the test statistic M̂−1.0. Sequence data

were simulated with GTR+Gamma and the bootstrap approximation was applied to estimate P(M̂∗ −M̂∗ <M̂−1.0). a) Data were analyzed with
GTR+Gamma. b) Data were analyzed with JC+Gamma.

However, the conservativeness will decrease as n
increases. Although a derivation is omitted, the differ-
ence between second derivatives at the true θ and at
the MLE θ̃ is bounded in probability with the order of
n−1/2 (for a definition of “bounded in probability,” see
Bishop et al. 2007). Because the variances of the original
and bootstrapped M-Factor estimates are asymptotically
equal (see Supplementary material [B] available on
Dryad), the conservative nature of our model adequacy
test should be diminished when n is large.

When the null hypothesis is wrong, P(M̂∗−M̂∗ <M̂−
1.0) will be concentrated around 0 or 1 if the model
adequacy test has power to reject the null hypothesis. For
the case where JC+Gamma was the adopted model but
the truth was GTR+Gamma, Figure 2b summarizes the

histogram of P(M̂∗−M̂∗ <M̂−1.0) from 500 simulated
data sets and 500 bootstrap replicates per simulated
data set. For this situation where the null hypothesis
should be rejected, the null was rejected at a significance
level of 0.05 in a proportion 0.326 of cases (163 out of
500). Whereas the model adequacy test often rejected the
null when the JC+Gamma model was used, it had low
power when the TN93+Gamma model was assumed.
Specifically, the null was rejected at a significance
level of 0.05 in a proportion 0.022 of cases (11 out of
500). Our model adequacy test with PSL = 1000 did
not distinguish the TN93+Gamma and GTR+Gamma
models, but conventional information criteria such as
AIC (Akaike 1974) and BIC (Schwarz 1978) as well as
the likelihood ratio test do better. For example, the
likelihood ratio test rejected the TN93+Gamma model

at a significance level of 0.05 in a proportion 0.284 (142
of 500) of cases when the truth was GTR+Gamma.

Empirical Data Analysis 1: Eukaryote Protein Sequences
We analyzed amino acid sequences from 55 taxa, includ-
ing 42 eukaryotes (Derelle and Lang 2012). Aligned
sequences were obtained from TreeBASE (Piel et al. 2009;
Vos et al. 2012; TreeBASE Matrix ID:M11012). For this
data set, the PSL is 11,500 sites and the mean proportion
of nongap characters per taxon is 0.8045 (±0.0237).

We inferred the maximum likelihood tree with
the LG+Gamma model (Le and Gascuel 2008) by
using RAxML software version 8.24 (Stamatakis 2014)
along with a four-category discretized gamma dis-
tribution to incorporate rate heterogeneity among
sites (Yang 1994b). For the estimation of G-Factors
and M-Factors, we applied four amino acid mod-
els: LG+Gamma, WAG+Gamma (Whelan and Gold-
man 2001), JTT+Gamma (Jones et al. 1992), and Day-
hoff+Gamma (Dayhoff et al. 1978). Assuming the max-
imum likelihood tree topology and these four substitu-
tion models, the maximum log-likelihood scores were
respectively −490,769.53, −494,591.39, −500,473.62, and
−500,900.11.

Overall G-Factors: For the LG+Gamma model, the
overall G-Factor (Ĝ) is 0.8154 (±4.7×10−3) and the ESL of
the aligned data is 9377 (≈0.8154 ×11,500). In this case,
the G-Factor is slightly greater than the proportion 0.8045
of ungapped positions in the alignment. The overall
G-Factor was robust to the amino acid replacement
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model. The overall G-Factors for the WAG+Gamma,
JTT+Gamma, and Dayhoff+Gamma models are respect-
ively 0.8187 (±5.1×10−3), 0.7902 (±4.6×10−3), and
0.8152 (±4.9×10−3).

Parameter-wise G-Factors: As with the overall G-
Factors, our estimates of the ratios Ĩffii/Iffii (i.e.,
the parameter-wise G-Factors Gi) were robust to
model choice (data not shown). Figure 3 maps the
parameter-wise G-Factors that were estimated under the
LG+Gamma amino acid model onto branches of the
phylogeny. Consistent with the simulation results, the
Ĝi estimates show a gradual change over branches. Some
internal branches have high Ĝi and these seem to be the
ones that are far from terminal taxa with many gaps.

Overall M-Factors: Because the log-likelihood score
with the LG+Gamma model is the highest among
the four models that we explored, our discussion
concentrates on results from it. The overall M-Factor
(M̂) is 0.7595 (±5.5×10−3) and is significantly dif-
ferent from 1 (P-value � 0.01). This implies that
the adopted LG+Gamma model is significantly dif-
ferent from the unknown data-generating mechanism.
The M-Factors for the WAG+Gamma, JTT+Gamma,
and Dayhoff+Gamma models were respectively 0.7566
(±5.2×10−3), 0.7492 (±5.6×10−3), and 0.7714 (±5.1×
10−3). While these M-Factor estimates vary, all M-Factor
estimates are approximately equally far from 1 and are
significantly different from it. These M-Factor estimates
are therefore consistent with the possibility that the
difference between the true data-generating mechanism
and any of these models is far bigger than the differences
between these models.

Parameter-wise M-Factors: Even for individual
branches on the phylogeny, the LG+Gamma model does
not fit well. Out of 107 branches, 100 show significant
rejection of Mi =1 (two-tailed P value <0.05) when
assuming the LG+Gamma model. To confirm that the
large number of significant parameter-wise M-Factors
are not artifacts, we performed a simple simulation.
Using the maximum likelihood phylogeny with the
LG+Gamma model, we simulated a data set with a
PSL that matches the 11,500 of the actual data and
with a gap pattern that is identical to the original
data. We then estimated G-Factors and M-Factors with
the aforementioned amino acid replacement models.
Consistent with our finding from the original data set,
the G-Factors estimated from this simulated data set are
robust to model choice (data not shown). However, the
estimated M-Factors from the simulated data show a
different pattern relative to the original data. When the
correct model (LG+Gamma) is adopted for analyzing
the simulated data, the parameter-wise M-Factors are
distributed around 1 with a mean of 0.999 and a standard
deviation of 0.022. In contrast, the M-Factors from the
actual data tend to be substantially less than 1. Among
the 107 branches on the eukaryotic tree, all yield M-
Factors that are less than 1. These estimates from the

actual data have a maximum of 0.947, a minimum of
0.626, a mean of 0.873, and a standard deviation of
0.0653. The contrast between the results from simulated
and original data implies that the substantially smaller
M-Factors from the original data are not artifacts.

Evaluation of filtering scheme: By using the Gblocks
filtering program (Castresana 2000) with options that
were slight modifications of the defaults, Derelle and
Lang (2012) removed 2759 gap-containing sequence
columns from the original sequence data. We measured
the sitewise ESL (s-ESL) of positions that were removed
by Derelle and Lang (2012). A high value of s-ESL
implies consistency of the column with the reconstructed
phylogeny. About 6% (167 of 2759) of the removed sites
had an s-ESL that exceeded 5. In contrast, only about
2% (180 of 8741) retained sites exceeded 5. This suggests
that Gblocks tends to remove sites with high information
content. Figure 4 displays the s-ESL distributions among
removed and retained sites. It has been suggested that
Gblocks tends to remove too many gap-rich columns
from data sets (e.g., Tan et al. 2015). The relatively high
frequency of high s-ESL values among removed sites
is consistent with the possibility that the removed sites
actually contain substantial phylogenetic information.

The s-ESL distributions in Figure 4 are skewed because
the distribution of sitewise second derivatives is highly
skewed. Our experience is that a large proportion of
sitewise Fisher information values (i.e., negative second
derivatives) are distributed near zero and some are even
negative. A relatively small proportion of sites show
large positive values of sitewise Fisher information. For
this reason, the resampled data with our RELL-like
procedure often will not closely approximate the original
skewed distribution for small sequence lengths n. This
unsatisfactory behavior when n is small is characteristic
of RELL-like procedures.

Empirical Data Analysis 2: Ray-finned Fish DNA Sequences
To illustrate the approach with aligned nucleotide
sequences, we used a ray-finned fish data set (Li et al.
2008) in TreeBASE (Piel et al. 2009; Vos et al. 2012;
TreeBASE Study ID S2045). It represents 52 ray-finned
fish and 4 outgroup taxa. The PSL of the original
aligned data is 7995 nucleotide sites and the mean
proportion of nongap characters per taxon is 0.8155
(±0.0216). Although there is compelling justification
for analyzing these fish data with more parameter-rich
modeling frameworks (Li et al. 2008; Seo and Thorne
2018), we contrast three simple substitution models
(GTR+Gamma, TN93+Gamma, and JC+Gamma) for the
sake of illustration. With the GTR+Gamma model, the
RAxML software (Stamatakis 2014) finds the topology
depicted in Figure 5 that is used below.

G-Factors and M-Factors: As with the analysis of
amino acid sequences, we observed robustness of the
parameter-wise G-Factors (Ĝi) among the nucleotide
models (data not shown). For the GTR+Gamma model,
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FIGURE 3. G-Factor (Gi) estimates for the eukaryote data with the LG+Gamma model. Each branch is shaded according to its Gi estimate.
The proportion of nongaps for each taxon is shown in parentheses following its name.
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FIGURE 4. The s-ESL distributions among sites from the eukaryotic data. The left histograms show sites with s-ESL values that are <5. The
right histograms show sites with s-ESL values that are ≥5. For both the left and the right, the histograms on the bottom show s-ESL values for
removed sites whereas the histograms on the top show s-ESL values of retained sites. The upper left, upper right, lower left, and lower right
histograms respectively summarize 8561, 180, 2592, and 167 sites.

the overall G-Factor (Ĝ) is 0.8547 (±3.2×10−3). The
overall G-Factors were again quite robust to model.
The overall G-Factor was 0.8522 (±3.3×10−3) for the
TN93+Gamma model and 0.8494 (±3.4×10−3) for the
JC+Gamma model.

Relative to the parameter-wise G-Factor estimates,
the parameter-wise M-Factor (M̂i) estimates from the
ray-finned fish data show more variability among
models. The overall M-Factor is 0.8667 (±6.7×10−3) for
the GTR+Gamma model. This is significantly different
from 1 (P value �0.01). The overall M-Factor was
0.8711 (±6.7×10−3) for the TN93+Gamma model and
0.8971 (±4.9×10−3) for JC+Gamma. As was the pattern
when applying amino acid replacement models to
the eukaryote protein data, these M-Factor estimates
are consistent with the possibility that the difference
between the true data-generating mechanism and these
substitution models is far greater than the differences
between these substitution models. Others have also
concluded that widely used models of sequence change
provide poor fits to real data. For example, Chen et al.
(2019) introduced a model adequacy test that strongly
rejected the GTR+Gamma+“Invariant Sites” model for
most of the data sets to which it was applied.

Interpretation of ESL: Because the PSL is 7995, the
ESL is about 6833 (≈ Ĝ×7995). As shown in equations
(16–18), the total ESL (̂ne :=nĜ) can be expressed as
sums of terms that are sp-ESL (site-parameter-wise ESL),
s-ESL (sitewise ESL), or p-ESL (parameter-wise ESL).

Because the number of sp-ESL terms is the product of
the numbers of s-ESL and p-ESL terms, individual sp-
ESL terms are particularly subject to stochastic error.
Whereas p-ESL values will always be positive, the s-ESL
and sp-ESL can have negative values.

The sp-ESL values are influenced by the estimated
length of the branch to which they correspond and also
by the strength of evidence that the site changed or did
not change on the branch. Large positive sp-ESL values
occur when there is strong evidence that a site changed
on a short branch. When a site is unlikely to have changed
on a short branch, sp-ESL values will tend to be slightly
below zero. When evidence is weak regarding whether a
site did or did not change on a branch, sp-ESL values will
be close to 0. Weak evidence can stem from a combination
of reasons including long branches, branches that are
far from any tips of the tree, an abundance of gaps at
a site, and changes at the site at multiple branches that
are sufficiently nearby on the tree as to make the most
parsimonious mapping of the site unreliable.

With our implementation, Fisher information con-
cerning branch lengths is considered but Fisher inform-
ation concerning rate and nucleotide frequency para-
meters is not. Therefore, a site must have at least two
meaningful molecular characters to have a nonzero s-
ESL value. This is because two characters correspond to
a path in the phylogeny and thereby contain information
for branch length estimation.

It is helpful to compare the ray-finned fish phylogeny
of Figure 5 to the sites depicted in Table 2. Site #5242
of Group A in Table 2 has the highest s-ESL value
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Monopterus albus (47)

Mus musculus (4)

Albula vulpes (10)

Thaleichthys pacificus (28)

Chanos chanos (17)

Takifugu rubripes (56)

Semotilus atromaculatus (20)

Brotula multibarbata (38)

Neoscopelus macrolepidotus (33)

Morone chrysops (53)

Lepisosteus osseus (5)

Elops saurus (9)

Pleuronectes platessa (48)

Pygocentrus nattereri (22)

Oncorhynchus mykiss (26)

Regalecus glesne (36)

Stomias boa (27)

Argentina sialis (24)

Tetraodon nigroviridis (55)

Chriocentrus dorab (16)
Pellona flavipinnis (15)

Polymixia japonica (35)

Gambusia affinis (44)

Notemigonus crysoleucas (19)

Homo sapiens (3)

Oreochromis niloticus (42)

Lycodes terraenovae (51)

Xenopus tropicalis (1) 

Gadus morhua (29)

Sebastes ruberrimus (49)

Amia calva (6)

Lophius gastrophysus (54)

Myripristis violacea (37)

Monodelphis domestica (2)

Esox lucius (25)

Mugil curema (40)

Hiodon alosoides (13)

Lutjanus mahogoni (52)

Coryphaenoides rupestris (30)

Dorosoma cepedianum (14)

Anguilla rostrata (11)

Oryzias latipes (46)

FIGURE 5. Maximum likelihood phylogeny of ray-finned fish taxa. Each taxon name is followed in the parentheses by the taxon number that
is used in Table 2.

(168.4) among all 7995 sites. This site appears to have
experienced a change from G to A on the shortest branch
of the phylogeny (i.e., the branch that ends at the most
recent common ancestor of Taxa #47–56 in Fig. 5). In

fact, four of the five sites in Group A of Table 2 appear
to have experienced a change on this shortest branch.
These changes lead to large positive sp-ESL values that
have a substantial influence on membership in Group A.
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TABLE 2. Sitewise ESL (s-ESL) values of the ray-finned fish group. Taxon numbering is compatible with that of Figure 5. This table displays
sites with the greatest (Group A) and smallest (Group F) s-ESL values. It also displays sites with relatively high s-ESL values (Group B), sites
that yield the highest sp-ESL values for the moderately long branch on Figure 5 that ends with the most recent common ancestor of Taxa #9-56
(Group C), sites with s-ESL values that are slightly below zero (Group D), and sites with relatively low s-ESL values (Group E)

Taxon number

Site 1 2 3 4 5 Sitewise
Group number 12345678901234567890123456789012345678901234567890123456 ESL (s-ESL)

A

5242 AGGG-A-G-----GGG-GGG--GGGGG-GGGGAGGGGGGGGGGG-GAAAAAGA-AG 168.4
2934 GTTT-ACTC-C-C-G-CGGGCCCCCCCCGCCCCCCCCCCCCCCCCGAGGAGGGTGA 165.0
6516 AAAAGGTTG--GA-AGGGAAGGT-GG--G----G-GGTGGTTGG-GCCCCGCCTGG 153.0
6470 CCCCGCGGG--GG-GGGGGGGAG-GG--G----G-GGGGGGGGA-GGGGGGCCCCC 109.9
1431 ----GA--GGG-GGGGGGGG-AAGGGGGGGGGGGGGGGGAGGGAGGAAAAGAAAAA 109.7

B

2265 TCTCTTTTC---TTCT-CTT-TGATA----CT-TC-CC-C-AC-CTTCTTTTT-CC 9.697
7779 TCCCGGTCG--AGTGGGGGGTGGGGGCGG-GGGA-GGGGGAAGGGAAG-AGAAGAA 9.387
7503 CCTTCCCTC--CCCGCCCCCCCCCCCCCC-CCGC-TCCGGAAAGACAG-GGGGCGT 9.079
2430 GGAGTTCCG---GGGG-GGT-GGGCG----GG-CG-CG-G-GT-GTGACCCCG-TT 8.863
5325 GATA-G-A-----AGG-GGG--GAGGG-GGGAAGAGGAAGGGAG-GGGAAAAA-GG 8.745

C

7109 CCCCCCCCG--GGGGGGGGGGGGGGGGGG-GGGG-GGGGGGGGGGGGG-GGGGGGG 0.002324
2743 CCCC-CCCA-A-A-A-AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 0.002320
6779 -TTTTTTTG--GG-GGGGGGGGG-GG--G----G-GGGGGGGGG-GGGGGGGGGGG 0.001843
3275 AAAA-A-AT--TT---TTTTT-TT-TTT--TTT---TTTTTTTTTTTTTTTTTTTT 0.001741
3686 GGGG-G-GC--CC---CCCCC-CC-CCC--CCC---CCCCCCCCCCCCCCCCCCCC 0.001248

D

626 GAGGGGGGGGGGGGGGGGGGG-GGGGGGG-GGGGGGGGGGGGGGGGGGGGGGGGGG −0.000006
3725 -GCC---------------------------------------------------- −0.000020
6468 GAGGGGGGG--GG-GGAAAAGGG-GG--G----G-GGGGGGGGG-GGGGGGGGGGG −0.000037
3104 TTTT-TCTT-T-T-T-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT −0.000073
1863 TCCCCCCCC---CCCC-CCC-CCCCC----TC-CC-CT-C-CC-CCCCCCCCC-CC −0.000093

E

2568 AGAA-CCTT-C-C-T-GGGGGGAGCCGGGGGAGGGGGGGGGGGGGGAGGCGGGGAA −0.01020
3631 GGGG-A-C-------------------------------------------A---- −0.01066
966 ----CC--CGC-CGTCATAA-AACCCCCCCCCCCCCCACCCCCCCGCCCCCCCTCC −0.01326
69 CCCCGGGGGGGCAAAACTTTT-CGGGGGA-GTGAGCGCGGGGCCGGGGGGGGGGGG −0.01367

3665 G----------------CCC----------------------------C------- −0.01583

F

6825 AACCTCTTC--CC-GGTTTTCAC-CC--C----C-CCACCCCCC-CCCCCCCCCCC −0.1134
4710 TTCC--G-CCCCG-GCTCCCTTTCCCCCCCCCACC-CTGCCCCCCTC-CCCCCCTT −0.1187
6345 TCTCCGCAG--GT-CCCCCCCCC-CC--C----C-ACCTCCCCC-CCCCACCCCCC −0.1189
7872 TCCCCTACC--AGGGGTCCCCCGTCCCCC-CACC-TCCCCCCCCCCCC-CCCCCCC −0.1214
258 CGCTTTACCCCCATCCTCCCG-TCACCCT-CCCCCGCCCCCCCCCCCCCCCCCCCC −0.1362

To provide a contrast to the sites in Group A of Table 2,
the sites of Group C were selected because they appear
to have experienced a change on the moderately long
branch of Figure 5 that ends with the most recent
common ancestor of Taxa #9-56. Among all sp-ESL
values for this branch, the sites in Group C yield the
highest sp-ESL values. Because this branch is not short,
these sites have s-ESL values that are not far above 0.

Figure 6a plots the 109 sp-ESL values (y-axis) versus
branch index (x-axis) for Site #5242. Only 22 of the 109
values are positive and only seven are greater than 1.0.
The corresponding plot in Figure 6b is for Site #258. This
site belongs to Group F of Table 2 and has the lowest
s-ESL value in the data set. Figure 6 suggests that much
of the difference in the sites with the highest and lowest
s-ESL values can be explained by the large positive sp-
ESL value for the change at Site #5242 on the shortest
branch of the phylogeny. Rather than having any extreme
negative sp-ESL values, Site #258 seems to have a low
s-ESL value because of an absence of large or moderate
sp-ESL values.

Figure 7 contrasts the distribution of sp-ESL values for
the shortest branch on the tree with the distribution of

sp-ESL values for the aforementioned moderately long
branch that ends with the most recent common ancestor
of Taxa #9-56. The shortest branch yields a small number
of especially large positive sp-ESL values whereas
the long branch yields a moderately large number of
moderately large positive sp-ESL values. The contrast
in sp-ESL distribution between these two branches
occurs because a substitution on a very short branch is
highly unusual but is a relatively big surprise when it
does happen whereas substitutions on longer branches
represent smaller surprises and happen somewhat often.

Empirical Data Analysis 3: Mitochondrial and Nuclear
DNA of Mouse Lemur

Because the previous two empirical analyses involved
highly diverged taxa, we also include an analysis of
closely related taxa that were studied by Poelstra et al.
(2021). Their mouse lemur RAD-seq data consists of both
mitochondrial (mt-; 55 taxa) and nuclear (n-; 57 taxa)
DNA from six species within the Microcebus genus. The
PSL’s of the mt-DNA and n-DNA are respectively 4048
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FIGURE 6. sp-ESL values for the sites with the highest and lowest s-ESL values of the ray-finned fish data. a) Individual sp-ESL values for the
site with the highest s-ESL value (Site #5242). Values for 22 out of 109 branches are positive. The largest sp-ESL value corresponds to the shortest
branch on the tree (i.e., the branch that ends with the most recent common ancestor of Taxa #47–56 in Fig. 5). b) Individual sp-ESL values for the
site with the lowest s-ESL value (Site #258). The values are positive for 23 branches.

and 27,565 nucleotides. The mean proportions of non-
gap characters per taxon are 0.4692 (±0.0271) for the
mt-DNA and 0.8465 (±0.0209) for the n-DNA.

Poelstra et al. (2021) attributed the differences in
topologies suggested by their concatenated mt-DNA and
concatenated n-DNA to interspecific gene flow. Here, we
avoid the important topic and potential consequences
of concatenating RAD-seq data. We instead investigate
the performance and applicability of our procedure
for the concatenated mt-DNA and the concatenated n-
DNA data. By adopting the GTRGAMMA model for
the mt-DNA and the GTRCAT model for the n-DNA,
we estimated the maximum likelihood phylogeny for
the two data sets with RAxML software version 8.24
(Stamatakis 2014).

For the mt-DNA, only 46 of 107 branch length
estimates are non-zero. Because our theory depends on
branch length estimates having asymptotically normal
distributions, its performance will be hampered when
estimates are at or near their smallest possible value
of zero (e.g., see Susko and Roger 2019). Therefore, we
developed weak, moderate, and stringent constraints
that can be used to identify branches whose length is
reasonably far from zero (see Supplementary material
[C] available on Dryad). The idea is to exclude branches
that do not satisfy the constraints from G-factor and M-
factor calculations. As explained in the Supplementary
material available on Dryad, the moderate constraints
seem to strike an appropriate balance between excluding
branches that are not well approximated by a normal
distribution and not excluding too many branches.

All branches from the ray-finned fish DNA data, the
eukaryotic protein data, and the mouse lemur n-DNA
satisfy the moderate constraints. However, only 19 of the
107 branches of the mouse lemur mt-DNA satisfy the
moderate constraints.

With only 19 branches being used for the analysis,
the mt-DNA G-Factor and M-Factor estimates are 0.596
(±0.0421) and 0.955 (±0.0288). For the n-DNA, the G-
Factor and M-Factor estimates are 0.810 (±0.00689) and
0.689 (±0.00993). These n-DNA estimates have substan-
tially less uncertainty than the mt-DNA estimates due to
the larger amount of sequence data and the fact that no
branches are excluded by the constraints.

Applicability of ESL for Filtering or Bootstrap
For both the eukaryotic and ray-finned fish data, we
performed the experiment of removing sites with neg-
ative s-ESL values, re-estimating the phylogeny, and
then measuring bootstrap support of the maximum
likelihood phylogeny. Some branches showed increased
bootstrap support, but others showed decreases and
there was no strong pattern of overall increase or
decrease (data not shown). As illustrated in Figure 6, sites
are typically associated with both positive and negative
sp-ESL values. Furthermore, as shown in Figure 4, con-
ventional filtering schemes may remove sites in which
s-ESL’s are positively large and individual sp-ESL’s are
distributed over both negative and positive ranges. The
widespread distribution of sp-ESL values implies that
data filtering is not a simple task and illustrates why
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FIGURE 7. Plots and histograms of sp-ESL values from the ray-finned fish data. a) sp-ESL values from the shortest branch of the phylogeny
(i.e., the branch that ends in the most recent common ancestor of Taxa #47–56). b) The log-scale histogram that corresponds to (a). c) sp-ESL
values of a moderately long branch on the ray-finned fish phylogeny that ends with the most recent common ancestor of Taxa #9–56. d) The
log-scale histogram that corresponds to (c).

removing columns may reduce information (Dessimoz
and Gil 2010; Tan et al. 2015).

DISCUSSION

It is conventional in phylogenetics to report the
number of columns in a sequence alignment (i.e., the
PSL), but this statistic has little communicative value
in isolation. Two alignments with the same number of
columns are unlikely to be equally informative if one
has no gaps and the other has abundant gaps. This
work describes a procedure to measure the impact of
gaps on phylogenetic information and to test model
adequacy. It introduces the ESL measure that translates
the phylogenetic information of a gapped data set to an
intuitive summary representing how many ungapped
columns would be in an equally informative alignment.
An advantage of the ESL is its careful accounting of
phylogenetic correlations among sequences. This work
also introduces the s-ESL, p-ESL, and sp-ESL measures

that can be employed to quantify the impacts of indi-
vidual parameters and data components on phylogenetic
analyses.

When a molecular phylogenetics study is performed,
we suggest that both the ESL and the PSL be reported. If
the ESL is substantially less than the PSL, investigators
should consider potential sources of the disparity and
how they might impact phylogenetic inferences. We
discuss these issues in more detail below.

One possible cause of the PSL greatly exceeding
the ESL is insertion and deletion events that occurred
during the evolutionary history of the sequence data
being analyzed. A large disparity between the PSL
and ESL does not necessarily mean that alignment
uncertainty is problematic for a phylogenetic analysis,
but it is consistent with this possibility. When such a
disparity occurs, more than a usual amount of attention
to alignment uncertainty may be warranted. It might
be possible to apply the sitewise s-ESL measure to
the detection of alignment error or to have s-ESL
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clarify whether filtering of alignment columns removes
noise or hampers meaningful signal (e.g., Talavera and
Castresana 2007; Dress et al. 2008; Capella-Gutierrez
et al. 2009; Dessimoz and Gil 2010; Tan et al. 2015).
If not for its computationally demanding nature, our
preferred option would be to treat alignment uncertainty
with a probabilistic model of insertion and deletion (e.g.,
Redelings and Suchard 2005).

An alternative but not mutually exclusive cause of PSL
greatly exceeding ESL is that alignment gaps may repres-
ent sequence data that have not been collected for some
taxa. We note that such uncollected sequence data are not
necessarily missing “at random” because uncollected
sequence data may be more diverged or may otherwise
collectively differ from sequence data that are collected
and that are therefore represented in a sequence align-
ment. Ascertainment bias warrants careful attention for
phylogenetic inference (e.g., Felsenstein 1992; Leaché
et al. 2015; Tamuri and Goldman 2017) and also for down-
stream analyses such as divergence time estimation.

Our approach relies on the conventional phylogenetic
treatment of gaps as data that are missing at random.
This conventional treatment is justified if the substitution
process is independent of the insertion–deletion process
and if ascertainment bias of uncollected data can be neg-
lected. With these provisos, the conventional treatment
of gaps will not cause bias in phylogenetic estimation.

Our model adequacy test could be modified to
examine a null hypothesis of independence between
insertion–deletion and substitution. There is ample
justification for examining this hypothesis. For example,
amino acid replacement and insertion–deletion are cor-
related through protein structure. In fact, early methods
utilized gaps in multiple sequence alignments to predict
coils in protein secondary structure and they further
leveraged patterns of amino acid variability within
alignment columns to discriminate between coils, �-
helices, and M-strands (e.g., Benner and Gerloff 1991;
Thorne et al. 1991).

The assumption of independence between nucleotide
substitution and insertion–deletion can be biologically
unrealistic because of both natural selection and muta-
tion. The reason why natural selection might violate
the independence assumption is straightforward. Both
point mutations and insertion–deletion mutations are
likely to be selected against in genomic regions that
are functionally constrained. The result is that there
can be a positive correlation among genomic regions
between the rate at which point mutations and insertion–
deletion mutations fix (e.g., see Sjödin et al. 2010). In
addition, insertion–deletion and nucleotide substitution
might be correlated due to mutation. For example, Tian
et al. (2008) suggest that segregating insertion-deletion
polymorphism might be mutagenic in heterozygous
individuals.

Our work also has relevance to model selection. To
compare competing models and select the best one,

conventional options include the AIC (Akaike 1974), the
BIC (Schwarz 1978), and the likelihood ratio test. These
options cannot determine if the “best model” is sig-
nificantly different from an “unknown data-generating
mechanism.” Procedures to test model adequacy already
exist (e.g., Goldman 1993; Duchêne et al. 2018; Chen et al.
2019), but these existing procedures have a substantially
different basis than ours. An attractive feature of our M-
Factor approach is that it can investigate model adequacy
of individual model parameters.

Due to its low power, we do not suggest that
our model adequacy test is superior to conventional
model comparison options but we believe that it can
supplement them in order to illuminate goodness-of-fit
and potentially to help pinpoint parameters associated
with model deficiencies. Although the model adequacy
test has low power, it strongly rejected all models that
were considered for the eukaryotic and ray-finned fish
data sets. These results are consistent with the view
that widely-used models of sequence evolution are
deeply flawed. Duchêne et al. (2018) have emphasized
the importance for phylogenetic inference of carefully
assessing model adequacy.

Future directions: A limitation of our procedure is that
the G-Factors and M-Factors do not account for topolo-
gical uncertainty of the phylogeny. The impact of this
limitation is likely to greatly vary among data sets. We
hope to address and assess this limitation in the future.

Here, we focused on the parameter-wise M-Factors
that correspond to individual branches of the phylogen-
etic tree. In future work, we hope to characterize how
parameter-wise M-Factors can be leveraged to improve
models of nucleotide substitution, especially codon-
based models of nucleotide substitution (see also Seo and
Kishino 2008, 2009). The ability to interrogate the effect of
individual parameters on model fit can potentially guide
the development of more useful probabilistic models of
sequence change.

APPENDIX

[A] A criterion for matrix approximation
In our derivations, we repeatedly approximate some
matrix A with a proportion of a different matrix
B. We represent this sort of approximation and the
corresponding exact relationship as

A ≈ �B

A = �B+R(�), (A.1)

where R(�) is the residual matrix for given �. To get an
optimal �, we use the Frobenius norm (‖R(·)‖F; Golub
and Van Loan 2013) of the residual matrix which is
minimized at �,

� :=argmin
t

⎧⎪⎨⎪⎩‖R(t)‖F :=
√√√√∑

i,j

(
Aij −tBij

)2

⎫⎪⎬⎪⎭, (A.2)
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where Aij and Bij are the elements of the ith row and
jth column of matrices A and B, respectively. This will
be referred to as the Minimum Frobenius Norm (MFN)
criterion. The optimal � can be obtained with d

dt ‖R(t)‖F =
0 and

� =
∑

i,j AijBij∑
i,j B

2
ij

.

Note that � is identifiable only when both A and B are
identifiable.

[B] The approximation of Fisher information matrices
Assume the data were generated by the true but
unknown distribution g(·) and will be analyzed with
model f (·|θ). Subject to regularity conditions, the max-
imum likelihood estimate (MLE) θ̂ follows an asymptot-
ically multivariate normal distribution when n is large
(White 1982),(̂

θ−θ∗
) ·∼· N

(
0,

1
n

I−1
gf Jgf I−1

gf

)
, (A.3)

where

Igf := Eg

[
− ∂2

∂θ∂θT logf (X|θ∗)

]

Jgf := Eg

[{
∂

∂θ
logf (X|θ∗)

}{
∂

∂θ
logf (X|θ∗)

}T
]

,

and where Eg [·] implies the expectation is performed
with respect to the true distribution g(·). If the true and
adopted models are identical (i.e., g(x)= f (x|θ) ), Igf =Jgf

and the variance of equation (A.3) is reduced to {I−1
gf /n}.

Similar to equation (A.3), the MLE θ̃ for incomplete
data follows an asymptotically multivariate normal
distribution when the data are generated by g(·) but
analyzed with f (·|θ),(

θ̃−θ∗
) ·∼· N

(
0,

1
n

Ĩ−1
gf J̃gf Ĩ−1

gf

)
, (A.4)

where

Ĩgf := Eg

[
− ∂2

∂θ∂θT logf (X̃|θ∗)

]

J̃gf := Eg

[{
∂

∂θ
logf (X̃|θ∗)

}{
∂

∂θ
logf (X̃|θ∗)

}T
]

,

and where the notation X̃, Ĩgf and J̃gf imply that the
data contains gaps. The inverse of a variance such
as found in equation (A.4) is conventionally referred
to as information. For equation (A.4), the inverse of
the variance represents the amount of information
contained in an incomplete data set with a PSL of n.

Our purpose is to develop an approximate relation-
ship between the information in the observed n columns
of incomplete (gapped) data and the information in

ne columns of complete (ungapped) data such that
nĨgf J̃−1

gf Ĩgf ≈neIgf J−1
gf Igf and so that we can estimate ne.

We define k1 :=ne/n and parallel equation (A.1) with the
following approximate and exact relationships,

Ĩgf J̃−1
gf Ĩgf ≈ k1Igf J−1

gf Igf ,

Ĩgf J̃−1
gf Ĩgf = k1Igf J−1

gf Igf +E1, (A.5)

where E1 is the residual matrix for k1. With only an
incomplete data set, the complete-data quantities Igf
and Jgf are unidentifiable. These quantities represent
expectations with respect to the unknown g(·) and there
is no way to identify them even via simulation. Because
Igf and Jgf are unidentifiable, k1 is unidentifiable in
equation (A.5). In contrast, Ĩgf and J̃gf are identifiable
because the observed incomplete data were generated
with g(·).

Similar to equation (A.1), consider the following
approximate and exact relationships

Ĩ−1
gf J̃gf ≈ k2I−1

gf Jgf

Ĩ−1
gf J̃gf = k2I−1

gf Jgf +E2, (A.6)

where k2 is still unidentifiable because of Igf and Jgf .
Define Iff and Ĩff as

Iff = Ef

[
− ∂2

∂θ∂θT logf (X|θ̃)

]

Ĩff = Ef

[
− ∂2

∂θ∂θT logf (X̃|θ̃)

]
,

where θ̃ is the MLE for given incomplete data and
is compatible with θ̃ of equation (A.4). An important
feature of both Iff and Ĩff is that the expectation is
performed with respect to the adopted model f (·|θ̃)
so that these quantities are identifiable via simulation.
By generating extremely long complete and incomplete
sequences with model f (·|θ̃), Iff and Ĩff can be estimated.

Similar to equation (A.1), consider the following
approximate and exact relationships

Igf ≈ k3Iff

Igf = k3Iff +E3, (A.7)

where k3 is unidentifiable because of Igf .
Applying equations (A.6) and (A.7) to equation (A.5),

Ĩgf J̃−1
gf Ĩgf = k1Igf J−1

gf Igf +E1

⇐⇒ Ĩgf J̃−1
gf Ĩgf × Ĩ−1

gf J̃gf =
{

k1Igf J−1
gf Igf +E1

}
×
{

k2I−1
gf Jgf +E2

}
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⇐⇒ Ĩgf = k1k2Igf +k1Igf J−1
gf Igf E2

+k2E1I−1
gf Jgf +E1E2 (A.8)

= k1k2

{
k3Iff +E3

}
+k1Igf J−1

gf

×Igf E2 +k2E1I−1
gf Jgf +E1E2

= k1k2k3Iff +k1k2E3 +k1Igf J−1
gf

×Igf E2 +k2E1I−1
gf Jgf +E1E2.

Simplifying the last line of the above equation yields

Ĩgf ≈ k1k2k3Iff

Ĩgf = k1k2k3Iff +E, (A.9)

where E=k1k2E3 +k1Igf J−1
gf Igf E2 +k2E1I−1

gf Jgf +E1E2.

Because both Ĩgf and Iff are identifiable in equation
(A.9), the product of {k1k2k3} can be estimated by
applying the MFN criterion of equation (A.2). While
the product k1k2k3 can be inferred, the three factors in
this product cannot be individually estimated with our
approach.

Finally, consider the following approximate and exact
relationships,

Ĩff ≈ k4Iff

Ĩff = k4Iff +E4, (A.10)

where both Ĩff and Iff are identifiable via simulation.
Because random data can be generated and analyzed
with f (·|θ̃), k4 is free from the model misspecification
issue. Applying the MFN criterion to equation (A.10),

k4 :=
∑

i,j IffijĨffij∑
i,j I

2
ffij

, (A.11)

where Iffij and Ĩffij are respectively the elements at the ith
row and jth column of matrices Iff and Ĩff .

Although equation (A.11) relies upon the model f (·|θ̃)
being used for both data generation and analysis, we
found via simulation and empirical data analysis (see
Results section) that estimates of k4 in equation (A.10)
are relatively robust to the choice of model used for
analysis. That is, when we generate random sequences
with f (·|θ̃) and analyze them with an incorrect model
h(·|θ), we can consider the following relationship that is
similar to equation (A.10),

Ĩfh ≈ k′
4Ifh

Ĩfh = k′
4Ifh +E′

4. (A.12)

As described in the Results section, we found k′
4 ≈k4 even

for an incorrect model h(·|θ). We note that equation (A.8)
has the same structure as equation (A.12). Therefore, we

can expect k1k2 ≈k′
4 ≈k4 for a carefully selected model

f (·|θ̃) that is not too far from the truth.
Applying the MFN criterion to equation (A.9) followed

by replacing k1k2 with k4 leads to

k3 ≈ 1
k4

∑
i,j IffijĨgfij∑

i,j I
2
ffij

=
∑

i,j IffijĨgfij∑
i,j IffijĨffij

. (A.13)

The formula for k4 in equation (A.11) and the formula for
k3 in equation (A.13) both involve off-diagonal elements.
Assuming these off-diagonal elements can be ignored,
we have

k3 ≈
∑

i IffiiĨgfii∑
i IffiiĨffii

=:M

k4 ≈
∑

i IffiiĨffii∑
i I

2
ffii

=:G.

We respectively refer to G and M as the overall G-Factor
and the overall M-Factor, with G being the ESL/PSL ratio
and M being the model misspecification factor. The ESL
of the given incomplete sequence data can be obtained
with G×PSL. If we define

ui :=
I2
ffii∑
i I

2
ffii

vi := IffiiĨffii∑
i IffiiĨffii

,

G and M can be represented as the weighted average of
the parameter-wise Gi’s and Mi’s as defined in equations
(6) and (7),

G =
d∑

i=1

uiGi

M =
d∑

i=1

viMi.

[C] Fisher information implementation
In our implementation, two important simplifications
are made regarding Fisher Information estimates. First,
branch lengths are the only type of parameter con-
sidered. This is mainly motivated by a desire to avoid
numerical instability complications. We expect that a
consequence of this simplification is reduced power of
our model adequacy test because parameters controlling
character-state transitions are not considered. Second,
our implementation adopts the analytic formula for
diagonal elements of the Hessian matrix that correspond
to branch length estimates (Yang 2000) but it ignores
off-diagonal elements in the Fisher information matrix
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because they could be burdensome with regard to
computational time and memory. Furthermore, our
bootstrap implementation saves computation and stor-
age by resampling only sitewise second derivatives (i.e.,
sitewise diagonal elements of the Hessian matrix).

One way to assess the importance of off-diagonal ele-
ments is to measure their contribution to the Frobenius
norm of equation (A.2). This is straightforward when the
data-generation mechanism and adopted model match
so that Ĩff = J̃ff and so that off-diagonal elements of
J̃ff can be estimated by using the outer product of
sitewise first derivatives (Porter 2002; Seo et al. 2004).
The proportional contribution of the diagonal elements
of the Frobenius norm is

r̂d :=
√∑

i |̂ J̃ffii |2√∑
i
∑

j |̂ J̃ffij |2
.

We used the maximum likelihood estimates of the euk-
aryotic data set for the LG+Gamma model to simulate a
data set with the observed size and gap patterns. We
then analyzed this simulated data set with LG+Gamma
and obtained r̂d =0.962. This high proportion suggests
that the diagonal elements are summarizing most of the
information.

In a separate experiment, we randomly selected three
of the 500 data sets that were simulated according to
Figure 1. These three data sets yielded r̂d values of 0.940,
0.944, and 0.945. Coupled with the simulation results

of Ĝ1 =0.500 (Fig. 1), the high r̂d proportions imply
ignoring the off-diagonals will have a minor impact on
G-factor estimation.

Although the high r̂d values calculated in these
experiments are all for the situation where f (·|θ)=g(·),
we expect that ignoring off-diagonal elements of Ĩgf will
tend not to be problematic when f (·|θ) is a reasonably
good approximation for g(·).
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