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Abstract. While climate change mitigation targets necessarily concern maximum mean state changes, under-
standing impacts and developing adaptation strategies will be largely contingent on how climate variability
responds to increasing anthropogenic perturbations. Thus far Earth system modeling efforts have primarily fo-
cused on projected mean state changes and the sensitivity of specific modes of climate variability, such as the
El Niño–Southern Oscillation. However, our knowledge of forced changes in the overall spectrum of climate
variability and higher-order statistics is relatively limited. Here we present a new 100-member large ensemble
of climate change projections conducted with the Community Earth System Model version 2 over 1850–2100 to
examine the sensitivity of internal climate fluctuations to greenhouse warming. Our unprecedented simulations
reveal that changes in variability, considered broadly in terms of probability distribution, amplitude, frequency,
phasing, and patterns, are ubiquitous and span a wide range of physical and ecosystem variables across many
spatial and temporal scales. Greenhouse warming in the model alters variance spectra of Earth system variables
that are characterized by non-Gaussian probability distributions, such as rainfall, primary production, or fire oc-
currence. Our modeling results have important implications for climate adaptation efforts, resource management,
seasonal predictions, and assessing potential stressors for terrestrial and marine ecosystems.

1 Introduction

Faced with the prospect of substantial future climate
change, mitigation and adaptation strategies are increasingly
paramount. While mitigation efforts are concerned chiefly
with limiting mean state changes, successful adaptation will
also require understanding the potentially altered variability
of the climate system (Sarachik, 2010). However, the way in
which climate variability will change due to anthropogenic
radiative forcing has not been extensively explored. The
spectrum of observed regional-to-global climate fluctuations

exhibits relatively sharp peaks and a broad noise background
(Hasselmann, 1976; Franzke et al., 2020). Spectral peaks
can emerge from a range of mechanisms, including astro-
nomical forcings or internal climate instabilities such as for
the El Niño–Southern Oscillation (ENSO). Moreover, these
distinct features can be further influenced by climate pro-
cesses acting on different timescales. Examples of non-linear
“timescale interactions” are multiplicative (state-dependent)
noise (Müller, 1987; Majda et al., 2009; Sardeshmukh and
Sura, 2009; Sardeshmukh and Penland, 2015; Jin et al., 2007,
2020; Levine and Jin, 2010) and combination mode dynam-
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ics (Stuecker et al., 2015b). How modes of variability will re-
spond to greenhouse warming has been addressed in a num-
ber of previous modeling studies (Timmermann et al., 1999;
Cai et al., 2018), albeit with conflicting results. In contrast,
the sensitivity of the spectral background to human-induced
climate change is less well-known. Identifying and charac-
terizing human-induced changes in this spectral background,
using for example Coupled Model Intercomparison Project
(CMIP)-type coordinated modeling efforts, has proven diffi-
cult due to limited statistics.

The relatively recent advent of large ensemble simula-
tions (henceforth termed large ensembles) conducted with
Earth system models provides a new resource for addressing
how climate and ecosystem statistics may evolve in response
to anthropogenic forcing across a wide range of timescales
(Deser et al., 2020; Schlunegger et al., 2020). Such large en-
sembles with global climate models have existed for more
than 15 years (Zelle et al., 2005; Drijfhout et al., 2008;
Branstator and Selten, 2009), but earlier studies expressed
concern with aspects of process representation and therefore
their results with regard to variability changes were incon-
clusive. Other studies have employed individual model sim-
ulations, small (≤ 10 members) ensembles, or CMIP multi-
model ensembles (Rind et al., 1989; Raisanen, 2002; Hunt-
ingford et al., 2013; Screen, 2014; Stouffer and Wetherald,
2007; Wetherald, 2009) to address whether surface temper-
ature and precipitation variability may change under global
warming. To date large ensemble studies of changes in vari-
ance have mainly focused on specific quantities, timescales,
or regions (Deser et al., 2020; Pendergrass et al., 2017; Ma-
her et al., 2019, 2021; Haszpra et al., 2020). However, to our
knowledge, the full power of the large ensemble framework
has not been harvested to gauge broad-scale forced changes
in climate statistics, including changes in variance, spectrum,
patterns, and phase, for a wide range of quantities, regions,
or timescales.

To study the sensitivity of higher-order climate statis-
tics to anthropogenic climate change, we conducted a new
100-member ensemble of climate change simulations using
the Community Earth System Model version 2 (CESM2)
(Danabasoglu et al., 2020), which we refer to as CESM2-
LE (Methods). The initialization and forcing are described
in the Methods section and in Figs. S1–S5 in the Supple-
ment. An ensemble of this size and duration with a CMIP6-
generation Earth system model at 1◦ spatial resolution is un-
precedented. A large number of improvements have occurred
since CESM1-LE (Kay et al., 2015), as documented in the
Methods section. In addition to improved parameterizations
and process representation that increase model skill in rep-
resenting a number of phenomena, a notable improvement
is also seen in land processes within the Community Land
Model Version 5 (CLM5).

CESM2-LE promises to provide an enhanced framework
for documenting and understanding robust forced changes in
internal variability, complementing our knowledge of mean-

state changes (Simpson et al., 2020; Fasullo, 2020). The
simulations were performed for the 1850–2100 period with
historical (1850–2014) and SSP3-7.0 (2015–2100) forcings.
The choice to use 100 members was motivated by the chal-
lenges associated with identifying trends in higher statistical
moments. A previous set of analyses performed with the Max
Planck Institute Grand Ensemble (MPI-GE) (Milinski et al.,
2020) explored the relationship between ensemble size and
the accuracy of identifying forced changes in higher-order
moments. Even taking into account differences in model ar-
chitecture, and thereby model uncertainty in such estimates,
their analysis with the MPI-GE nevertheless supports our de-
cision to expand well beyond the 40 members chosen for
CESM1-LE (Kay et al., 2015). To facilitate analysis over a
broad range of timescales, substantial resources have been
devoted to providing high-frequency output for the atmo-
sphere, land, ocean, and cryosphere. Providing a clearer view
of the patterns of altered climate variability should enable in-
vestigation of the mechanistic drivers of such changes and
their implications for impacts of societal and ecosystem rel-
evance. This study presents initial results on forced changes
in internal variability across a range of fields and timescales
in CESM2-LE, and it will serve as the reference publication
for CESM2-LE.

2 Methods

2.1 Model configuration

The simulations consist of a 100-member large ensemble
suite conducted with CESM2 with the Community Atmo-
sphere Model version 6 (CAM6) (Danabasoglu et al., 2020),
referred to here as CESM2-LE. The simulations cover the pe-
riod from 1850–2100 and follow the historical and SSP3-7.0
forcing protocols provided by CMIP6 (Eyring et al., 2016),
although with some differences noted below for the represen-
tation of biomass burning in 50 of the 100 ensemble mem-
bers. CESM2 has been demonstrated to fare well when eval-
uated against skill metrics with other models (Fasullo, 2020).
The choice of the SSP3-7.0 scenario forcing follows CMIP6
recommendations (O’Neill et al., 2016) that emphasize the
value of this relatively high forcing level precisely for the
purpose of quantifying forced changes in natural variability.
This choice should also provide a useful contribution towards
an eventual CMIP6 large ensemble intercomparison.

The CESM2 components use nominal 1◦ horizontal reso-
lution. Specifically, CAM6 has a resolution of 1.25◦ in lon-
gitude and 0.9◦ in latitude, and 32 vertical levels with a top
at 2.26 hPa, or approximately 40 km. The ocean and sea ice
models are the Parallel Ocean Program version 2 (POP2)
(Danabasoglu et al., 2020; Smith et al., 2010) and the CICE
Version 5.1.2 (CICE5) (Bailey et al., 2020). The nominal res-
olution of the ocean is 1◦ horizontally, with uniform spacing
of 1.125◦ in the zonal direction and varying significantly in
the meridional direction, with the finest resolution of∼ 0.25◦
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at the Equator. The ocean model provides 60 vertical levels,
with 20 of these layers represented in the upper 200 m of the
water column. CESM2 offers a number of improvements per-
tinent to our scientific interests relative to what was available
for CESM1-LE (Kay et al., 2015). These improvements in-
clude advances in the surface boundary layer representation
for the ocean (Li et al., 2016), as well as for cloud micro-
physics (Gettelman et al., 2015). The ocean biogeochemistry
model used with the POP2 model is the Marine Biogeochem-
istry Library (MARBL), which represents an updated version
of what was previously known as the biogeochemistry ele-
mental cycle (BEC) (Moore et al., 2001, 2004, 2013; Long et
al., 2021).

An important advance of great value to large ensemble
investigations is achieved through new developments incor-
porated into CLM5 (Danabasoglu et al., 2020; Lawrence et
al., 2019; Lombardozzi et al., 2020). The model addresses a
number of well-known limitations relative to previous ver-
sions of CLM, including major improvements in simulated
cumulative CO2 uptake over the historical period (Bonan et
al., 2019) and improved representation of the seasonal cycle
of net ecosystem production (NEP) (Lawrence et al., 2019),
which is highlighted in our analysis of projected forced
phenology changes. Other notable features also included in
CLM5 are the explicit representation of agricultural manage-
ment and improvements in the implementation of the prog-
nostic fire model (Lombardozzi et al., 2020; Li et al., 2013;
Li and Lawrence, 2017). All CLM5 improvements found
broadly across a range of simulated variables have been doc-
umented through evaluation of model simulations against
the International Land Model Benchmarking (ILAMBv2.1)
package and other analyses (Collier et al., 2018; Danaba-
soglu et al., 2020). We note that land model trajectories are
sensitive to SSP scenarios that determine the spatial distribu-
tion and extent of land use and land cover changes (O’Neill
et al., 2016).

As a more general complement to the research results con-
sidered in this study, we have also made available results
from running the Climate Variability Diagnostics Package
for large ensembles (CVDP-LE) (https://www.cesm.ucar.
edu/working_groups/CVC/cvdp-le/, last access: 19 Novem-
ber 2021) (Phillips et al., 2020) for CESM2-LE, with
graphical output available under https://climatedata.ibs.re.
kr/data/cesm2-lens/lens-diagnostics (last access: 19 Novem-
ber 2021).

2.2 Large ensemble initialization

For the CESM2-LE initialization procedure, the experimen-
tal configuration was designed to respond to broad commu-
nity demand for a mix of macro- and micro-perturbations
(where for micro-perturbations members differ only in a
small random perturbation applied at initialization). To sat-
isfy this demand and allow for exploration of the impact
of initialization type, it was decided to initialize members

from various years between 1001 and 1301 of a preindus-
trial simulation conducted with CESM2 (Danabasoglu et al.,
2020). This was as far as the CESM2(CAM6) preindustrial
simulation had reached at the time when the CESM2-LE
project began, and by this point the top-of-the-atmosphere
(TOA) global energy imbalance was relatively small and sta-
ble with a correspondingly small model drift (Danabasoglu et
al., 2020). The years from the preindustrial control run used
for initialization are highlighted in Figs. S1 and S3.

Micro-initializations start from four different years: 1231,
1251, 1281, and 1301. A total of 20 members were run for
each start year, with ensemble spread introduced by a ran-
dom perturbation to the atmospheric temperature field at ini-
tialization (through a CAM6 namelist variable referred to as
“pertlim”), as was used for all members of CESM1-LE (Kay
et al., 2015). Macro-initialization (one run for each initial-
ization date) used initialization years {1001, 1011, 1021, . . .,
1191} by using 20 independent restart files at 10-year in-
tervals over 1001–1191. It warrants mention for the case of
the macro-perturbations that no explicit perturbation was re-
quired from the preindustrial control simulation. Taken to-
gether, if one includes one member from each of the micro-
perturbation runs, then a total of 24 macro-perturbation runs
are available.

Importantly, as can be seen in Fig. S1b, for the initializa-
tion points of years 1231, 1251, 1281, and 1301 were specif-
ically chosen for the micro-initializations to correspond to
years of maximum, decreasing, minimum, and increasing
Atlantic Meridional Overturning Circulation (AMOC) trans-
port, respectively, relative to the preindustrial control sim-
ulation. It is important to note that when using the large
ensemble output, the initialization procedure should not be
considered to produce members that are independent, or to
have randomized modes of climate variability, for the years
immediately subsequent to 1850. Considering the AMOC
strength at 26.5◦ N as an example (Fig. S2), the ensemble
mean AMOC strength for each of the micro-perturbation
clusters initialized for years 1231, 1251, 1281, and 1301 of
the preindustrial control run (averaged across 20 members
for each case) converge only after several decades, indicative
of the timescale over which the initial condition memory per-
sists for AMOC. For this reason, our analysis with internal
variability focuses on the period after 1960, more than a full
century after initialization. Further quantitative exploration
of the specific duration over which initial condition memory
is retained is the subject of a separate ongoing study.

A generalized schematic for the initialization procedure is
shown in Fig. S3, illustrating the organization of the simula-
tions. The schematic also includes mention of the biomass
burning emissions differences between two groups of 50
simulations, as described more fully in the next section. The
macro-perturbation runs initialized at {1011, 1031, 1051,
. . ., 1191} have greatly enhanced output at high frequency
to meet the needs of broader community interests for large
ensemble output. The temporally high-resolution output in-
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cludes 6-hourly snapshots of three-dimensional temperature,
winds, and specific humidity for the Coordinated Regional
Climate Downscaling Experiment (https://cordex.org, last
access: 19 November 2021) simulations, as well as output
appropriate for the Cloud Feedback Model Intercompar-
ison Project (CFMIP) Observation Simulation Package
(COSP) (https://climatedataguide.ucar.edu/climate-data/
cosp-cloud-feedback-model-intercomparison-project-cfmip-
observation-simulator-package, last access: 19 Novem-
ber 2021).

2.3 Large ensemble forcing

A choice was made to use two different sets of forcing fields
to represent the effects of variability in biomass burning
emissions for CESM2-LE (see Figs. S4–S5). The biomass
burning aerosol fluxes in CESM2 are imposed at the sur-
face. As such, they are not prognostic, meaning that they
are not generated by the model’s internal prognostic fire
model. The first 50 members of our large ensemble follow
CMIP6 protocols (Van Marle et al., 2017), with biomass
burning following the description in the CESM2 overview
paper (Danabasoglu et al., 2020), and this forcing is re-
ferred to as BB_CMIP6. For the second set of 50 mem-
bers, which we refer to as BB_CMIP6_SM (for smoothed
biomass burning fluxes), the BB_CMIP6 biomass burning
emissions of all relevant species for CAM6 were smoothed
in time with an 11-year running mean filter. The averaging
impacted variability in biomass burning fluxes over 1990–
2020. Due to the inclusion of observations, the variability
in biomass burning emissions during 1990–2020 is consider-
ably stronger for BB_CMIP6 than the preceding and follow-
ing periods. The smoothed forcing with BB_CMIP6_SM was
designed to nearly conserve total emissions, while reducing
the strong changes in interannual variability. The temporal
smoothing of the forcing is applied to the biomass burning
emissions at each grid point subsequent to being regridded to
the CESM2 grid. The high 1990–2020 biomass burning vari-
ability case (ensemble members 1–50, or BB_CMIP6) rel-
ative to the smoothed forcing (ensemble members 51–100,
or BB_CMIP6_SM) has a discernible impact on large-scale
climate, as documented by the accelerated loss of Septem-
ber Arctic sea ice and northern hemispheric and tropical Pa-
cific warming (Fig. S5a and c). Outside of the period 1990–
2010, the impact of BB_CMIP6_SM relative to BB_CMIP6
for biomass burning emissions is not pronounced for sim-
ulated surface temperature, sea ice, or precipitation. It is for
this reason that we selected the time intervals 1960–1989 and
2070–2099 for our analysis of variance changes in Figs. 2
and 4, for which the 100 ensemble members can realistically
be considered to be part of the same population.

2.4 Minor corrections relative to previous versions

The code base for the BB_CMIP6_SM simulations (the sec-
ond set of 50 members) incorporates corrections for two
sets of errors that were present in the first set of 50 ensem-
ble members (BB_CMIP6). The first pertains to the SO2,
SO4, and gas-phase semi-volatile secondary organic aerosol
(SOAG) emission datasets. For SO2 and SO4, the spatial
patterns of the “shipping” and “agriculture+solvents+waste”
components of forcing were inadvertently switched during
the historical-to-projection transition, or more specifically at
the start of 2015. The incorrect partitioning of SO2 does
not impact the results considered here, given that its com-
ponents are summed before use. In contrast, the issue with
SO4 datasets can impact the model state evolution as the par-
ticle sizes and numbers differ for the SO4 components. The
SOAG emissions are calculated from several hydrocarbons,
and they were not recalculated after an earlier bug correc-
tion in covering units of the lumped species for the biomass
burning emissions. This issue was corrected, and diagnos-
tics indicate that there are not any pronounced changes in the
model solutions from these particular aerosol corrections.

The second correction introduced for the 50
BB_CMIP6_SM simulations concerns the presence of
a sporadic large CO2 uptake over land that was identified
for the BB_CMIP6 runs. This large uptake is associated
with a negative flux of carbon occurring at crop harvest
time over a single time step. Although these large negative
carbon flux component terms in autotrophic respiration are
necessary for maintaining carbon balance, such CO2 spikes
are not realistic. To avoid these spikes, the associated CO2
fluxes that occur over a single time step are distributed to
the atmosphere over a timescale of approximately 6 months
for the BB_CMIP6_SM simulations. Analysis indicates
that these modifications for carbon between the BB_CMIP6
and BB_CMIP6_SM simulations did not result in any
climate-changing impacts.

3 Results

3.1 Mean state changes

During the historical period the evolution of key simu-
lated annual-mean climate indicators in CESM2-LE (Figs. 1
and S6) agrees well with observations. The range across
the ensemble members, which results from internal variabil-
ity and its forced changes, spans the observed climate state
much of the time, with a notable exception being South-
ern Ocean sea ice (Fig. 1e). The results here and the gen-
eral model behavior are qualitatively consistent with those of
similarly forced CMIP6-generation models (Fasullo, 2020;
Kwiatkowski et al., 2020; Arora et al., 2020), although pro-
jected temperature changes (Fig. 1c) are in the upper range of
the CMIP6 models owing to the relatively high climate sen-
sitivity of CESM2 (Gettelman et al., 2019). The progressive
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Figure 1. Annual mean evolution of global fields over 1850–2100 for 100 ensemble members. For model fields, bold lines represent ensemble
means, and dark and light shading represent 1 standard deviation (SD) and 2 SD variability. Observational data are shown in red when
appropriate. Portions of the figure with light-blue background shading indicate the historical period (1850–2014) while portions with light-
red background shading indicate the projection period (2015–2100). (a) Top-of-atmosphere radiative imbalance (Wm−2) along with the
CERES-EBAF product (Loeb et al., 2009, 2018); (b) anomalies of the global mean precipitation (mmd−1) increasing 5.4 % between the
1850s and the 2090s, compared with the Global Precipitation Climatology Project (GPCP) (Adler et al., 2003, 2012); (c) anomalies of
global mean surface temperature, increasing by 4.4 ◦C between the 1850s and 2090s, along with HadCRUT4 (Morice et al., 2012) anomalies
over 1950–2019; (d) anomalies of ocean heat content integrated over the upper 2000 m, along with an observation-based product (Ishii et
al., 2017); (e) anomalies of sea ice extent for the Arctic (black) and Southern Ocean (blue), with observed sea ice extent over 1979–2020
(Fetterer et al., 2017), and with the vertical scales of the anomaly plots offset to facilitate comparison; (f) Atlantic Meridional Overturning
Circulation (AMOC) transport anomalies at 26.5◦ N, with RAPID array observations (Frajka-Williams et al., 2019); (g) globally integrated
net primary productivity (NPP) over the ocean (blue; increase of 2.7 % between the 1850s and 2090s), and over land (green); and (h) globally
integrated net CO2 fluxes over the ocean (solid blue) and integrated net CO2 flux (net biome production, or NBP, including fire and land-use
change) over land (green) with all quantities in (g) and (h) in units of PgCyr−1. For each case, where observational products are included,
anomalies are calculated with respect to the period spanned by the observations. For anomaly fields, printed numbers represent the absolute
mean of the ensemble mean of CESM2-LE (black or blue numbers) and the observational product (red numbers).

https://doi.org/10.5194/esd-12-1393-2021 Earth Syst. Dynam., 12, 1393–1411, 2021



1398 K. B. Rodgers et al.: Ubiquity of human-induced changes in climate variability

weakening of the AMOC at 26.5◦ N in CESM2 over the 21st
century (Fig. 1f) is largely consistent with other CMIP6 mod-
els (Weijer et al., 2020). We also find a substantial increase
in land primary productivity (Fig. 1g), which contributes to
the uptake of carbon in the terrestrial biosphere. Marine net
primary productivity (NPP) (Fig. 1h) remains relatively con-
stant throughout the simulation, and the overall uptake of car-
bon by the ocean reflects the re-emergence of anthropogenic
carbon into the mixed layer (Toyama et al., 2017; Rodgers
et al., 2020) and changes in the CO2 buffering capacity of
seawater (Revelle and Suess, 1957). For the analysis that is
presented in Fig. 1 for sea ice, daily-mean output fields are
used for both the model and the data product. In representing
sea ice extent a threshold of 15 % was used, whereby a grid
cell is identified as being ice covered if it has a concentration
of sea ice above 15 %. For the net land fluxes of CO2, we use
the variable net biome production which includes the effects
of not only photosynthesis and respiration, but also fire and
land-use change.

The pattern of mean state surface temperature change,
shown as the difference between the periods 2070–2099 and
1960–1989 (Fig. 2, central panel; 2 m reference temperature
shown in Fig. S6), exhibits preferential warming of the east-
ern relative to the western equatorial Pacific, Arctic ampli-
fication, and a pronounced warming hole over the subpo-
lar North Atlantic. These features are associated with the
known mechanisms of the enhanced equatorial warming pat-
tern (Xie et al., 2010), more positive polar feedbacks (Goosse
et al., 2018) including the Arctic heat capacitor (Chung et
al., 2021), and the slowdown of the AMOC (Rahmstorf et
al., 2015; Menary and Wood, 2018), respectively. For pre-
cipitation (Fig. 2, central panel; Fig. S6e), changes include
marked precipitation increases along the equatorial Pacific,
within the Arctic Ocean and decreases over the subtropical
regions (Stocker et al., 2013).

3.2 Forced changes in amplitude, frequency, and phase

Figure 2 illustrates the ensemble- and grid-point-aggregated
Fourier amplitude spectra and probability density functions
(PDFs) for five key climate and ecosystem quantities (com-
plementary quantities are shown in Fig. S7). The choice of
variables reflects an interest in both climate and ecosystem
dynamics, as well as societal relevance in terms of adaptation
and resource management. The decision to represent Fourier
amplitude spectra was motivated by our desire to enrich our
understanding of the amplitude of perturbations across differ-
ent timescales. For the spectral analysis in Fig. 2, each fast
Fourier transform (FFT) spectrum is calculated for the time
series of raw data over a given variable for the full 30-year
interval. This includes all timescales shorter than 30 years
and longer than 2 days (months) for daily (monthly) time-
resolution data. The spectrum is calculated first at each hor-
izontal grid point and for each ensemble member and then
averaged over the designated region and over the 100 en-

semble members. Due to the relatively large degree of ag-
gregation for each field, it was not necessary to apply win-
dowing to avoid spectral leakage. The surface chlorophyll
concentration fields analyzed here represent total chlorophyll
concentrations taken as a sum of diatom, diazatroph, and
small phytoplankton chlorophyll concentrations. The AMOC
in Fig. S7 is defined as a maximum transport at 26.5◦ N.
For the spectrum of internal variability of the AMOC, the
ensemble-mean is subtracted from the raw data to remove
the forced response

For a wide range of Earth system variables, we find sub-
stantial changes of the projected 21st century probability dis-
tributions, impacting mean state, variance, and higher-order
statistical moments (Fig. 2). Human-induced alterations of
climate spectrum and probability distribution could trans-
late into changes in the average return time of climate and
extreme events. Averaging the spectra over 100 ensemble
members and individual grid boxes within each region cre-
ates enough data to reveal spectral characteristics that might
otherwise be obscured. The dominant feature for most quan-
tities examined is the spectral peak at the annual frequency,
along with higher-order harmonics that result from devia-
tions of the seasonal cycle from a pure sinusoid. Future
changes of the annual cycle overtone spectrum can be caused
by forced non-sinusoidal distortions of the annual cycle, gen-
erated for example by shifts in phenology, as discussed be-
low. For nearly all variables under consideration, the sea-
sonal cycle amplitude responds to the external forcing. Near-
annual combination modes (C modes) of ENSO and the sea-
sonal cycle (Stuecker et al., 2015a) and its overtones can be
clearly identified in some spectra, particularly for precipi-
tation over the equatorial Pacific. In addition to represent-
ing the C modes as deterministic components of the sys-
tem, CESM2-LE also exhibits shifts in the frequency of the
C modes due to future reductions in ENSO’s dominant fre-
quency (Fig. 3a). The C-mode peaks also strengthen in the
future, reflecting that the amplitude of precipitation and the
corresponding C-mode-generating non-linearity increase at
both ENSO and annual frequencies.

For most of the variables shown in Fig. 2 (and Fig. S7)
there are changes in the amplitude of the spectrum across the
entire range of frequencies from synoptic to intra-seasonal
to interannual to decadal, revealing the ubiquity of variance
changes. Importantly, frequency-independent shifts in vari-
ance can be seen in the three variables shown here, which ex-
hibit a strong non-Gaussian skewed PDF, namely the spectra
of California wildfire occurrence, surface chlorophyll con-
centrations over the subpolar North Atlantic (40◦–60◦ N,
60◦–15◦W), and precipitation over the Niño 3.4 region
(5◦ S–5◦ N, 170◦–120◦W). For these positive variables with
their highly skewed probability distributions, forced changes
in the mean state are accompanied by a stretching (squeez-
ing) of the associated PDFs, thereby causing enhancement
(or reduction) of variance and extremes. Changes of this type
have previously been considered for more specialized cases
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Figure 2. Changes in the Fourier amplitude spectrum of historical (1960–1989) to future (2070–2099) climate variability in CESM2-LE.
The center map shows historical-to-future changes in surface temperature (shaded, ◦C) and precipitation (solid blue/cyan dots, mmd−1).
Each pairing of panels shows historical (cyan) and future (red) spectra and PDFs for five different variables over four different regions.
The spectra are considered over the respective periods, 1960–1989 (historical) and 2070–2099 (future), thereby including the trend, and
PDFs are considered for all days over 1980–1989 and 2090–2099 to minimize the impact of the trend. From upper-left clockwise, each
pair of panels shows fire occurrences in California (32◦–41◦ N, 125◦–118◦W, land only), surface chlorophyll concentrations in the North
Atlantic subpolar gyre (40◦–60◦ N, 60◦–15◦W), net ecosystem production (NEP) in the Amazon (10◦ S–10◦ N, 80◦–50◦W, land only),
precipitation over the Niño 3.4 regions (5◦ S–5◦ N, 170◦–120◦W), and sea surface temperature (SST) over the Niño 3.4 region. The spectra
are calculated for daily time series at individual grid points including both forced responses and internal variability and using 30-year
intervals. Subsequently the spectra are averaged over the grid points in each region. Sharp spectral peaks are associated with the annual
cycle and its non-sinusoidal components, which generate high-order harmonics. Shaded areas for spectra of precipitation and temperature in
the Niño 3.4 region correspond to the timescales of the El Niño–Southern Oscillation (ENSO) and ENSO-annual-cycle combination modes
(Stuecker et al., 2013) (C modes). Spectra are shown as amplitude, with the units being the same as the x axes for the PDFs. PDFs of positive
variables (California fire counts, North Atlantic surface chlorophyll, and Niño 3.4 precipitation) are shown with logarithmic y axes. The
fields in the center panel are presented in more detail in Fig. S6, except that there 2 m reference temperature is used rather than surface
temperature. A suite of complementary spectral and PDF analyses to those shown here are presented in Fig. S7.

using the Wasserstein distance (Ghil, 2015; Robin et al.,
2017; Vissio et al., 2020). For white noise processes, the as-
sociated variance changes manifest as timescale-independent
variance changes, thereby accounting for the shown spectral
background shifts. For California fire counts and Niño 3.4
precipitation, mean state increases are therefore also accom-
panied by increases in variance occurring over a wide range
of timescales. For North Atlantic chlorophyll concentra-
tions, the mean state decrease is associated with a timescale-

independent decrease in variance, with expected impacts for
higher trophic levels in the ocean, leading to potential disrup-
tions to ecosystems.

For variables that are less skewed, a diversity of responses
is found. Forced changes in sea surface temperature (SST)
variability in the Niño 3.4 region are confined to interannual
timescales in association with a decrease in ENSO ampli-
tude and a slight shift toward higher frequencies. On the other
hand, for NEP over the Amazon, reflecting natural CO2 ex-
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Figure 3. Changes in the dominant frequencies and seasonal variance of sea surface temperature (SST, left) and precipitation (right), in the
Niño 3.4 region (5◦ S–5◦ N, 170◦–120◦W). The top row shows the wavelet power spectra of Niño 3.4 (a) SST and (b) precipitation using a
Morlet wavelet, normalized by σ−2, where σ is the ensemble mean standard deviation of the respective Niño 3.4 time series (Torrence and
Compo, 1998). The y axis shows the equivalent Fourier period in years. The hatching indicates regions where the wavelet spectrum is not
trustworthy due to edge effects. Prior to calculating the wavelet spectra, the time series were detrended by subtracting the ensemble-mean
annual means, which were linearly interpolated to a monthly time step. The middle row shows the ensemble-mean of Niño 3.4 (c) SST
and (d) precipitation indicated for each day (ordinate) and year (abscissa) using daily output. The red (blue) dots indicate the maximum
(minimum) daily values of each year. The black line to the right in panels (c–f) indicates the linear trend over 1960–2100. The bottom row
shows the same as for (c) and (d), but for the across-ensemble SDs of (e) SST and (f) precipitation.

change between the land and the atmosphere, there is an in-
crease in variance over all timescales, accompanied by a shift
in the broad interannual peak towards higher frequencies.

To demonstrate the significance of the forced change for
the spectra considered in Figs. 2 and S7, an example is given

in Fig. S8 for precipitation over the Niño 3.4 region for
the same 1960–1989 (blue) and 2070–2099 (red) time inter-
vals. The grey shading indicates the 95 % confidence interval
(1.96 × standard error). For each ensemble member, we first
spatially averaged the spectra at individual grid points over
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the Niño 3.4 region and then calculated the ensemble-wise
(or across-ensemble) error using the 100 spectra for the full
100 ensemble members. This approach appropriately handles
spatially correlated data in the calculation of the confidence
intervals and is known as the block bootstrap method, where
the block means are the spatial means. The estimated confi-
dence intervals in Fig. S8 indicate that the spectra for 1960–
1989 and 2070–2099 are statistically different. It is worth
noting here that if samples at different grid points are treated
as being independent samples, the confidence intervals be-
come much narrower, in which case the two spectra in Fig. S8
are even more statistically significant in their difference.

We next turn our attention to an expanded view of the tem-
poral evolution of both frequency and amplitude modulations
of SST and precipitation over the Niño 3.4 region over the
period 1960–2100. For the wavelet analysis (Torrence and
Compo, 1998) in Fig. 3, we apply a Morlet wavelet normal-
ized by σ−2, where σ is the ensemble mean standard devi-
ation of the respective time series. Ensemble wavelet anal-
ysis of SST (Fig. 3a) and precipitation (Fig. 3b) within the
Niño 3.4 region has been conducted after first removing the
ensemble-mean trend over the full period from each ensem-
ble member, while retaining the seasonal cycle. The wavelet
analysis is conducted for each ensemble member and then av-
eraged. Our motivation for retaining the seasonal cycle stems
from an interest in illustrating timescale interactions between
ENSO and the seasonal cycle with the full power of large en-
semble statistics. The annual cycle and ENSO interact with
each other in a complex way, with the annual cycle itself
being a forced coupled air–sea mode (Xie, 1994). This in-
teraction gives rise to combination modes (Stuecker et al.,
2015b), frequency entrainment (Timmermann et al., 2007),
and ENSO’s phase-locking and seasonal variance modula-
tions (Stein et al., 2010, 2014). Not only does the annual
cycle in the equatorial Pacific influence the amplitude and
phase of ENSO, but ENSO also impacts the seasonal cycle.

We consider the normalized variance to highlight the am-
plification above the white noise level, and in contrast to
Fig. 2 represent variance with a linear scale to emphasize
temporal modulation of the amplitude of the maxima. For
SST a clear separation is seen between the maxima for in-
terannual variability and the annual cycle (Fig. 3a). At inter-
annual timescales, there are two notable features. The first
is a shift in the ENSO peak period from 3.5 to 2.5 years be-
tween the end of the 20th century and the end of the 21st cen-
tury. The second feature with interannual variability is that
variance does not change monotonically but rather exhibits a
maximum midway through the 21st century, similar to what
has been reported elsewhere (Kim et al., 2014). This stands
in contrast to precipitation over the same region (Fig. 3b),
for which there is a monotonic increase in variance, follow-
ing a similar shift in the period of the peak that was found for
SST. For precipitation, the amplitude of the seasonal cycle
increases over 1960–2100, consistent with the notion of vari-

ability enhancement over the tropics due to thermodynamic
and dynamic processes (Yun et al., 2021).

The forced changes over 1960–2100 in the structure of the
seasonal cycle for the ensemble mean of SST (Fig. 3c) and
precipitation (Fig. 3d), as well as the across-ensemble stan-
dard deviation of SST (Fig. 3e) and of precipitation (Fig. 3f)
are also considered for the Niño 3.4 region using daily-mean
model output. The maximum (red dots) of ensemble-mean
SST occurs in May and the minimum (blue dots) in Octo-
ber in the late 20th century (Fig. 3c), with both showing
monotonic increases over 1960–2100. The maximum shifts
to 2 weeks later and the minimum shifts to 2 weeks earlier
by the end of the 21st century, with this modest perturba-
tion to the phase of the seasonal cycle being accompanied
by a modulation of seasonal amplitude. The ensemble-mean
seasonal amplitude in precipitation (Fig. 3d) occurs approxi-
mately 1 month before the ensemble-mean maximum in SST
(Fig. 3c), and a second maximum in precipitation in late
January becomes evident during the second half of the 21st
century. On the other hand, the ensemble-mean minimum in
precipitation occurs approximately 2 weeks after the local
minimum in temperature. The increase in the amplitude of
the seasonal cycle is thereby accompanied by changes in the
phasing of the seasonal cycle for both SST and precipitation.

The mechanisms responsible for the phasing of maxi-
mum precipitation leading maximum temperature over the
Niño 3.4 region over seasonal timescales (red dots in Fig. 3c
and d) have been considered previously in published liter-
ature (Xie, 1996; Xie et al., 2010; Williams and Patricola,
2018; Stuecker et al., 2020). Current understanding main-
tains that seasonal precipitation phasing is largely driven by
meridional SST gradients and is thereby not directly tied to
the phasing of seasonal SST variations in the Niño 3.4 region.
In other words, the phase relationship between precipitation
and SST is not surprising, as moisture convergence is in part
determined by non-local SST conditions.

The seasonally stratified maximum across-ensemble SD in
SST (Fig. 3e), associated with peak ENSO variability, ex-
hibits a trend towards an earlier occurrence by approximately
1 month over 1960–2070. This is accompanied by a modest
decrease in amplitude (line plot). The across-ensemble SD
minimum for SST occurs in July for the 20th century, with
a secondary minimum in the across-ensemble SD develop-
ing over the first half of the 21st century in May. Subse-
quently the across-ensemble SD minimum in May becomes
more pronounced and becomes the dominant minimum in
the across-ensemble SD of SST by the end of the 21st cen-
tury. For the across-ensemble SD of precipitation (Fig. 3f),
there is a monotonic strengthening of the seasonal maximum
in late January, corresponding roughly to the time of peak
ENSO variability, and a weakening of the seasonal mini-
mum in October, over the interval 1960–2100. Whereas the
seasonal minimum in the across-ensemble SD of precipita-
tion (Fig. 3f) occurs nearly in phase with the seasonal min-
imum of ensemble-mean SST (Fig. 3c), the seasonal max-
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imum for the across-ensemble SD of precipitation does not
coincide with the seasonal maximum of ensemble-mean SST.
Rather, it coincides with the secondary seasonal maximum in
ensemble-mean precipitation in late January (Fig. 3d).

3.3 Changes in variance and co-variance patterns

Along with modulations in the frequency domain, the spa-
tial patterns of variance are altered in response to changing
climate conditions. The analysis of patterns of variance and
co-variance in Fig. 4 uses across-ensemble calculations of
seasonal mean SDs (top) and Pearson correlation coefficients
(bottom), respectively. These calculations entail first calcu-
lating the SD or correlation coefficients across all ensemble
members for the same time record. Subsequently averaging
is done across time. This sequence was chosen to avoid spu-
rious amplification of variability due to the non-trivial forced
variations in precipitation and surface temperature driven by
volcanic aerosols over the historical period. To examine peak
ENSO variance, surface temperature (Fig. 4a and c) and pre-
cipitation (Fig. 4b and d) were averaged over December–
January–February (DJF), and then the across-ensemble SDs
and correlation coefficients were calculated separately over
all years spanning 1960–1989 and 2070–2099, and then av-
eraged over the two respective periods. The intention with the
calculation of both across-ensemble SDs and correlations is
to harness the full power of the large ensemble and is anal-
ogous to the empirical orthogonal function (EOF) EOF-E
snapshot method (Maher et al., 2018).

To calculate the statistical significance of the changes, the
general approach is to first calculate the equivalent sample
size n̂, to account for potential serial correlations of the time
series. This is then used to calculate the degrees of freedom
for the Welch’s t test, which is an adjusted version of the
Student’s t test that allows for the two samples to have un-
equal variance (i.e., heteroskedasticity). First, the decorrela-
tion timescale Te was calculated at each grid point, and for
each period, based on the e-folding timescale of the autocor-
relation function r(τ ), defined as the smallest lag τ for which
r(τ )< e−1. Then the equivalent sample size n̂was defined as
n̂=N/Te, where N = 30 is the total sample size in our case.
The equivalent sample size was then used to calculate the
degrees of freedom of the standard Welch’s t test. Note that
this test may still be liberal if the equivalent sample sizes are
small, i.e., in areas of high serial correlation.

We begin by considering interannual variance changes in
boreal winter (DJF) by evaluating relative changes in the
across-ensemble SD of surface temperature and precipitation
for the same periods as with the spectra in Fig. 2 (1960–1989
and 2070–2099). The background across-ensemble SD aver-
aged over 1960–1989 is shown in shading (Fig. 4a and b),
and their respective future changes are shown in circles.
Surface temperature (Fig. 4a) reveals modest decreases in
variability across the equatorial Pacific and Indian oceans,
consistent with Fig. 2. Variability decreases over much of

the higher latitudes of the Northern Hemisphere (Screen,
2014; Screen et al., 2015; Holmes et al., 2016; Sun et al.,
2015; Schneider et al., 2015), with exceptions over the Arctic
and the North Atlantic, and with exceptions in the Southern
Hemisphere found over southern Africa and parts of Antarc-
tica (Fig. 4a). For precipitation (Fig. 4b) a relative increase
in SD is seen over most regions with particularly pronounced
enhancements occurring in the eastern equatorial Pacific, the
Indo-Pacific warm pool including the South Pacific Conver-
gence Zone, the western Arabian Sea, the poles, and most
land areas. The equatorial Pacific changes represent an east-
ward broadening in the centers of convection in response to
the enhanced equatorial Pacific warming and the reduction
of the overall zonal SST gradient (Fig. 2, center). In contrast,
there is a decrease in the northern equatorial Atlantic Ocean
as well as in some trade wind regions of the eastern Pacific.

Another important question to address is whether green-
house warming can also impact the co-variability of different
climate components and the global teleconnections of major
modes of climate variability. This is illustrated here by ex-
amining the projected changes in the local correlation coef-
ficients between the Niño 3.4 SST index and surface tem-
perature from 1960–1989 and 2070–2099 (Fig. 4c), with the
background correlation coefficients shown in shading and
their respective future changes shown in circles. Our anal-
ysis reveals a systematic strengthening of ENSO’s remote
temperature correlation over the Amazon basin and in the
equatorial Atlantic, the Philippines and Japan in the western
Pacific, throughout Africa, in northern India and across east-
ern Canada and the southern US. Co-variance decreases over
western Canada and Alaska, and zonally across the equato-
rial Indian Ocean.

The future changes in the correlation between the Niño 3.4
index and precipitation (Fig. 4d) indicate a pattern of en-
hanced co-variance over the western Pacific region surround-
ing the Philippines, much of Africa and South America, and
western China, as documented by the background correlation
coefficients and their future changes having the same sign. In
other words, in these regions we see stronger ENSO telecon-
nections under future global warming, which in turn could
translate to increased predictability of climate in the regions
on seasonal to interannual timescales, but also stronger im-
pacts. In contrast, decreased precipitation co-variance with
ENSO is found for North America over the Pacific North-
west as well as much of the southern US and Mexico,
as well as over Columbia and Venezuela, Bangladesh and
Myanmar, parts of eastern Australia, and parts of eastern
Siberia. Taken together, the global pattern of ENSO precipi-
tation co-variance changes (Fig. 4d) is due to a combination
of simulated weakening of ENSO SST variability (Fig. 4a)
and eastward expansion of the region of maximum convec-
tive activity in the equatorial Pacific (Fig. 4b) (analysis for
the June–July–August (JJA) season in shown in Fig. S9),
and likely other projected changes of the background atmo-
spheric circulation. There are a number of outstanding chal-
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Figure 4. Changes in the patterns of interannual variability and Niño 3.4 correlation coefficients of December–January–February (DJF)
surface temperature and precipitation. In the top row the color shading shows the time-averaged across-ensemble SD of the DJF seasonal
mean surface temperature (a) and precipitation (b) for the period 1960–1989. Circles show the relative changes in the SD between 2070–2099
and 1960–1989, where insignificant change (p ≥ 0.05) has been removed. Statistical significance of the changes (circles) was determined
based on the p values of the two-sample Welch’s t tests for the equality of temporal means of the SDs, with the equivalent sample sizes
adjusted to account for serial correlations (Sect. 3.3). In the bottom row the color shading shows ensemble-wise correlations of the Niño 3.4
index with surface temperature (c) and precipitation (d) anomalies for DJF, averaged over the period 1960–1989. Circles show the absolute
change in correlations between 2070–2099 and 1960–1989, where statistically insignificant changes (p ≥ 0.05) have been removed. The
Niño 3.4 index for ENSO is the spatial average of sea surface temperature within 5◦ S–5◦ N, 170◦–120◦W. Statistical significance of the
changes (circles) was determined based on the p values of two-sample Student’s t test of the Fisher z-transformed correlation coefficients
(Timmermann et al., 2014). Note that the t test treats the ensemble standard deviations and correlations as stationary and serially uncorrelated
within either of the two periods. For all four panels, the circles represent subsampled fields at 10◦ intervals over the global domain. The
corresponding analysis for June–July–August (JJA) is presented in Fig. S9.

lenges in interpreting mechanistically how ENSO telecon-
nections change in response to anthropogenic forcing, in-
cluding the relative role of local diabatic forcing and mod-
ulations of ENSO (Taschetto et al., 2020). We anticipate that
the large ensemble analyses here will complement efforts di-
rected at understanding mechanistic controls.

3.4 Forced changes in phenology of net ecosystem
production

Finally in this overview, we illustrate how anthropogenic
forcing impacts the phase of the seasonal cycle by focusing
on the phenology of NEP in the Northern Hemisphere mid-
dle to high latitudes (over 50◦–80◦ N). NEP as a flux quantity
represents the difference between gross primary production
and ecosystem respiration, and thereby the net exchange of
carbon with the atmosphere when fire and human land use
changes are ignored. Our interest in NEP is motivated by eco-
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logical concerns that a shift to an earlier spring bloom, in par-
ticular over the land regions adjacent to the Arctic, can drive
a phenological mismatch in ecological interactions between
plants and animals (Renner and Zohner, 2018). For the sea-
sonality and phenology analysis in the upper panel of Fig. 5,
an area integral of daily-mean NEP, is performed for each en-
semble member separately. A total of 90 ensemble members
are used, as daily-mean CLM5 output was not saved for the
first 10 members, namely for members {1001.001, 1021.002,
1041.003, . . ., 1181.010}.

Ensemble-mean NEP is integrated over the region in 5-
year intervals, with aggregation performed for individual
years and with a binning interval of 1 day (colors in Fig. 5,
upper panel). We find an evolving amplitude of the seasonal
cycle and of the growing season length (the interval during
which NEP is positive, indicating net land uptake of carbon).
This representation of forced changes in the non-sinusoidal
seasonal cycle reveals that the growing season length is pro-
jected to increase by almost 4 weeks, with the onset shift-
ing 3 weeks earlier and termination shifting 1 week later.
The forced changes in growing season length are mostly at-
tributable to changes in the mean temperature (Lawrence et
al., 2019; Lombardozzi et al., 2020). The analysis also re-
veals a more than doubling of the amplitude of the seasonal
cycle in NEP as a forced response. This represents an in-
crease in the “breathing” of the terrestrial high-latitude bio-
sphere. Information from individual ensemble members in
20-year intervals regarding the timing of (i) first zero cross-
ing, (ii) maximum NEP, (iii) second zero crossing, and (iv)
maximum negative NEP (Fig. 5, lower panel) reveals that in-
terannual variability (identified using one SD) is in general
smaller than the forced trend evident in the ensemble mean
in spring. Our analysis indicates that for the aggregated NEP
signal, the phenological shift as a decadal trend already be-
comes emergent relative to the natural variability within the
first decades of the 21st century. The trend itself is broadly
consistent with observations (Zhu et al., 2016; Myers-Smith
et al., 2020). Internal variability in the date of onset of the
growing season decreases by 35 % over the course of the
simulations and the date of the end of the growing season
decreases by 18 % (Fig. 5, lower panel). In deriving these
percentages, the transitions (zero crossings) were first calcu-
lated individually for each ensemble member for each time
interval (across 90 members).

4 Summary and discussion

This study introduced a new, publicly available large ensem-
ble of climate change simulations conducted with the global
fully coupled CESM2 model. This large ensemble (CESM2-
LE) is unprecedented in terms of its combination of size (100
members), duration (1850–2100), and spatial resolution in
the atmosphere and ocean (nominally 1◦ horizontally). As
such, it offers a unique opportunity to study not only forced

changes in the mean state, but also forced changes in internal
variability, including higher-order statistical moments. Here
we showcase aspects of the remarkable diversity of forced
responses in amplitude, frequency, patterns, co-variance, and
seasonal characteristics of internal variability in CESM2-LE
across a broad suite of key physical and ecosystem quantities,
spanning the atmosphere, land, cryosphere, and ocean. Im-
portantly, and contrary to conventional wisdom, the changes
are not solely centered on the frequency of specific climate
modes such as ENSO and the Madden–Julian oscillation
but are instead broadly distributed over nearly all timescales
(Fig. 2), in particular for non-Gaussian distributed variables.
The mechanistic underpinnings of the changes in variabil-
ity go beyond amplification or damping of major climate
modes, and possibly include state dependence of linear sta-
bilities, non-linearities, rectification, and changes in damping
timescales and noise characteristics, many of which will be
investigated in forthcoming studies analyzing the breadth of
the CESM2-LE output fields.

If the ubiquitous changes in variance across temporal and
spatial scales described here are realized in the real world,
they will have several important implications for informing
adaptation strategies and assessing potential impacts. This
holds for water resource management and agriculture, fish-
eries, and occurrence of wildfires. Forced changes in phe-
nology and phasing of the seasonal cycle for ecosystem pro-
ductivity pose risks of mismatches with trophic-level inter-
actions and energy transfers. The ubiquity of such changes
in variability also points to the importance of moving be-
yond the assumption of stationary variability in detection
and attribution studies of climate change (Hegerl et al.,
2007) and underscores the necessity of recalibrating climate-
economy models (Diaz and Moore, 2017) to account for
an entirely different probability distribution for variability
(Figs. 2 and S7) than what is currently used when projecting
future climate change scenarios. The non-stationary nature
of climate noise under anthropogenic forcing (Fig. 2) and the
evolving teleconnections patterns (Fig. 4) also have implica-
tions for seasonal to multi-year climate predictability.

Although our analysis of CESM2-LE has revealed a broad
range of forced changes in variance across physical scales
and Earth system variables, it nevertheless should be em-
phasized that model uncertainty has not been considered
here. There is already evidence for the narrower case of in-
terannual variability in surface temperature and precipita-
tion that model uncertainty in forced changes exhibits pro-
nounced differences between models (Maher et al., 2021)
(their Figs. 7 and 8 in the Supplement). Thus, it is our hope
that our work will motivate further investigations of forced
change in Earth system variance across a broad range of
timescales under existing archives of large ensemble simu-
lations (Deser et al., 2020; Schlunegger et al., 2020).

Taken together, we have provided support with new exam-
ples and new global emphasis that the Earth system is sensi-
tive in its statistical characteristics to anthropogenic forcing,
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Figure 5. Expansion of growing season length, or equivalently the carbon uptake period, over 50◦–80◦ N (shown here for all 90 members
for which daily-mean land output was saved). (a) Evolution of ensemble-mean seasonal cycle (one line for every five years, color-coded)
of integrated net ecosystem productivity (NEP), with positive values indicating net terrestrial carbon uptake and negative values indicating
loss of carbon from the aggregated land region. The first zero crossing arks the start of the growing seasons, and the second zero crossing
marks the end of the growing seasons. (b) Histograms of first occurrence of zero crossing, peak, second zero crossing, and minimum as a
function of the day of the year. The horizonal axis for both panels is a climatological calendar day of the year, and aggregation is done across
90 members. The histograms represent model output sampled at 20-year intervals. The inlay map (upper right) shows the ensemble mean
amplitude of the seasonal cycle of NEP averaged over 1960–1989 (gCm−2 d−1).

thereby building upon and complementing previous studies
that have focused on mechanistic analyses for specific phe-
nomena (Swain et al., 2018; Tamarin-Brodsky et al., 2020;
Taschetto et al., 2020; Burger et al., 2020). Although only a
small fraction of such forced changes could be documented
in this study, we expect that the diagnostic ensemble analysis
tools applied here, along with the open access to our datasets,
will inspire further investigations into the non-stationarity
of Earth system processes in the presence of anthropogenic
forcing.

Code availability. The code used to generate the figures in
this study is available here: https://github.com/kj-stein/CESM2-LE
(FIG_CODE_GENERAL, 2021).

The Python wavelet software used for Fig. 3 was pro-
vided by Evgeniya Predybaylo (Torrence and Compo, 1998)
and is available at http://atoc.colorado.edu/research/wavelets/
(FIG_CODE_WAVELET, 2021).

Data availability. The CESM2-LE model output is available
through https://www.cesm.ucar.edu/projects/community-projects/
LENS2/data-sets.html (CESM2_LE_OUTPUT, 2021).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/esd-12-1393-2021-supplement.
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