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ABSTRACT: Stomatal closure is a major physiological response to the increasing atmospheric carbon dioxide (CO2), which

can lead to surface warming by regulating surface energy fluxes—a phenomenon known as CO2 physiological forcing.

Themagnitude of land surface warming caused by physiological forcing is substantial and varies across models. Here we assess

the continental warming response to CO2 physiological forcing and quantify the resultant climate feedback using carbon–

climate simulations fromphases 5 and 6 of theCoupledModel Intercomparison Project, with a focus on identifying the cause of

intermodel spread. It is demonstrated that the continental (408–708N)warming response to the physiological forcing in summer

(;0.55K) is amplified primarily due to cloud feedback (;1.05K), whereas the other climate feedbacks, ranging from20.57 to

0.20K, show relatively minor contributions. In addition, the strength of cloud feedback varies considerably across models,

which plays a primary role in leading large diversity of the continental warming response to the physiological forcing.

KEYWORDS: Atmosphere-land interaction; Feedback; Climate models; Model comparison; Model evaluation/performance

1. Introduction

An increase in atmospheric carbon dioxide (CO2) influences

the climate system through not only its greenhouse radiative

effect (CO2 radiative forcing) but also its impact on plant

physiology (CO2 physiological forcing). Plants respond to ele-

vated CO2 levels by regulating their stomata (pores on the

leaves, which simultaneously gain CO2 and lose water) and in-

creasing their photosynthetic rates. Stomatal apertures open less

widely under elevated CO2 levels to minimize water loss, thus

reducing transpiration and increasing water use efficiency (rate

of carbon uptake per unit of water lost) (Drake et al. 1997;

Medlyn et al. 2001; Lammertsma et al. 2011; Keenan et al. 2013).

This partial closure of the stomata affects the surface energy

partitioning and thus increases boundary layer temperatures

(CO2 physiological forcing) (Betts et al. 2004; Long et al. 2006;

Cao et al. 2010; Fatichi et al. 2016). At the same time, increasing

CO2 concentrations stimulate higher rates of photosynthesis

(CO2 fertilization effect) (Gunderson and Wullschleger 1994;

Drake et al. 1997; Ainsworth and Long 2005). This effect con-

tributes to a positive trend in the canopy leaf area (Zhu et al.

2016) and the terrestrial carbon sink (Schimel et al. 2015) and

can increase plant transpiration, resulting in a cooling effect

(Zeng et al. 2017). While the magnitudes of stomatal conduc-

tance response and fertilization effects vary depending on the

plant type and environmental conditions such aswater, light, and

nutrient availability, both plant physiological responses can af-

fect the climate system in opposite ways by altering the water

and surface energy fluxes (Kergoat et al. 2002; Ainsworth and

Long 2005; Cao et al. 2010; Donohue et al. 2013; Fatichi et al.

2016; Skinner et al. 2018).

Sellers et al. (1996) quantified the global-scale land surface

warming caused by the stomatal response to increasing CO2

from a coupled biosphere–atmosphere model for the first time.

Betts et al. (1997) found that a change in the vegetation struc-

ture, an increase in the leaf area index (LAI), partially offsets the

continental warming caused by stomatal closure. Since then,

climate change forced by plant response to CO2 has been

quantified by using Earth system models (ESMs), which can

simulate interactions between the physical climate system and

biogeochemical processes, including the dependency of stomatal

conductance and photosynthetic rates on CO2. Continental

warming driven by physiological effects constitutes 1.4%–13.9%

of the warming caused by the combined effect of radiative

and physiological forcing at a doubling of CO2 (2 3 CO2)

(Zarakas et al. 2020). Especially in summer, the magnitude of

physiologically driven continental warming in the boreal re-

gion (408–708N) accounts for 27.7% of the warming resulting

from radiative forcing at average CO2 concentrations of

;823 ppm (Park et al. 2020).

Multiple modeling studies consistently show that the stomatal

effect increases the near-surface air temperature, overwhelming

the evaporative cooling effect from the CO2 fertilization
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(Cox et al. 1999; Boucher et al. 2009; Swann et al. 2016; Skinner

et al. 2018; Lemordant et al. 2018; Hong et al. 2019). The CO2

physiological effect limits evapotranspiration (ET) and en-

hances the ratio of sensible to latent heat fluxes at the leaf

surface, thereby increasing boundary layer temperature. In

addition, a decrease in cloud fraction caused by a physiologi-

cally driven reduction in relative humidity (RH) amplifies land

surface warming by causing higher amounts of solar radiation

to reach the surface (Doutriaux-Boucher et al. 2009; Andrews

et al. 2011, 2012; de Arellano et al. 2012; Lemordant et al.

2018).Moreover, an increase in the LAI or expansion of forests

generally decreases albedo, thereby additionally contributing

to warming (Betts 2000; Bala et al. 2006; Pearson et al. 2013).

Most studies based on ESMs show that these physiological

effects are a nonnegligible contributor to total-CO2-forced land

surface warming on a global scale, showing the robustness of the

change of direction across models (Sellers et al. 1996; Cao et al.

2010; Park et al. 2020; Zarakas et al. 2020). However, the mag-

nitude and spatial pattern of the surface warming substantially

vary across these models; this variability significantly impacts the

models’ climate sensitivity (Joshi et al. 2008; Boucher et al. 2009;

Geoffroy et al. 2012) and increases uncertainties in climate

change projection. Zarakas et al. (2020) stated that intermodel

disagreements about physiological-forcing-driven warming con-

tribute to uncertainties in total-CO2-forced warming. In some

highly forested land regions, an intermodel disagreement in local

surface warming at 2 3 CO2 is driven by approximately equal

contributions of uncertainty from physiologically and radiatively

forced warming. To reduce models’ uncertainties in the projec-

tion of future climate warming, it is important to understand the

intermodel spread in surface warming resulting from not only

radiative forcing but also physiological forcing. However, the

source of intermodel diversity in physiologically driven surface

warming has yet to be assessed systematically despite its non-

negligible contribution to CO2-forced climate warming.

Climate models exhibit a wide range of global mean surface

temperature responses to increased radiative perturbation due

to differences in feedback processes that amplify or dampen the

initial radiative forcing (Cubasch and Cess 1990). In the classical

radiative forcing–feedback framework, the radiative forcing is

defined as an initial perturbation of top-of-atmosphere (TOA)

radiation occurring in response to increasing CO2. The radiative

feedback is defined by a change in the net TOA radiation from a

given change in feedback variables provoked by the initial

radiative forcing (Hansen et al. 1984; Roe 2009). This forcing–

feedback framework has helped establish the dominant role of

water vapor feedback in amplifying global warming and has

also identified the differences in cloud feedback as major

sources of variations in the climate sensitivity of models (Cess

1990; Colman 2003; Soden and Held 2006; Bony et al. 2006). In

addition, the quantification of local climate feedback has pro-

vided an opportunity to identify the processes responsible for

local surface warming (e.g., Arctic warming) and its intermodel

spread, thereby improving the understanding of regional cli-

mate change (Armour et al. 2013; Pithan and Mauritsen 2014;

Goosse et al. 2018; Hwang et al. 2018).

It has been suggested that the radiation change due to

physiologically driven changes in albedo, cloud cover, and

column water vapor can be a mechanism for amplifying the

land surface warming (Doutriaux-Boucher et al. 2009; Cao

et al. 2010; Andrews et al. 2011; de Arellano et al. 2012;

Lemordant et al. 2018). Park et al. (2020) suggested that con-

tinental warming over mid-to-high latitudes resulting from

physiological forcing is enhanced by local feedback processes,

such as cloud feedback and snow– and vegetation–albedo

feedback. Moreover, it is also reported that the differences in

climate feedback magnitude may cause intermodel spread in

continental warming. However, such climate feedback trig-

gered by physiological forcing has not been estimated quanti-

tatively. Estimating the magnitude of climate feedback would

help identify the main process responsible for temperature

change and facilitate understanding of the diverse temperature

responses across ESMs to physiological forcing, as in radiative

forcing.

This study aims to quantitatively estimate the magnitude of

local climate feedback triggered by physiological forcing, to

identify the source of intermodel diversity in physiological-

forcing-driven land surface warming, thereby providing better

insights into the climate response to CO2 physiological forcing.

The rest of this paper is organized as follows. Section 2 describes

theCoupledModel Intercomparison Project (CMIP) phase 5 and

6 datasets, the experimental design, and the method for quanti-

fying climate feedback. In section 3, we first evaluate physiolog-

ically driven land surface warming and its intermodel spread

across ESMs. Next, we estimate the contribution of climate

feedback to continental warming and explain the primary cause

of the intermodel spread in a CO2 physiological forcing experi-

ment. Finally, a summary and discussion are provided in section 4.

2. Data and methods

a. CMIP data and experimental design

We analyzed the idealized carbon–climate feedback exper-

iments as part of the Coupled Climate–Carbon Cycle Model

Intercomparison Project (C4MIP; Friedlingstein et al. 2006;

Jones et al. 2016) from the CMIP5 and CMIP6 archives (Taylor

et al. 2012; Eyring et al. 2016) to evaluate the impacts of CO2

physiological forcing on the climate and understand their in-

termodel spread. These experiments were designed to quantify

the strength of interactions between the carbon cycle and the

climate in state-of-the-art climate models. The experiments

were run for 140 years with a CO2 increase of 1% per year from

preindustrial levels to a quadrupling for radiation and bio-

geochemistry (full), radiation only (radiation), and biogeo-

chemistry only (physiology), while all other forcings remained

at preindustrial levels.We used the preindustrial experiment as

the baseline (control). The experiments used in this study are

described in Table 1. For GFDL-ESM2M, the atmospheric

CO2 levels were prescribed to increase from their initial mixing

ratio level of 286.15 ppmv at a rate of 1% per year until year 70

(2 3 CO2); thereafter, CO2 levels were kept constant for the

remainder of the run.

To quantify the CO2 physiological forcing (Phy) (average

CO2 concentrations ;820 ppm), we calculated the difference

between the averages for years 71–140 of two simulations: the
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physiology simulation (esmFixClim1 in CMIP5; 1pctCO2-bgc in

CMIP6) and control simulation (piControl). When using the

control simulation, we accounted for model drifts by subtracting

the linear trend of the corresponding period, following previous

studies (Gregory and Forster 2008; Zarakas et al. 2020). The

physiological forcing can also be evaluated by computing the

difference between the full CO2 simulation (1pctCO2) and

the radiation simulation (esmFdbk1 in CMIP5; 1pctCO2-rad in

CMIP6). However, this includes nonlinear interactions between

radiative forcing and physiological forcing (Bathiany et al. 2014;

Skinner et al. 2017), thus complicating the interpretation. To

avoid this complexity, we calculated anomalies of each forcing

experiment using the control simulation (piControl) as the

baseline. Similarly, we quantified the radiative forcing without

nonlinear interactions by computing the difference between the

averages for years 71–140 between the radiation simulation

(esmFdbk1 in CMIP5; 1pctCO2-rad in CMIP6) and the control

simulation (piControl) for the comparisonwith the physiological

forcing.

We used 19 ESMs (8 CMIP5 models and 11 CMIP6 models)

that performed carbon–climate feedback experiments and

uploaded all variables needed for the analysis of the warming

contributions from individual feedbacks to the Earth System

Grid Federation (ESGF) repository by 20 May 2021 (Table 2).

Amultimodel ensemble (MME) was derived by regridding the

outputs from the ESMs to a common 18 3 18 grid and then

averaging them. The bootstrap method was used to test the

statistical significance of the difference between the experi-

ments. For the MME, 19 values were randomly selected from

the 19 ESMs with replacements, and their average was com-

puted. This process was repeated 1000 times, the confidence

intervals were determined, and only significant values were

shown to indicate model agreement.

b. Quantification of warming contribution from
feedback factors

The radiative imbalance at the TOA (DR; in W m22) in re-

sponse to a forcing (F; in W m22) can be expressed as

DR5F1lDT
s
, (1)

where l is the net feedback parameter (Wm22 K21) and DTs is

the surface temperature change (K) (Gregory et al. 2004, 2015;

Knutti and Hegerl 2008; Winton et al. 2010; Yoshimori et al.

2016). The total feedback parameter can be decomposed into

individual feedback components as

l5l
T
1 l

A
1l

W
1l

C
, (2)

where lT, lA, lw, and lC are the feedback parameters associ-

ated with the temperature, albedo, water vapor, and cloud,

respectively. The temperature feedback can be further de-

composed into contributions from vertically uniform warming

of the surface and the troposphere (Planck feedback lP), and

from tropospheric warming that deviates from the vertically

uniform profile (lapse rate feedback lLR). In addition, the

climate feedback parameters can be separated into shortwave

(SW) and longwave (LW) components.

To assess the relative contributions of each feedback to the

local surface warming, we used the extended radiative kernel

technique, following previous studies (Pithan and Mauritsen

2014; Goosse et al. 2018), based on the local energy budget

equation

F1

�
l
P
1�

i

l
i

�
DT

s
1DAHT1DSHF5 0, (3)

where DAHT represents the change in atmospheric heat flux

convergence (positive into the atmospheric column) and

DSHF is the change in total energy flux from the surface

(positive into the atmospheric column). When Eq. (3) was

expanded from Eq. (1), the DR term was ignored due to its

comparatively small magnitude. We can assess the tempera-

ture change associated with a particular feedback or forcing

by dividing Eq. (3) by the magnitude of the global-mean

Planck response lP,

DT
s
52F/l

P
2l0

pDTs
/l

P
2�

i

l
i
DT

s
/l

P

2DAHT/l
P
2DSHF/l

P
,

(4)

where the terms on the right-hand side represent an individual

warming contribution to the total local surface warming and l0
p

TABLE 1. List of CMIP simulations used in this study.

Experiment CMIP5 simulation CMIP6 simulation Description

Full 1pctCO2 1pctCO2 Both radiation and carbon cycle see 1%

per year increase in atmospheric CO2

for 140 years from preindustrial CO2

concentration to quadrupling (from 285

to 1140 ppm)

Physiology esmFixClim1 1pctCO2-bgc Radiation code sees preindustrial CO2

concentration, but carbon cycle sees 1%

yr21 CO2 increase to quadrupling for

140 years (from 285 to 1140 ppm)

Radiation esmFdbk1 1pctCO2-rad Carbon cycle sees preindustrial CO2

concentration, but radiation code sees

1% yr21 CO2 increase to quadrupling

for 140 years (from 285 to 1140 ppm)

Control piControl piControl Pre-industrial control run
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represents the deviation of the local Planck response from its

global-mean value. For example, the albedo feedback contri-

bution to surface warming is the third term in Eq. (4) where li
is lA, and the atmospheric heat transport contribution to sur-

face warming is the fourth term.

The local feedback parameters for each variable X were

calculated through the radiative kernel method (Soden and

Held 2006; Soden et al. 2008; Shell et al. 2008):

l
X
5

dR

dX
i

DX
i

DT
s

5k
i

DX
i

DT
s

, (5)

where ki is the radiative kernel and Xi is the response of the

climate variables to the changing surface temperature. The

radiative kernel ki is the change in TOA radiation caused

by a change in the climate variable Xi and is derived using a

specific radiative transfer code. Here, we used the radiative

kernels created by Shell et al. (2008) using the Community

Atmosphere Model version 3, from the National Center for

Atmospheric Research. For the temperature feedback and

water vapor feedback, only the troposphere was considered

to exclude the stratospheric adjustment effect. To separate

the tropospheric and stratospheric responses, we assumed a

tropopause height of 100 hPa in the tropics (308S–308N)

that decreases linearly with latitude to 300 hPa at the poles.

Cloud feedback cannot be quantified directly from a radi-

ative kernel due to its strong nonlinearity. However, it can

be estimated from the change in cloud radiative forcing

caused by the cloud response to the changes of various

factors such as temperature and humidity provoked by CO2

physiological forcing, and the variation of other climate

feedbacks due to the cloud effect calculated from the dif-

ference of climate feedbacks between the all-sky and clear-

sky conditions, as suggested in Soden et al. (2008). The

change DSHF was diagnosed as the anomalous net surface

heat fluxes, and DAHT was evaluated as the difference

between DSHF, net TOA radiation flux anomaly, and heat

storage in the atmosphere.

3. Results

a. Continental warming resulting from CO2

physiological forcing

Prior to examining the climate feedback triggered by CO2

physiological forcing, we evaluated the MME annual mean

changes in the near-surface air temperature resulting from

the physiological effect, which encompasses both stomatal

and CO2 fertilization effects. Physiological forcing causes

significant land surface warming over the globe (MME

mean: 0.38 K), especially in forested regions (Fig. 1). The

magnitude of temperature change varies with latitude, with

the greatest continental warming mainly in boreal forests

(MME mean: 0.55 K), followed by the tropics. All ESMs

except CNRM-ESM2-1 generally show similar spatial pat-

terns of global temperature response and its latitudinal

variation (Fig. 1 in the online supplemental material). On

the basis of these results, our focus will be on the physio-

logical effect in mid-to-high-latitude continents (408–708N),

which show the greatest warming.

TABLE 2. List of CMIP5 and CMIP6 ESMs (land surface models) used in this study. (Expansions of most acronyms are available online at

http://www.ametsoc.org/PubsAcronymList.)

Modeling center (or group) CMIP5 CMIP6 References

Beijing Climate Center, China

Meteorological Administration

BCC-CSM1-1

(BCC-AVIM1.0)

BCC-CSM2-MR

(BCC-AVIM2)

Wu et al. (2013), Wu et al. (2019)

Canadian Centre for Climate

Modeling and Analysis

CanESM2 (CLASS2.7) CanESM5 (CLASS3.6) Arora et al. (2011), Swart

et al. (2019)

National Center for Atmospheric

Research

CESM1-BGC (CLM4) CESM2 (CLM5) Lindsay et al. (2014), Danabasoglu

et al. (2020)

NOAA Geophysical Fluid

Dynamics Laboratory

GFDL-ESM2M (LM3) Dunne et al. (2012)

Met Office Hadley Centre HadGEM2-ES (JULES) UKESM1-0-LL

(JULES-ES-1.0)

Jones et al. (2011), Sellar

et al. (2019)

Institute Pierre Simon Laplace IPSL-CM5A-LR

(ORCHIDEE)

IPSL-CM6A-LR

(ORCHIDEEv2.0)

Dufresne et al. (2013), Boucher

et al. (2020)

Max Planck Institute for

Meteorology

MPI-ESM-LR (JSBACH) MPI-ESM-1-2-LR

(JSBACH3.20)

Giorgetta et al. (2013), Mauritsen

et al. (2019)

Norwegian Climate Centre NorESM1-ME (CLM4) NorESM2-LM (CLM5) Tjiputra et al. (2013), Seland

et al. (2020)

Commonwealth Scientific and

Industrial ResearchOrganization

ACCESS-ESM1-5

(CABLE2.4)

Ziehn et al. (2020)

Centro Euro-Mediterraneo sui

Cambiamenti Climatici

CMCC-ESM2 (CLM4.5) Cherchi et al. (2019)

Centre National de Recherches

Météorologiques
CNRM-ESM2-1 (Surfex 8.0c) Séférian et al. (2019)

Japan Agency for Marine-Earth

Science and Technology

MIROC-ES2L

(MATSIRO6.0)

Hajima et al. (2020)
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Next, we examine the seasonal changes in the near-

surface air temperature caused by physiological effects

over mid-to-high-latitude continents and the globe (Figs. 2a,b).

The continental warming over 408–708N is the greatest in bo-

real summer [June–August (JJA)], when photosynthesis is most

active, in accordance with plants’ phenological cycle. The sea-

sonal cycle of physiologically driven ET change is analogous to

that of temperature change, demonstrating that the decreased

ET can induce continental warming (Figs. 2c,d). On a global

scale, seasonal changes in temperature and ET are similar to

those in the mid-to-high latitudes, although global average

anomalies are slightly smaller in magnitude. Considering this

seasonality, we will focus on the physiological effect, especially

in boreal summer, when the influence of CO2 physiological

forcing on temperature and ET is the strongest.

Meanwhile, the MME mean of physiological-forcing-driven

temperature changehas decreased inCMIP6 relative toCMIP5 in

all seasons, although this difference is not statistically significant.

This change is contrary to the tendency of CO2 radiative

forcing with the increased climate sensitivity in CMIP6

(Zelinka et al. 2020). We will further discuss the change from

CMIP5 to CMIP6 and its cause in the summary and discussion

section (section 4).

Most models consistently show a decreased ET and resul-

tant land surface warming caused by physiological forcing

(Fig. 3). However, the intermodel diversity of changes in ET

FIG. 1. Multimodel mean of annual mean changes in near-surface air temperature over the

continents resulting from CO2 physiological forcing in (a) CMIP5 and (b) CMIP6. The sig-

nificant test is done based on the bootstrap method to test the model agreement. Insignificant

values at the 95% confidence level are colored in gray. The zonal average of air temperature

(only land grid points) is plotted on the right side of the map.
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(range: from 20.36 to 0.02mm day21 in JJA) and resultant

continental warming (range: from 20.25 to 1.82 K in JJA) is

substantial, and this contributes to the uncertainty in total-

CO2-forced climate change. Since the decreased ET, a

result of stomatal response to increasing CO2, induces

temperature rise through a repartition of surface turbulent

fluxes, the change in ET can be regarded as a variable that

directly represents the physiological effect on the climate

system. The physiological influence on ET and tempera-

ture shows a significant negative correlation in JJA

(r 5 20.66, P , 0.01), but that correlation in the annual

mean is weaker and not significant (r 5 20.4, P 5 0.09).

This result suggests that the reduced ET driven by stomatal

closure (initial perturbation) can explain the intermodel

diversity of surface warming only to some extent, but not

sufficient.

For example, even though the amount of change in ET,

considered a representative variable of physiological forcing, is

similar between models (ranging from 0 to 20.1mm day21),

the magnitude of surface warming is considerably different

(Fig. 3). These results imply that climate feedback processes

besides initial forcing might contribute to the diverse climate

model sensitivities to CO2 physiological forcing, as in the ra-

diative forcing. Therefore, we attempted to identify the source

of the intermodel spread in climate sensitivity to physiological

forcing by quantifying the contributions of climate feedback to

surface warming in the following section.

b. Quantification of climate feedback triggered by CO2

physiological forcing

On the basis of the perspective of the traditional forcing–

feedback framework (Gregory et al. 2004; Bony et al. 2006;

FIG. 2. Multimodel mean of seasonal changes in (a),(b) near-surface air temperature and (c),(d) ET resulting

from CO2 physiological effect averaged over (left) the mid-to-high-latitude continents (408–708N), and (right)

global land areas excluding Antarctica. The gray bars show the MME mean from the 8 CMIP5 models, and the

white bars show the MME mean from the 11 CMIP6 models. The error bars indicate the range of the 95% con-

fidence level on the basis of the bootstrap method.
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Roe 2009), plants’ physiological responses to atmospheric

CO2 can be classified as part of forcing rather than the

feedback because they respond quickly and directly to the

CO2 increase rather than to the temperature change

(Zarakas et al. 2020). The modification of TOA radiative

fluxes triggered by the initial perturbation, that is, physio-

logically driven surface warming, can be considered climate

feedback. For example, the radiative imbalance due to the

change of atmospheric water vapor caused by physiological-

forcing-driven temperature rise could be classified as climate

feedback.

Figure 4 shows the relationship between the total warming

contribution—from individual feedback and atmospheric

forcing—and temperature changes in the CO2 physiological

forcing experiment. To intuitively understand the role of

feedback in surface warming, we quantified the temperature

changes associated with each feedback based on Eq. (4), not

the radiative flux changes, which are usually used for diag-

nosing the feedback. The annual mean anomalies are closely

located along the 1:1 line, where models are expected to be if

the total warming contribution from each feedback agrees with

the temperature change; this finding confirms that feedback

processes well explain the temperature change in models.

Anomalies in JJA have some discrepancies due to inaccuracies

in the feedback calculations but show a statistically significant

positive correlation (r 5 0.95, P , 0.01). Therefore, the

application of the forcing–feedback framework to physiologi-

cal forcing can help us understand the climate sensitivity in

CO2 physiological forcing experiment and its intermodel

spread with some degree of accuracy.

We investigate which feedback processes are responsible

for the continental warming in the radiative forcing and

FIG. 3. (a) Scatterplot of annual mean changes in ET vs near-surface air temperature resulting from CO2

physiological forcing averaged over the mid-to-high-latitude continents (408–708N). (b) As in (a), but for JJA. The

gray dashed lines represent the least squares regression fits.

FIG. 4. (a) Scatterplot of annual mean changes in near-surface air temperature vs the sum of warming from

forcing and individual feedback for the 8 CMIP5 models and 11 CMIP6 models in the CO2 physiological forcing

experiment. All values are weighted averages over themid-to-high-latitude continents (408–708N). (b)As in (a), but

for JJA. The gray 1:1 line is where the change in the near-surface air temperature is equal to the total warming from

the forcing and individual feedback.
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physiological forcing experiments. Figure 5 shows the con-

tinental warming contribution of the individual feedback

caused by the radiative and physiological forcings based

on a multimodel mean. In agreement with previous studies,

we find that water vapor feedback is a major process that

amplifies continental warming in the radiative forcing ex-

periment (Colman 2003; Soden and Held 2006; Bony et al.

2006). In the radiative forcing, cloud feedback has relatively

minor importance in annual land surface warming, although

it is the second-largest positive feedback in boreal summer.

On the contrary, in the physiological forcing experiment,

the cloud feedback overwhelmingly contributes to the land

surface warming, and the other feedback processes play a

minor role (Fig. 5 and supplemental Fig. 2; see also Table 3).

Stomatal closure instantaneously reduces transpiration at the

surface, thereby decreasing RH (Joshi et al. 2008). Additionally,

turbulence thermals invigorated by the physiologically driven

increase in sensible heat flux cause a deepening of the atmo-

spheric boundary layer (ABL), provoking the entrainment of

warm and dry air from the troposphere (Doutriaux-Boucher

et al. 2009; de Arellano et al. 2012). Consequently, these con-

ditions suppress clouds over land, and the reduced cloud fraction

amplifies land surface warming by increasing downward SW

radiation.

Following cloud feedback, lapse rate feedback is the

greatest positive feedback, although it shows a considerable

gap from cloud feedback. Positive lapse rate feedback occurs

because the air near the surface is heated more than the air

in the upper atmosphere due to the direct influence of plant

physiological response (supplemental Fig. 3c). In addition,

less latent heat release in the mid-to-upper troposphere due to

reduced ET may intensify the bottom-heavy warming pro-

file, contributing to the positive lapse rate feedback. The

water vapor feedback as the third greatest positive feedback

amplifies the surface warming. The air temperature rise con-

siderably increases the amount of water vapor especially in

the midtroposphere (supplemental Figs. 3b,c). As a result, the

column water vapor generally increases (supplemental Fig. 3d),

leading to the positive water vapor feedback. The albedo

feedback is slightly positive possibly due to the changes in

LAI and snow fraction caused by physiological forcing

(supplemental Fig. 4).

The surface flux term, which reflects increased sensible heat

and decreased latent heat fluxes triggered by stomatal closure,

plays an almost neutral role in warming because these turbu-

lent heat flux changes are balanced with surface radiative flux

changes. The physiological forcing–induced warming is the

greatest in the mid- to high latitudes and thus the atmospheric

heat transport diverges, which plays a role in attenuating the

surface warming, indicating negative feedback. This result is in

good agreement with previous studies showing that the atmo-

sphere transports energy away from regions of energy accu-

mulation through the diffusive moist energy transport (Rose

et al. 2014; Roe et al. 2015; Stuecker et al. 2018). Because of this

energy transport, physiological forcing can drive the remote

impacts on the ocean and Arctic region (Park et al. 2020;

Zarakas et al. 2020).

FIG. 5. (a) Scatterplot of annual mean continental (408–708N) warming contributions of forcing and individual

feedback mechanisms resulting from CO2 physiological forcing vs those resulting from CO2 radiative forcing.

(b) As in (a), but for JJA. Note the different scales in (a) and (b). The marker types indicate the CMIP phase

(CMIP5: closed circle, CMIP6: open circle).

TABLE 3. The MME mean of warming contributions from indi-

vidual feedbacks resulting from CO2 physiological forcing.

Feedback type (K)

Mid- to high-

latitude

continents

(408–708N) Global mean

ANN JJA ANN JJA

Albedo 0.12 0.04 0.03 0.03

Local Planck 0.06 0.05 — —

Lapse rate 0.15 0.20 0.01 0

Water vapor 0.09 0.18 0.08 0.10

Cloud 0.44 1.05 0.10 0.18

Surface fluxes 0 20.05 20.02 20.04

Atmospheric heat transport 20.31 20.58 — —
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FIG. 6. Intermodel spread of continental (408–708N) warming contributions of individual

feedback mechanisms by CO2 physiological forcing in JJA. The colored lines represent the

linear regressions of the warming contributions of the feedback processes against the total

continental warming. The box plots show the median and the 25th and 75th percentiles of the

continental warming contributions of the individual feedback mechanisms, and the whiskers

show the full ensemble spread.
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Besides quantifying the different feedback contributions

to land surface warming in the ensemble mean, it is also

important to understand why the degree of continental

warming in physiological forcing varies across models. We

found that the intermodel spread of continental warming in

the physiological forcing experiment is largely dominated

by the spread in local cloud feedback (Figs. 5 and 6).

Changes in atmospheric heat transport dampen the inter-

model diversity because they are more negative in ESMs

with greater continental warming. Although the targeted

region is different, this tendency is similar to that in pre-

vious studies reporting that warming and energy transport

change are negatively correlated in the Arctic region

(Hwang et al. 2011; Pithan and Mauritsen 2014). Lapse rate

feedback and albedo feedback slightly contribute to the

intermodel spread. In summary, the cloud feedback trig-

gered by stomatal closure plays a key role in both the

continental warming response to physiological forcing and

its intermodel spread.

c. Intermodel spread in cloud feedback

Changes in ET alone cannot fully explain the diversity of

surface warming responses to physiological forcing in ESMs, as

the explained variance by ET is 44% (r 5 20.66, P , 0.01)

(Fig. 3b).As shown in Fig. 6, cloud feedback is the largest term in

explaining the continental warming response to physiological

forcing. Figure 7a shows the relation between cloud fraction and

surface air temperature in an intermodel space. It is evident

that a large cloud reduction is closely associated with a large

temperature increase, emphasizing the importance of cloud

feedback. The correlation between them is 20.84, which is sig-

nificant at the 99% confidence level. We applied multiple linear

regression to the temperature with respect to standardized

ET and cloud fraction; results show that their combined effect

can explain;83% of the temperature change between ESMs

(r 5 0.91, P , 0.01) (Fig. 7b). By eliminating the correlation

between ET and cloud, we also find that the ET alone can

explain 17% of temperature variation across the ESMs and

the cloud response to physiological forcing alone can explain

the 44% of that, which demonstrates the importance of cloud

feedback for understanding of intermodel diversity. Considering

cloud feedback together with ET change could provide a

better understanding of the intermodel diversity in the

warming response to CO2 physiological forcing. In this section,

we will further examine the cause of the differences in magni-

tudes of cloud feedback between ESMs and their impact on

temperature change.

Cloud feedback can be decomposed into SW and LW com-

ponents (Fig. 8a). SW cloud feedback intensifies surface warm-

ing (MME mean: 1.15K), whereas LW cloud feedback slightly

dampens the temperature rise (MMEmean:20.1K). This result

confirms the hypothesis that cloud fraction reduction can con-

tribute to the additional surface warming by enhancing the

downward SW radiative flux. In terms of intermodel diversity,

the spread in total cloud feedbackmostly comes from SW rather

than LW cloud feedback.

Even under similar reductions in ET, a trigger of cloud feed-

back, changes in cloud fraction might differ between models

(supplemental Fig. 5). Thus, we identified the process that induces

the intermodel diversity in cloud feedback among a series of

processes—from stomata closure to cloud reduction (Figs. 8b–d).

The ET and the Bowen ratio (sensible heat flux/latent heat flux)

show a strong linear negative relationship (r 5 20.93, P , 0.01).

The correlation coefficient between theBowen ratio andRH is also

significant at the 95% confidence level (r520.58,P5 0.02), but it

is relatively weakened because of the presence of three outlier

ESMs (HadGEM2-ES, IPSL-CM5A-LR, and UKESM1-0-LL).

Thesemodels also tend to act as outliers in the surface warming

FIG. 7. (a) Scatterplot of changes in cloud fraction vs near-surface air temperature for JJA resulting from CO2

physiological forcing averaged over the mid-to-high-latitude continents (408–708N). The gray straight dashed line

represents the least squares regression fit. (b) Scatterplot of multiple regressed indices vs changes in temperature

for JJA resulting from CO2 physiological forcing averaged over the mid-to-high-latitude continents (408–708N).

Multiple regressed indices are reconstructed by applying multiple linear regression to the air temperature with

respect to standardized ET and cloud fraction as predictors. The gray 1:1 line is where themultiple regressed indices

are equal to changes in air temperature resulting fromCO2 physiological forcing. Note that ACCESS-ESM1-5 does

not provide cloud fraction data.
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response to ET changes (Fig. 3). Furthermore, ESMs show a

wide range of changes in cloud fraction even if changes in RH

are almost the same (Fig. 8d).

To examine the model diversity further, we selected the

five models with the greatest temperature responses

(CMIP5: HadGEM2-ES and MPI-ESM-LR; CMIP6: BCC-

CSM2-MR, CESM2, and MPI-ESM1-2-LR) and the five

models with the weakest temperature anomalies (CMIP5:

BCC-CSM1-1; CMIP6: ACCESS-ESM1-5, CanESM5,

MIROC-ES2L, and NorESM2-LM) among 10 models with

similar ET changes (from 0 to 20.11 mm day21), as shown

in Fig. 3b, and then conducted a composite analysis (Fig. 9).

In the top five models, RH and cloud fraction decrease

more over a wider area than those in the bottom five

models, and the top five models show a stronger conti-

nental warming response.

These results suggest that the diverseET changes and physical

processes, such as land–atmosphere coupling and cloud physics,

may induce the intermodel diversity in cloud feedback. For

example, the diversity in the strength of convective mixing

between the lower and middle troposphere in models can

contribute to the uncertainty in cloud feedback because of its

control on low cloud fraction (Sherwood et al. 2014). Depending

on the strength of deepening ABL, the entrainment rate of dry

and warm air can differ, and the resultant variation in RH can

cause a distinct temperature change by regulating cloud fraction

even with similar changes in ET. The spread in continental

warmingmay also arise from the different cloud physics between

models; this can lead to diverse cloud responses even with sim-

ilar changes in ET and RH. Thus, models with a larger cloud

reduction show stronger surface warming, and this tempera-

ture rise decreases RH, thus reinforcing the positive feedback

and intensifying the intermodel diversity in cloud feedback

(supplemental Fig. 6). Although the causality cannot be clari-

fied, these results imply that the magnitude of the positive cloud

feedback loop can vary depending on the ET response, the

strength of land–atmosphere interaction, and cloud representa-

tion in models, consequently causing intermodel spread in con-

tinental warming.

4. Summary and discussion

In this study, we examined the continental warming re-

sponse to physiological forcing and quantified the resultant

FIG. 8. (a) Breakdown of the warming contribution of cloud feedback into SW and LW components. Scatterplot

of changes in (b) ET vs Bowen ratio (sensible heat flux/latent heat flux), (c) Bowen ratio vs RH, and (d) RH vs total

cloud fraction in the CO2 physiological forcing experiment. All values are weighted averages over the mid-to-high-

latitude continents (408–708N) for JJA.
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climate feedback, with a focus on identifying the cause of

their intermodel spread. Physiological forcing causes sig-

nificant land surface warming, especially in 408–708N, and

its intermodel diversity is considerable, which ranges

from 20.24 to 1.82 K in JJA. By quantifying the tempera-

ture change associated with individual feedbacks, we demon-

strated that the land surface warming response to physiological

forcing is amplified primarily due to SW cloud feedback. In

addition, cloud feedback plays a crucial role in the intermodel

diversity of continental warming caused by the CO2 physio-

logical effect. Physiology explains about 13.6% of the stan-

dard deviation in mean land warming across models at 2 3
CO2 in CMIP6 (Zarakas et al. 2020); therefore, it non-

negligibly contributes to the total-CO2-forced warming and

its uncertainty. Thus, our results are expected to provide

better insights into the total-CO2-forced climate change and

its uncertainty.

As mentioned above, the MME mean of the physiological-

forcing-driven temperature change on land (408–708N) is lower

in CMIP6 (annual mean: 0.5K; s: 0.32K) than in CMIP5

(annual mean: 0.63K; s: 0.42K). This result can be attributed

to the general decrease in the magnitude of individual feed-

back in CMIP6 (Fig. 5). In addition, this result is due to a re-

flection of the tendency of a fewESMs that show feeble or even

opposed physiological responses from CMIP6 (Fig. 3). In

contrast to the physiological forcing, the MME mean conti-

nental warming (408–708N) in the CMIP6 radiative forcing

experiment (annual mean: 5.08K) is higher than that in CMIP5

(annual mean: 4.37K) because of the overall increased warming

contribution of positive feedback in CMIP6. In particular, the

FIG. 9. Compositemaps of changes resulting fromCO2 physiological forcing in (a),(e) ET, (b),(f)RH, (c),(g) total

cloud fraction, and (d),(h) near-surface air temperature for (left) the top five models and (right) the bottom five

models in JJA. The significant test is done based on the bootstrapmethod to test themodel agreement. Insignificant

values at the 95% confidence level are colored in gray.
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cloud feedback is the largest increasing term among the indi-

vidual feedback processes. This result is consistent with a pre-

vious study reporting that the global climate sensitivity produced

by global climate models has an increase in CMIP6, primarily

due to the strong positive cloud feedback (Zelinka et al. 2020).A

further study is needed to understand how the feedback pro-

cesses differently behave between the physiological and radia-

tive forcing experiments.

In the present study, the classical forcing–feedback frame-

work was applied for physiological and radiative forcing ex-

periments, but a comprehensive evaluation of total-CO2-forced

climate change was not conducted. Since there is no stan-

dard definition and methodology for applying this paradigm

to total-CO2-forced climate warming, including both phys-

iological and radiative forcings, diagnoses and their inter-

pretation may differ depending on the definition in each

study, thus complicating the comparison between studies.

Doutriaux-Boucher et al. (2009) showed that stomatal clo-

sure increases radiative forcing via a rapid reduction in low

clouds. Zarakas et al. (2020) suggested that this physiolog-

ical effect could be included in effective radiative forcing.

These studies imply that physiological responses and the

resultant atmospheric adjustment can be regarded as a

forcing. However, missing parts remain; in-depth studies are

needed to develop an improved standard and methodology

for a comprehensive radiative forcing–feedback framework

considering physiological effects.

It has been suggested that the intermodel diversity in

physiological forcing may come from plants’ response to in-

creasing CO2 and atmospheric adjustment to this perturba-

tion (Friedlingstein et al. 2006; Andrews et al. 2009; Arora

et al. 2013, 2020; Piao et al. 2013; Lian et al. 2018; Devaraju

et al. 2018). Our results confirm this previous finding, especially

underscoring the important role of cloud feedback besides the

stomatal effect in the intermodel diversity of physiological

forcing. Likewise, systematic biases and weaknesses of land

surface models, such as unrealistic simulations of LAI and al-

bedo dynamics (Anav et al. 2013; Murray-Tortarolo et al. 2013;

Brovkin et al. 2013) may also be contributing to this intermodel

diversity and increasing the uncertainties in climate change

projection. In particular, the differences in the simulated LAI

and plant functional types between models may be causing the

variations in vegetation forcing and plant response to CO2 and

the resultant climate feedback. These discrepancies can be a

fundamental cause of intermodel diversity; thus, further re-

search is needed on this. In addition, these issues point to the

need for an improvement in the terrestrial processes embedded

in ESMs based on a fundamental understanding of the involved

processes. Moreover, in light of our results, physical schemes

should also be improved to reduce uncertainties in simulating

climate change from not only radiative forcing but also physio-

logical forcing and thus total CO2 forcing.
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