
1.  Introduction
The frequent heatwaves in recent decades account for significant socioeconomic problems in Korea and 
Japan. In Korea, record-breaking heatwaves were recorded in 2013, 2016, and 2018 and these were accom-
panied by many health and energy issues. In Japan, major heatwaves were also reported in 2013 along with 
consecutive 2018–2020, and there were associated with serious heat-related illnesses (Hayashida et al., 2019; 
Kang et al., 2020; Lim et al., 2019). In particular, the 2018 deadly heatwave was responsible for 42 deaths in 
Korea and 1,032 in Japan, with corresponding illnesses of more than 3,400 and 71,200, respectively (Imada 
et al., 2019; Iwasaki et al., 2019; Park & Chae, 2020). In general, heatwaves are accompanied by tropical 
nights, which are also lead to serious heat-related illnesses (Cinar et al., 2001; Park & Lee, 2006).

Because of the large detrimental impacts of heatwaves (e.g., W. Lee et al., 2018; Nakai et al., 1999), their 
characteristics and mechanisms have been extensively studied over Korea and Japan (Hong et al., 2018; Lee 
& Lee, 2016; Yeh et al., 2018; Yoon et al., 2020). According to many studies, the intensity and frequency of 
summer heatwaves are increasing globally (Christensen et al., 2013; Perkins & Alexander, 2013), with the 
recent increase of heatwaves frequency in East Asia partially attributed to anthropogenic activities (Imada 
et al., 2018; Shimpo et al., 2019). Considering that heatwaves are characterized by irregular interannual var-
iation, their accurate prediction remains challenging. Consequently, many studies focus on the atmospheric 
circulations that are directly relevant to the occurrence of heatwaves (Lee & Lee, 2016; Shimpo et al., 2019; 
W. Wang et al., 2016, S. S. Y. Wang et al., 2019; Yeh et al., 2018; Yeo et al., 2019; Yoon et al., 2020).

The heatwaves, particularly reported in Korea and Japan, are generally related to the enhancement of the 
Northwestern Pacific Subtropical High (NPSH). During these heatwaves, the NPSH is largely modulated 
by the zonally propagating Rossby waves originating from Eurasia (Enomoto et al., 2003; Xu et al., 2019; 
Yeh et al., 2018; Yoon et al., 2020) and the meridionally propagating Rossby waves emanating from the 
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tropical western Pacific (He et al., 2018; Lee & Lee, 2016; Shimpo et al., 2019; S. S. Y. Wang et al., 2019; 
Yeo et al., 2019). The zonally propagating waves are often observed as synoptic-scale wave train connecting 
from Europe to East Asia. In spite of its scale, this is quasi-stationary because of the relatively slow west-
erly background in the summer, with its enhancement significantly modulating the NPSH and causing 
extreme events in East Asia (e.g., Coumou et al., 2018; Kornhuber et al., 2019; Shimpo et al., 2019; Xiang 
et al., 2013). The meridionally propagating waves are generally forced by deep convection in the western 
Pacific (near the Philippines) and propagate northward as thermally driven Rossby waves (Hoskins & Kar-
oly, 1981; Sardeshmukh & Hoskins, 1988). The anticyclonic branch of these waves commonly overlaps the 
NPSH, thereby promoting its northwestward expansion. This process was advanced as a probable cause 
for the dangerous heatwaves in 2018 (Hsu et al., 2020; Shimpo et al., 2019). In addition, local sea surface 
temperature anomaly (Hasegawa et al., 2020; Wie et al., 2021) and midlatitude blocking (Yeh et al., 2018; 
Yoon et al., 2021) are known contributors to the heatwaves, although the latter can be considered as a part 
of the meridional waves.

These studies emphasize that the heatwaves in Korea and Japan are strongly coupled to the large-scale 
atmospheric circulation or teleconnection patterns. Among these patterns, the meridionally propagating 
Rossby waves, known as the Pacific-Japan (PJ) pattern have been investigated as a potential source of pre-
dictability in subseasonal and seasonal timescales (Guan et al., 2019; Kosaka et al., 2013; Kosaka & Na-
kamura, 2010; Nitta, 1987; Wakabayashi & Kawamura, 2004; Wang & Wang, 2018). Considering that the 
PJ pattern is forced by tropical convection over the Philippines and affects East Asia while it propagates 
northward, this pattern can be easily captured by 850-hPa geopotential difference at Taiwan and southern 
Japan (Kawamura & Ogasawara, 2006; Kubota et al., 2016; R. C. Y. Li et al., 2014; Nitta, 1987; Wakabayashi 
& Kawamura, 2004) and empirical orthogonal function (EOF) analysis over East Asia (Kosaka & Naka-
mura, 2006, 2008, 2010; Wu et al., 2016). They provide useful information for climate prediction of these 
regions.

The reported impacts of the PJ patterns in Korea and Japan are summarized as follows: (a) convection 
suppression, (b) high-pressure anomaly enhancement, (c) anticyclonic circulation promotion, and (d) en-
hancement of relatively warmer temperatures (Kosaka & Nakamura, 2006; Kubota et al., 2016). These char-
acteristics generally produce hot and dry summers over the regions, including increased tropical cyclone 
activity over the South China Sea (Choi et al., 2010; Kubota et al., 2016). Recent studies also reported a 
significant relationship between positive PJ and East Asian heatwaves (Shimpo et al., 2019; Yeo et al., 2019; 
Yoon et al., 2020).

Despite the larger volume of studies, a clear physical feature connecting PJ and heatwaves is still limit-
ed, partially because the characteristics of the PJ pattern are commonly studied using monthly or climate 
time-scales. Based on daily analyses, we present that the near-surface warm advection is a key factor for 
the observed warm anomalies during positive PJ, which is one of potential causes of the Korea and Japan 
heatwaves.

Section 2 describes the data and methods used for the study. Section 3 summarizes important patterns of 
PJ in the daily timescale and provides thermodynamic features related to the warming. Last, a discussion is 
presented in Section 4.

2.  Data and Methodology
2.1.  Data

Hourly temperature data were obtained from the Hadley Centre Integrated Surface Database (HadISD; 
Dunn et al., 2016) and used for calculating maximum temperature (Tmax) for the 40-year period from 1981 
to 2020. The surface stations that provide hourly samples over Korea and Japan are used for the analysis. 
The primary data used for the pattern and budget analyses are the 6-hourly European Centre for Medi-
um-Range Weather Forecasts (ECMWF) Re-Analysis version 5 (ERA-5; Hersbach et al., 2020) regridded 
into a 1.5° × 1.5° resolution. To reduce the high-frequency variability, a 5-day running average was applied 
for the time series, with all analyses focused on the boreal summer period (June-July-August [JJA]).
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In order to characterize the atmospheric circulation related to the PJ pattern, the composite analysis was 
performed with respect to the central date of the PJ index defined by Equation 2 in Section 2.3. Anomaly 
fields were computed by removing daily climatologies that are defined for the period of 1981–2020.

2.2.  Apparent Heat Source (Q1)

We calculated the atmospheric apparent heat source term (Q1) based on the thermodynamic energy equa-
tion. The thermodynamic equation and Q1 are related by the following equation (D.-K. Lee et al., 2008; 
Yanai et al., 1973):

1
0

1
k

p

dT pV T Q
dt p p c


  

         


 (1)

where T, E  , E V

, E p, and E  are the temperature, potential temperature, horizontal wind vector, pressure, and 

vertical pressure velocity, respectively; ∇ denotes the horizontal gradient operator; and 0E p  and pE c  are the ref-
erence pressure (1000 hPa) and the specific heat of dry air at constant pressure, respectively. The calculated 
Q1 represents the total diabatic heating redistributed by unresolved mixing, which includes the radiative 
heating, latent heat release due to net condensation, and surface heat flux.

2.3.  The PJ Index

Considering previous studies (Kubota et al., 2016; R. C. Y. Li et al., 2014; Wakabayashi & Kawamura, 2004), 
the PJ index in the present study was calculated by the difference of the normalized 850-hPa geopotential 
height anomaly between grid points in Taiwan (22°N, 120°E) and Japan (35°N, 140°E) as follows:

   PJ index 22 N,120 E 35 N,140 E / 2z z          (2)

where z* denotes the 850-hPa geopotential height anomaly normalized by the standard deviation of values 
for each grid point. This point-based PJ index is employed following Kubota et al. (2016) for comparison 
with previous studies. It is worth to note that it is almost identical to the one defined by EOF (Kubota 
et al., 2016), and overall results are independent of the definition. 

This study will examine the evolution of PJ-related features through a composite analysis. The positive and 
negative events were selected based on ±1.0 standard deviation of the PJ index, respectively, while the peak 
was set as the central date (day 0). Finally, the indices that maintain the same phase must be at least 10 days 
apart to ensure the independence of the samples. Consequently, 31 positive and 34 negative events were 
obtained and used for subsequent analysis.

3.  Result
3.1.  Characteristics Observed

The heatwaves that occurred in Korea and Japan are closely related to the atmospheric circulation anoma-
lies caused by the positive PJ pattern (e.g., Shimpo et al., 2019; Yeo et al., 2019). Figure 1 shows the distri-
bution of Tmax anomalies averaged for the positive and negative PJ pattern events. Depending on the phase 
of the PJ pattern, the Tmax value for Korea and Japan varies considerably. In general, warming is observed 
in the data recorded in stations in the south part of Korea and Japan during the positive PJ pattern events, 
with the maximum value reaching approximately ∼3°C (Figure 1a). The Tmax difference is slightly lower 
during the negative PJ pattern events, with data for many stations in central and northern Japan indicating 
cooling (Figure 1b). These characteristics are clearly demonstrated by comparing the two Tmax probability 
density functions relative to the phase of the PJ pattern (Figure 1c). The Tmax distribution of the positive PJ 
pattern shifts to the warmer side and negatively skewed showing a significantly increased number of hot 
days. The number of days with Tmax greater than 33°C, 35°C increased by approximately 250%, 90% during 
the positive PJ pattern, respectively. The Tmin distribution of the positive PJ pattern also shifts to the warmer 
side (Figure S1). These surface observations ascertain that the likelihood of the heatwaves is clearly related 
to the PJ events.
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Figure 1.  Composite daily maximum temperature anomaly (K) maps based on the (a) positive Pacific–Japan (PJ) index 
and (b) negative PJ index. (c) Plot of the probability density function versus Tmax based on observation data for South 
Korea and Japan. The shaded area represents the entire data distribution, while the solid red line shows the positive PJ 
distribution and blue is the negative PJ distribution. The percentages assigned to each color highlights the probability 
that Tmax > 35°C and Tmax > 33°C.
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The composite of the 850-hPa geopotential height for the positive PJ events (Figure 2a) presents a character-
istic meridional dipole of low (cyclonic) and high pressure (anticyclonic) anomalies over the South China 
and Philippine seas and central Japan, respectively, which are consistent with previous studies (Kubota 
et al., 2016; Nitta, 1987). This pattern is obviously observed in the middle to lower troposphere (not shown) 
because of tropospheric propagation along the south westerly in the region (Kosaka & Nakamura, 2006). 
The daily timeseries of the PJ index (Figure 2b) shows that the PJ pattern evolves in a week or two, thereby 
providing enough time for propagation of the meridional Rossby waves and the associated atmospheric 
circulation. The spatial structure and time series of the PJ index during the negative PJ pattern events have 
similar characteristics except with an opposite sign (Figure S2). It is worth noting that the pattern further 
propagates and reaches southern Alaska and the west coast of North America. This feature is also reported 
in several studies (Kosaka & Nakamura, 2006; Nitta, 1987), although its impact on North America is not 
fully studied. The same dipole pattern (but with opposite phase) appears during the negative PJ events 
(Figure S3a).

This circulation pattern is coherent with other atmospheric and oceanic fields. Figure 3 shows composite 
anomalies for the daily surface air temperature (SAT), sea surface temperature (SST), total cloud cover, and 

Figure 2.  (a) Composite map of the 5-days running mean of the 850-hPa geopotential height anomaly of the positive Pacific–Japan (PJ) patterns. Contouring 
starts from ±10 m and the interval is 10 m, with zero lines omitted. The symbol “x” in (a) represent the locations stations in Taiwan and Japan in which data 
used for the PJ index were recorded. The shading highlights the statistically significant anomalies at the p < 0.05 level, determined using a two-tailed Student's 
t-test. (b) Normalized time series distribution of the positive PJ pattern index, with the gray line representing individual PJ indices, while the black line is the 
average, with the shaded portion indicating the 95% confidence interval of the mean.
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surface heat flux for the 31 positive events. The composite anomalies of SAT show noticeable warming over 
Korea and Japan (Figure 3a), which consists well with the surface observations (Figure 1a). The SST anom-
aly also presents a similar warming pattern (Figure 3b), although it is further extended over the region of 
the Kuroshio extension implying the role of the ocean current. The surface heat flux from the ocean is also 
significantly reduced over the East Sea and east coast of Japan, likely due to the larger increase in the SAT 
compared to the SST (Figure 3d).

It is worth noting that the cloud cover is also reduced over southern Japan (Figure 3c) along with the in-
solation (Figure S4a). Due to the enhanced insolation, the land-surface temperature increases noticeably 
over Japan. This increase causes stronger heat fluxes from land (Figures S4b and S4c) deteriorating the 
heatwaves, while this mechanism is not found over ocean. The different responses of heat fluxes over land 
and ocean are related to the characteristics of the surface. It is also notable in the temperature budgets 
divided the surface type (Figure S5). The responses of cloud cover and insolation are different over Korea. 
This difference is related to an interaction with Changma front, which generally locates over this region.

This positive relationship between the midlatitude SAT and PJ has been reported in many studies (Kubota 
et al., 2016; Lee & Lee, 2016; Nitta, 1987; Wakabayashi & Kawamura, 2004). The warming over Korea and 
Japan is consistent with the high pressure (anticyclonic) anomaly observed in the region, and it has been 
explained as follows: (a) subsidence occurs due to the anticyclonic anomaly, (b) insolation increases be-
cause of cloud reduction, and (c) warm advection proceeds through southerlies (Kubota et al., 2016; Lee & 
Lee, 2016). In general, the results of this study are consistent with these explanations, however it is still not 
clear which one is the dominant process for the near-surface warming and potential cause of the heatwaves. 
It will be examined further using a thermodynamic budget in the subsequent section.

3.2.  Cause of the Near-Surface Warming

The daily evolutions of the near-surface temperature are examined for the region where the midlatitude 
warming is significantly large (i.e., 33°–45°N and 125°–145°E; shown in the box with purple lines in Fig-
ure 3a). Overall, the SAT anomalies show positive and negative values near the central date of the positive 

Figure 3.  Composite maps showing the (a) surface temperature anomalies (K), (b) sea surface temperature anomalies (K), (c) total cloud cover anomalies 
(%), and (d) surface heat flux (latent heat flux + sensible heat flux) anomalies (Wm−2) for the positive Pacific–Japan patterns. The dots highlight statistically 
significant anomalies at the p < 0.05 level, determined from the two-tailed Student's t-test.
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(yellow in Figure 4a) and negative (purple in Figure 4a) PJ pattern events, respectively. However, the anom-
aly persists longer with a stronger peak during the positive PJ pattern events compared to that of the neg-
ative PJ events. These results are also consistent with the surface observations (Figure 1), which exhibit 
stronger (asymmetric) temperature responses for the positive PJ patterns. The temperature data also pre-
sents a notable increase roughly 10 days before the central dates of the positive PJ patterns, and rapidly 
decreases several days before the central date for the negative PJ patterns.

The temperature tendency is further investigated using the thermodynamic equation (Figures 4b and 4c). 
The daily temperature tendency (black line) can be decomposed into the horizontal temperature advection 
(green line), adiabatic heating (blue line), and diabatic heating (red line) based on the calculated Q1 value. 
The most distinct feature is the large dominance of horizontal advection on the temperature tendency. Re-
garding the positive PJ patterns (Figure 4b), the surface temperature starts to increase significantly because 
of horizontal advection ∼10 days before the central date. The adiabatic heating caused by subsidence also 
contributes to the heating, although this contribution is still secondary near the surface. Notably, the con-
tribution of the subsidence-induced adiabatic warming is comparable to that of the horizontal advection 
above the ∼850-hPa level (Figures S6 and S7); however the horizontal advection is the principal process 

Figure 4.  (a) Timeseries of the 5-days running mean surface temperature anomaly of each phase the Pacific–Japan 
(PJ) pattern from day −30 to day +15. The shading indicates the spread within ±0.5 standard deviations. (b and c) 
Temperature evolution of each phase of the PJ pattern based on a thermodynamic equation at 1000 hPa and the drivers, 
including the horizontal heat advection (thin green line), diabatic heating (Q1) (thin red line), and adiabatic heating 
(thin blue line). The thick black line represents the surface temperature trend anomaly, while the orange dashed line is 
for the ERA-Interim physical heating rate anomaly.
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responsible for the near-surface warming. The Q1, which is a reasonable estimation of the physical heating 
and unresolved mixing process, offsets the warming tendency. This effect might be caused by outgoing long-
wave radiation, which increased due to near-surface warming. The total physical heating from the ERA-In-
terim also suggests that the net physical process adversely affects the observed warming during the positive 
PJ events. The negative PJ (Figure 4c) yield roughly the same interpretation, although their responses are 
stronger after the central date. These characteristics are generally similar for the EOF-based PJ definition 
(Figure S8). The westerly dominates over Japan (still crossing the isotherms), and the temperature advec-
tion is slightly stronger for the negative PJ. However, the temperature advection is still the primary factor 
for the temperature tendency.

Increased insolation due to cloud reduction is considered a major process that can explain the observed 
warming in Korea and Japan (e.g., Kosaka & Nakamura, 2006; Tao et al., 2017; Wakabayashi & Kawamu-
ra, 2004). In fact, the reduced cloud cover amount (Figure 2c) and increased land-surface flux over Japan 
are supportive of this idea (Figures S4b and S4c). However, warming by these processes is weak compared 
to that associated with the horizontal advection, and these processes are too localized to drive the region-
al-scale warming observed during the positive PJ pattern events. For example, the same processes are not 
observed over Korea and the East Sea, where significant warming is still observed.

The details of horizontal advection are examined to better understand the role of the PJ-related circulation 
on horizontal temperature advection. The near-surface temperature fields show a large gradient over Korea 
and Japan for the positive and negative PJ patterns (Figure 5), which represents a seasonal characteristic of 
both regions. However, the circulation fields differ notably between the positive and negative events. The 
southeasterly dominates over the East China Sea and southern Japan for the positive PJ pattern events, 
inducing intense warm advection over Korea and Japan by crossing the temperature gradient in the regions 
(Figure 5a). On the other hand, the southwesterly, characterized by parallels isotherms, prevails over the 
regions but induces no significant temperature advection for the negative PJ patterns.

Figure 5.  Composite maps involving the (a and b) surface temperature (shading, K) and horizontal wind at 1000-hPa (vector, ms−1), and (c and d) horizontal 
advection of the surface temperature (shading, K day−1) and horizontal wind anomalies at 1000-hPa (vector, ms−1) for positive Pacific–Japan (PJ) patterns (left) 
and negative PJ patterns (right).
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This feature is more pronounced in the PJ-related anomalies (Figures  5c and  5d). For positive PJ, the 
near-surface winds show a clear dipole of cyclone and anticyclone, respectively over the subtropical and 
midlatitude regions of the western Pacific. This circulation pattern induces southeasterlies between the 
dipoles, thereby enhancing heat and moisture transports from the subtropical ocean toward Korea and Ja-
pan, whereas negative PJ patterns inhibit such transport by preventing westerlies. This surface circulation 
evolves as a part of the meridionally propagating Rossby waves under the background of the Asian summer 
monsoon and subtropical high (Kosaka & Nakamura, 2006, 2010). The time-lag composite of the circulation 
fields (Figures S9 and S10) demonstrates that this response can evolve roughly in a weekly timescale, which 
corresponds to the energy propagation duration of Rossby waves. The time lag in the temperature tendency 
during the negative PJ pattern is likely related to this energy propagation. In fact, the cold advection during 
negative PJ originates from the Okhotsk Sea (Figure 5d), which locates far north of the warm advection 
during positive PJ (Figures S9 and S10).

4.  Conclusion
In this study, the evolution of the PJ pattern and surface temperature on an intraseasonal timescale were 
detailly examined. The PJ pattern is one of the most dominant teleconnection patterns in the western North 
Pacific during the boreal summer. The analysis based on 40 years of ERA5 and surface station data confirms 
that the daily PJ index and corresponding Rossby wave pattern are strongly related to the summer climate 
over Korea and Japan. In particular, the subtropical-to-midlatitude dipole pattern and balanced near-sur-
face circulation play prominent roles over the western North Pacific.

Summer temperatures over Korea and Japan are significantly affected by positive PJ patterns, and the like-
lihood of heatwaves is also significantly increased with the event. The thermodynamic budget analysis on 
a daily timescale revealed the horizontal advection of heat by southeasterly winds as the principal factor 
responsible for elevated near-surface temperatures over Korea and Japan. The dipole patterns developed 
over the subtropics and midlatitude as a part of the PJ-related Rossby waves account for the southeasterlies 
and warm advection. During the positive PJ events, a high-pressure system develops over Japan, which 
aggravates the near-surface warming through subsidence and additional insolation, although these impacts 
turn out to be secondary factors. These results are robust regardless of the PJ definition, which can slightly 
modifies the Rossby wave pattern.

It is worth noting that positive PJ patterns are also likely related to coastal marine heatwaves (see Fig-
ure 3b), which have devastating impacts on aquaculture and fisheries (S. Lee et al., 2020; Y. Li et al., 2019; 
Oliver et al., 2018). Therefore, atmospheric and marine heatwaves can interact through atmosphere-ocean 
coupling processes such as the heat flux exchange (e.g., Olita et al., 2007; Figure 3d). The frequency and 
intensity of atmospheric (Christensen et al., 2013; Perkins & Alexander, 2013) and marine heatwaves are 
increasing (Frölicher & Laufkötter, 2018; Oliver et al., 2018) due to global warming and the associated circu-
lation changes (Coumou et al., 2018; Mann et al., 2017). However, their physical mechanisms are not clearly 
understood, and the predictability of the heatwaves is generally low (Olita et al., 2006, 2007; Sparnocchia 
et al., 2006). Several studies suggest that the PJ pattern is an important source of predictability over the East 
Asian region (Kosaka et al., 2012, 2013; Wu et al., 2016; Xie et al., 2009). The PJ pattern is generally forced 
by deep convection in the western Pacific (near the Philippines) and propagates poleward as thermally 
driven Rossby waves (Hoskins & Karoly, 1981; Sardeshmukh & Hoskins, 1988). Detailed understanding on 
the pattern and other heatwave-related atmosphere-ocean coupled modes would enhance the prediction 
of heatwave in subseasonal to seasonal timescale. In addition to the PJ pattern, the recently emerging me-
ridional wave train phenomenon (Kornhuber et al., 2017, 2019; Petoukhov et al., 2013; Yoon et al., 2020) is 
another important process that requires further investigation.

Data Availability Statement
Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth generation of ECMWF atmospheric reanal-
yses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), date of access. 
https://cds.climate.copernicus.eu/cdsapp#!/home. Met Office Hadley Centre; National Centers for Envi-
ronmental Information—NOAA (2020): HadISD: Global sub-daily, surface meteorological station data, 
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