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Marine Nitrogen Fixation and Phytoplankton Ecology

Many oceans are currently undergoing rapid changes in environmental conditions
such as warming temperature, acidic water condition, coastal hypoxia, etc. Obvious
warming and acidification in various oceans, from polar oceans to tropical oceans, was
well reported in the fifth Assessment Report (AR5) by the Intergovernmental Panel on
Climate Change [1]. These climate-driven environmental changes could lead to dramatic
alterations in the biology and ecology of phytoplankton as major primary producers and
biogeochemical drivers and subsequently impact the growth and survival of other marine
organisms [2–5]. Consequently, the entire marine ecosystem and global biogeochemical
cycles would be very different from what we have now.

Marine phytoplankton are an important indicator of marine ecosystem changes in
response to climate-induced environmental change [2,4–6], since they are major primary
producers that consolidate solar energy into organic matter and transfer it to marine
ecosystems throughout the food web. Recently, increasing numbers of roles of small
phytoplankton as a major contributor to primary production have been reported in various
oceans, and it has been found that small phytoplankton could become more prominent
under an ocean warming scenario [2,4,6–9]. The ecological and biogeochemical traits of
small phytoplankton are very different from those of large phytoplankton [3,4,9]. Therefore,
it is urgent to verify the different biological and chemical properties of small phytoplankton
and understand their ecological roles under ongoing environmental changes.

It is widely known that nitrogenous nutrients are key components of primary pro-
duction in the ocean, and the only biological source of such nutrients is diazotrophic
N2 fixation. Similar to primary producers, N2 fixers (diazotrophs) are also vulnerable to
changing environmental conditions. It was found that the polar regions can be introduced
to diazotrophic activity under warming conditions, and the increased N availability can
lead to elevated primary productivity [10–12]. However, if ocean acidification contin-
ues in the future, the diazotrophic activity is likely to decrease [13]. The documentation
and processing of information on N2 fixation is highly important as its role in the N
cycle of the oceans is critical for preparing future projections on the effects of global en-
vironmental changes on the biogeochemical balance of the ecosystems. The employment
of enriched isotopic tracers of dinitrogen (15N2) [14], natural abundance studies of the
N2 isotopes in particulate and dissolved forms of N, and the introduction of a simple
enzyme-based assay, the acetylene reduction method, have opened possibilities expand
our knowledge of biological N2 fixation in the global oceans. The measured N2 fixation
rates in a Trichodesmium bloom in the Arabian Sea showed the highest depth-integrated
values, ranging from ∼0.1 to 34 mmol N m−2 d−1 [15]. The highest depth-integrated N2
fixation rates in non-bloom conditions are obtained in the western tropical South Pacific
(638 ± 1689 µmol N m−2 d−1), which are higher than those of the subtropical North At-
lantic (182 ± 479 µmol N m−2 d−1) and North Pacific (118 ± 101 µmol N m−2 d−1). N2
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fixation rates in the eastern South Pacific are measured to be 86 ± 99 µmol N m−2 d−1,
whereas the southern Indian Ocean (<20 µmol N m−2 d−1, [12]) rates are low.

Recent genetic studies on microbial communities report niches of diazotrophic activi-
ties which were previously unknown. Most measurements on N2 fixation rates are from
bulk samples, which might have possibly comprised cyanobacteria and other diazotrophs.
The infusion of the cell-specific N2 fixation method using a nanoscale mass spectrome-
ter gave a high-definition perspective of cellular-level N2 fixation; more importantly, it
provides knowledge about diazotrophy on an individual-species basis [16]. This novel
method helps to identify the species that are capable of N2 fixation, and to determine
their role in transferring fixed N2 to the autotrophs in association with them. However,
information on global N2 fixation rates and cell-specific N2 fixation so far is scant, and
inconsistent in different spatio-temporal scales due to a lack of sufficient measurements. To
tackle the perplexing response of diazotrophs, a detailed assessment of the diazotrophic
community response toward the changing environmental conditions needs to be recorded
thoroughly. Considering the fundamental roles of phytoplankton in marine ecosystems
and global biogeochemical cycles, it is important to understand phytoplankton ecology
and N2 fixation as a potential N source in various oceans.

This Special Issue covers a wide range of geographic study regions from pole to pole
and from coastal systems to open oceans, including Terra Nova Bay, Ross Sea in the Antarc-
tic Ocean, Northern Bering Sea, Chukchi Sea, Canada Basin, and Kongsfjorden, Svalbard in
the Arctic Ocean, Western South China Sea, Northern East China Sea, Northwestern Pacific
Ocean, and Jaran Bay in South Korea. In this Special Issue, we present a total of 11 articles
offering ecological and biogeochemical baselines as indicators for the changes in marine
environments and ecosystems driven by global climate changes. In particular, articles on
the compositions of intracellular biochemical components such as proteins, lipids, and car-
bohydrates of phytoplankton could provide important information for their physiological
conditions and the nutritional value of organic matter available to grazers [17,18]. Recently,
phytoplankton-derived transparent exopolymer particles (TEPs) are known for making
a considerable contribution to the organic matter pools and thus marine biogeochemical
cycles in aquatic environments [19]. Ref. [20] investigated monthly TEPs concentration and
particulate organic carbon (POC) concentration in Jaran Bay, a large shellfish aquaculture
site in a southern coastal region of Korea. They found that the contribution of TEPs ranged
from 2.4% to as high as 78.0% of the POC concentration, which indicated that TEPs-C could
be a significant contributor to the POC pool in a coastal bay. Since little information on
the monthly variation in TEPs is available, their investigation on the TEPs could be a very
important baseline in a coastal bay system. Moreover, in Jaran Bay, ref. [21] also observed
the seasonal and spatial variations in the biochemical compositions of phytoplankton.
They found that the dominant biochemical component was carbohydrates (51.8 ± 8.7%),
followed by lipids (27.3 ± 3.8%) and proteins (20.9 ± 7.4%). Large phytoplankton and the
P × (PO4

3−1/16 × NO3
−) and NH4

+ concentrations were identified as major controlling
factors for food material (FM) in Jaran Bay. Over a year at Jang Bogo Station (JBS) in Antarc-
tica, ref. [18] measured bi-weekly biochemical compositions of particulate organic matter
(POM) and concentrations of TEPs. The high composition of lipids and proteins indicated a
good food source in summer, whereas stably low concentrations of carbohydrates and lipids
were utilized for long-term energy storage in the survival of phytoplankton in winter. They
found that TEPs have a longer residence time than POC, and the contribution of TEPs-C to
the POC pool could be important in the Ross Sea. The biochemical composition of POM
deriving mainly from phytoplankton in the Chukchi Sea, Arctic Ocean were presented
by [22]. They investigated the biochemical components of phytoplankton and their spatial
pattern. Carbohydrates were the predominant macromolecules, accounting for 42.6% in the
Chukchi Shelf and 60.5% in the Canada Basin, followed by lipids and proteins. Based on
their study, the biochemical compositions of phytoplankton could be considerably different
in the regions of the Arctic Ocean. In a similar region, ref. [23] estimated the bioavailable
fraction of POM through enzymatic hydrolysis that can be utilized by higher trophic lev-
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els. Based on their results, nutrient, temperature, meltwater and different size classes of
phytoplankton (micro and picophytoplankton) were the main factors of the compositional
variations and the spatial distributions. More studies on the changes in the biochemical
compositions of phytoplankton should be conducted under future environmental changes.

In terms of elemental composition and primary productivity driven by phytoplankton,
ref. [24] determined the combined physiological–elemental ratio changes in two phyto-
plankton species, Scrippsiella trochoidea (Dinophyceae) and Heterosigma akashiwo (Raphi-
dophyceae). They found higher average ratios of particulate organic nitrogen (PON) to
chlorophyll-a (Chl-a) and POC to Chl-a in S. trochoidea than those of H. akashiwo. However,
the authors observed similar ratios of POC/PON of the two microalgae. These results
can be used to develop physiological models for phytoplankton, with implications for the
marine biogeochemical cycle. In Kongsfjorden’s high-latitude open fjord systems, ref. [25]
found that the turbidity associated with glacier meltwater impacted the penetration depth
of light and that nutrients could cause the lower productivity rates of phytoplankton. They
found that picophytoplankton was largely based on regenerated nutrients, even more
productive than that suggested by their biomass contribution and their nitrogen uptake.
For a better understanding of the biochemical traits of small phytoplankton, ref. [26] con-
ducted field measurements in the biologically productive northern Bering and Chukchi
seas. The contributions of small phytoplankton to the total primary production were 38.0%
(SD = ±19.9%) and 25.0% (SD = ±12.8%) in 2016 and 2017, respectively. They found that
small phytoplankton synthesize different biochemical compositions with nitrogen-rich
POC from large phytoplankton.

The three articles below on phytoplankton communities and cyanobacterial contribu-
tions provide significant ecological predictions under expected warming ocean conditions.
In the North Pacific Ocean, ref. [27] determined the picocyanobacterial contribution and
the total primary production. The average picocyanobacterial contributions to the car-
bon uptake rates were 45.2% in the tropical Pacific region and 70.2% in the subtropical
and temperate Pacific region, respectively. In addition, their contributions to the nitro-
gen uptake rates were significantly higher than those of carbon uptake rates. Based on
high-performance liquid chromatography (HPLC) pigment analysis, ref. [28] investigated
spatiotemporal variations in phytoplankton community compositions in the northern East
China Sea (ECS), the largest marginal sea in the north-western Pacific Ocean. Overall, the
two major phytoplankton groups were diatoms (32.0%) and cyanobacteria (20.6%) in the
northern ECS, and the two groups were negatively correlated. In the western South China
Sea, ref. [29] investigated the distinct seasonal variation in phytoplankton community
structure related to different oceanographic conditions and observed a major shift from a
diatom-dominated regime in winter to a cyanobacteria-dominated system in summer. The
authors found that the increased overall abundance of phytoplankton and cyanobacteria
during the summer was caused by upwelling and enriched eddy activity, whereas the
abundant symbiotic cyanobacteria–diatom association during the winter was mainly due
to the influence of the cool temperature. Long-term monitoring of the phytoplankton
communities and the picocyanobacterial contributions should be conducted for a better
understanding of the ecological impacts of the global warming scenario, with a focus on
the ecological roles of picocyanobacteria.

This Special Issue covers various articles on N2 fixation and aspects of marine phy-
toplankton ecology, such as biodiversity, distribution, biomass, photosynthetic traits, bio-
chemical compositions, productivity, etc., in various oceans, including polar oceans. Finally,
we hope that this Special Issue provides ecological and biogeochemical baselines that
broaden our existing knowledge on the current and ongoing changes in marine ecosystems
in response to global climate change.
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