
1.  Introduction
Heterotrophic prokaryotes (hereafter bacteria) are a significant biological component that are almost exclusively 
responsible for the mineralization of dissolved organic carbon (DOC), the largest organic carbon pool in the ocean 
(Azam & Malfatti, 2007; Hansell & Carlson, 2015; Karl, 2007; D. L. Kirchman, 2008). DOC derived from vari-
ous sources (Carlson & Hansell, 2015; Nagata, 2008) is either transferred to higher trophic levels or mineralized 
to CO2 via bacterial production (BP) and respiration, respectively, within the microbial loop (Azam et al., 1983; 
del Giorgio et al., 1997; Duarte & Prairie, 2005; Ducklow et al., 1986. Consequently, the relative importance 
of heterotrophic bacteria in the microbial loop ultimately regulates the efficiency of the biologically mediated 
carbon sequestration process in the ocean (Chisholm et al., 2001; Karl, 2007; Legendre & Le Fèvre, 1995).

Antarctic glaciers store huge amounts of organic carbon (ca. 5.5 Pg C), and the amount of organic carbon 
discharged through subglacial Antarctic meltwater is estimated to be 0.33 Tg C year −1 as particle organic carbon 
(POC) and 0.17 Tg C year −1 as DOC (Wadham et al., 2019). Organic carbon in glacier meltwater consists of 
substantial amounts of bioavailable components (Hood et al., 2015; Musilova et al., 2017; Smith et al., 2017). 
Recent climate change and the consequent rise in water temperatures have stimulated the melting of glaciers, 
resulting in a total glacial mass loss of 252 Gt per year between 2009 and 2017 (Rignot et al., 2019). As the 
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Plain Language Summary  The Getz Ice Shelf (GtzIS) in the Amundsen Sea, the third-largest 
ice shelf (34,018 km 2) on the West Antarctic Ice Sheet, is regarded as a hot spot for producing large amount 
of glacier meltwater (144.9 ± 14 Gt yr −1). In general, the amount of dissolved organic carbon (DOC) from 
terrestrial sources is negligible in Antarctic waters, making DOC supplied by phytoplankton a major carbon 
source for heterotrophic bacteria growth. Although Antarctica's glacial ice shelves are presumably a large 
reservoir of organic carbon (ca. 5.5 Pg C), little is known about the effect of glacial melting on the supply of 
DOC available to heterotrophic bacteria. On the eastern GtzIS, where glacial meltwater upwells to the surface 
water column, heterotrophic bacteria production has no significant positive relationship with phytoplankton 
biomass, but is positively correlated with freshwater fraction. This suggests that DOC in glacial meltwater, 
rather than phytoplankton, provides DOC to support enhanced bacteria production. Our results imply that 
global warming–related increases in glacial meltwater may stimulate heterotrophic bacterial metabolism that 
respires DOC to CO2, thereby reducing carbon sequestration efficiency in Antarctic coastal waters.
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Southern Ocean accounts for approximately 20–50% of atmospheric CO2 uptake in the global ocean (Arrigo 
et al., 2008; Takahashi et al., 2009), it is important to elucidate the metabolic response of heterotrophic bacteria to 
increased supplies of DOC derived from glacier meltwater to construct models of biogeochemical carbon cycles 
in the Southern Ocean (Ducklow et al., 2012; Lønborg et al., 2018, 2019; Paulsen et al., 2017).

The Getz Ice Shelf (GtzIS) in the Amundsen Sea is the third-largest ice shelf (34,018 km 2) on the West Antarc-
tic Ice Sheet after the Ronne Ice Shelf (338,887  km 2) and the Ross West Ice Shelf (306,105  km 2) (Rignot 
et al., 2013). The GtzIS alone supports glaciers that hold enough ice to increase sea levels by 22 cm (Rignot 
et al., 2019). As a result of the inflow of warm Circumpolar Deep Water (CDW) into the west Antarctic shelf, 
including the Amundsen Sea (S. S. Jacobs et al., 2011; Jenkins et al., 2010), the GtzIS is now regarded as a hot 
spot that produces large amounts of glacier meltwater (144.9 ± 14 Gt yr −1) (Morlighem et  al., 2020; Rignot 
et al., 2013, 2019). Fresh and buoyant water released from a glacier cavity can drive regional and global ocean 
circulation (Jourdain et al., 2017; Nakayama et al., 2014; Raiswell et al., 2006; Silvano et al., 2018), while provid-
ing organic and inorganic substrates that stimulate biological production (Arrigo et al., 2017; Hood et al., 2015; 
Hopwood et al., 2018, 2020). Thus, increases in glacial meltwater can lead to changes in production and the 
community structure of phytoplankton (Arrigo et al., 2017; Alderkamp et al., 2012), as well as bacterial dynam-
ics (Nicholes et al., 2019; Smith et al., 2017). Given that heterotrophic bacteria are a major consumers of DOC, 
enhanced bacterial metabolic activity associated with meltwaters may weaken carbon sequestration in Antarctic 
coastal waters (Ducklow et al., 2015; S. Lee et al., 2017). Despite the potential significance of meltwater-induced 
DOC release on bacterial dynamics, most microbiological oceanographic studies conducted in the water column 
of the Amundsen Sea Polynya (ASP) have been limited to bacterial dynamics coupled with various stages of 
phytoplankton blooms (Delmont et al., 2014; Hyun et al., 2016; J. G. Kim et al., 2014; S. J. Kim et al., 2019; B. 
Kim et al., 2022; Williams et al., 2016; Yager et al., 2012). Little information is available on the impact of glacier 
meltwater on the microbial metabolic activity in the Amundsen Sea, especially along the glacier ice shelves, 
largely due to an extensive sea-ice coverage making access difficult.

During an oceanographic research expedition to the Amundsen Sea in January and February 2016, we encoun-
tered a unique environmental condition in which most of the GtzIS was exposed to seawater (Figure 1). This 
provided us with direct opportunities to explore the bacterial dynamics associated with glacier meltwater input on 
the GtzIS. Here, we report that enhanced heterotrophic BP in front of the GtzIS was not coupled with phytoplank-
ton that is supposedly the direct carbon source for heterotrophic bacteria in the Southern Ocean, but was directly 
related to glacier meltwater released from a basal part of the GtzIS affected by the intrusion of warm CDW. Our 
results are, to our knowledge, the first to demonstrate the importance of heterotrophic microbial processes in 
biogeochemical carbon cycles associated with glacier meltwater–induced DOC release along the west coast of 
Antarctica, where rapid glacial melting induced by climate change is occurring.

2.  Materials and Methods
2.1.  Study Area

The Amundsen Sea is located along Marie Byrd Land between the Bellingshausen Sea and the Ross Sea. The 
GtzIS extends 650 km along the Pacific sector of the Antarctic coastline between 115° W and 135° W, in the 
central and western Amundsen Sea (Figure 1). West Antarctica, including the Amundsen Sea and Bellingshausen 
Sea, has undergone rapid warming (Brown et al., 2019; Montes-Hugo et al., 2009) in recent decades, with the 
surface water temperature increasing by approximately 1.5°C since the 1950s (Turner et al., 2014). The estimated 
basal melt rate on the GtzIS was an area-averaged 4.15 m year −1, resulting in a freshwater flux of 141.17 Gt year −1 
into the Southern Ocean (Wei et al., 2020). The glacier meltwaters discharged from the ice shelves in the Amund-
sen Sea during the summer of January 2011 and February 2012 reportedly extends more than 300 km offshore 
(I. Kim et al., 2016).

As a part of physical and biogeochemical processes studies in the Amundsen Sea, a multidisciplinary oceano-
graphic survey was conducted onboard the RV Araon, a Korean research icebreaker, during the austral summer 
from January 14 to 16 February 2016. A temperature-salinity (T-S) diagram shows that the coastal waters of 
the Amundsen Sea can be divided into three main water masses: Antarctic Surface Water (AASW), Winter 
Water (WW), and modified Circumpolar Deep Water (mCDW) (S. S. Jacobs et al., 2011, Jenkins et al., 2010; 
Randall-Goodwin et  al., 2015) (Figure S1 in Supporting Information S1). Water samples for microbiological 
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analyses were collected at nine stations along the GtzIS and in the center of the ASP (Figure 1 and Table S1 in 
Supporting Information S1). A detailed description of the sample collection and handling procedure is presented 
in the Supporting Information (Text S1 in Supporting Information S1).

Sampling sites were grouped into three regions: eastern GtzIS (EG), western GtzIS (WG) and ASP, according 
to the distribution of potential temperature, salinity, chlorophyll-a (Chl-a) concentration, and freshwater fraction 
(FWF) (Table 1 and Figure S1 in Supporting Information S1). The EG site was characterized by a higher basal 
glacier melting rate because the bottom ice depth was deeper than the thermocline depth and an ice cavity was 
in direct contact with warmer mCDW, whereas a low basal melting rate was observed in the WG because the 
relatively cold water was in contact with the ice cavity, and the shallow ice-bottom depth prevents warm mCDW 
from entering the WG cavity (e.g., Wei et al., 2020).

The surface waters of the WG site were characterized by the lowest temperature and salinity and highest FWF 
(Figures 2h and 2i), whereas the EG site exhibited the highest temperature and an intermediate salinity ranging 
between the salinity values observed in the ASP and the WG (Figures 2a and 2b). The ASP sites were charac-
terized by high Chl-a concentrations with relatively greater thermal stratification compared with the GtzIS sites 
(Figures 2o and 2r).

Based on a satellite image of the ice distribution and the sharp density gradient, the surface waters of the WG 
were largely affected by sea-ice meltwater (Figures 1 and 2j). In contrast, the vertically well-mixed water column 
with high temperature and low salinity at the EG site indicates that warm mCDW containing glacier meltwater 
upwells along the ice shelf, resulting in a moderately low salinity range (Figures 2a–2c).

Figure 1.  A map of the study area with the sampling locations in the Amundsen Sea during January 14 to 16 February 2016. 
The contours indicate bathymetric lines in meters.
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3.  Results and Discussion
3.1.  Physico-Chemical Parameters

The FWF of the EG (range, 2.25%–2.44%; average, 2.40 ± 0.13%) displayed an intermediate range between 
those in the ASP (range, 1.81%–2.07%; average, 1.95  ±  0.13%) and WG (range, 2.71%–4.20%; average, 
3.67 ± 0.83%) (Table 1). The warm mCDW intruding along the deep Dotson-Getz trough contacts the bottom 
of the ice shelf, thereby stimulating basal glacier melting in the EG (e.g., Wei et al., 2020). The vertically 
well-mixed water column with a deeper mixed-layer depth (MLD) (58 ± 34.9 m) at the EG (Figures 2c and 
Table 1) suggests that upwelling of mCDW containing buoyant basal glacier meltwater destabilizes the water 
column (S. Jacobs et al., 2012; Mankoff et al., 2012). In the WG, where the FWF was highest (Table 1), low 
potential temperatures ranging from −1.2 to −1.11°C (average, −1.16 ± 0.05°C) and salinity ranging between 
33.4 and 33.5 psu (average, 33.4 ± 0.09 psu) were observed within MLD (Table 1). Satellite images showed 
that sea-ice covering >50% of the sea surface was distributed widely in the WG (Figure 1). These results 
indicate that sea ice–derived meltwater in the WG contributed to the high FWF. The salinity gradient caused 
by the addition of low-salinity meltwater discharged from the sea ice was responsible for the formation of a 
strong pycnocline at relatively depths within 30–50 m of the WG (Figure 2j). At the ASP site, the salinity 
ranged from 34.0 to 34.2 psu, and the temperature ranged from −1.64 to 0.28°C (Figures 2o and 2p). The 
water in the upper 100 m of the ASP exhibited the properties of AASW (S = <34.1 psu, T = −1.80 to >0°C) 
(Randall-Goodwin et al., 2015) that is fresher and warmer than the WW formed at 100–200 m due to sea-ice 
melting and surface heating by solar radiation.

Oceanographic 
setting Station

Depth
(m)

Temp.
(°C)

Sal.
(psu)

Density
(kg m −3)

Zeu
(m)

MLD
(m)

FWF
(%)

DOC
(μM)

Chl-a
(μg L −1)

BA
(×10 7 cells L −1)

BP
(pM Leu. h −1)

BP:PP a

(%)

Eastern Getz 
Ice Shelf

EG-1 674 0.28
(±0.02)

33.9
(±0.03)

27.2
(±0.03)

28.7 95.0 2.25
(±0.11)

49
(±2)

0.67
(±0.14)

43.2
(±3.32)

73.5
(±14.1)

49.8

EG-2 1119 0.30
(±0.10)

33.9
(±0.03)

27.2
(±0.03)

28.0 53.4 2.50
(±0.10)

52
(±1)

0.63
(±0.18)

41.4
(±10.5)

79.9
(±17.6)

39.5

EG-3 658 0.39
(±0.01)

33.9
(±0.04)

27.2
(±0.03)

26.0 25.7 2.44
(±0.13)

51
(±2)

0.77
(±0.03)

58.8
(±2.94)

104
(±4.14)

57.3

Average
(±1 SD)

817
(±262)

0.32
(±0.07)

33.9
(±0.01)

27.2
(±0.01)

27.6
(±1.40)

58.0
(±34.9)

2.40
(±0.13)

51
(±2)

0.69
(±0.07)

47.8
(±9.56)

85.8
(±16.1)

48.9
(±8.94)

Western Getz 
Ice Shelf

WG-1 596 −1.17
(±0.03)

33.4
(±0.03)

26.8
(±0.03)

24.0 32.6 4.20
(±0.12)

47
(±1)

1.79
(±0.54)

50.7
(±7.52)

50.4
(±3.15)

13.9

WG-2 780 −1.11
(±0.05)

33.5
(±0.02)

27.0
(±0.02)

19.0 24.7 4.11
(±0.09)

46
(±2)

3.86
(±0.02)

49.3
(±1.89)

46.4
(±2.67)

7.11

WG-3 323 −1.21 33.4
(±0.02)

27.0
(±0.02)

16.0 20.7 2.71
(±0.08)

51
(±1)

3.69
(±0.23)

53.9
(±9.86)

54.9
(±4.55)

9.48

Average
(±1SD)

566
(±230)

−1.16
(±0.05)

33.4
(±0.09)

26.9
(±0.07)

19.7
(±4.04)

26.0
(±6.06)

3.67
(±0.83)

48
(±3)

3.11
(±1.15)

51.3
(±2.36)

50.6
(±4.27)

10.2
(±4.98)

Amundsen Sea 
Polynya

ASP-1 697 0.26
(±0.02)

34.0 27.3 16.0 27.0 1.81 44
(±1)

3.00
(±0.81)

8.58
(±4.63)

26.8
(±3.56)

4.09

ASP-2 820 −0.14
(±0.13)

34.0
(±0.02)

27.3
(±0.02)

16.0 64.0 1.96
(±0.07)

46
(±1)

2.17
(±0.94)

11.1
(±5.24)

28.7
(±7.90)

19.1

ASP-3 700 −0.07
(±0.17)

34.0
(±0.02)

27.3
(±0.02)

22.8 44.0 2.07
(±0.06)

48
(±2)

1.62
(±0.47)

9.08
(±1.51)

29.9
(±7.54)

4.29

Average
(±1SD)

739
(±70)

−0.02
(±0.11)

34.0
(±0.10)

27.3
(±0.01)

18.1
(±4.00)

45.0
(±18.5)

1.95
(±0.13)

46
(±2)

2.26
(±0.70)

9.59
(±1.34)

27.8
(±0.92)

9.15
(±8.59)

Note. Zeu, euphotic depth; MLD, mixed layer depth; FWF, freshwater fraction; DOC, dissolved organic carbon; Chl-a, chlorophyll-a; BA, bacterial abundance; BP, 
bacterial production.
 aBP:PP data were depth-integrated down to the MLD. Primary Production (PP) data from Lim et al. (2019).

Table 1 
Averaged (±1 SD) Physico-Chemical and Microbiological Parameters Within the Mixed Layer Depth in the Amundsen Sea
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In the present study, the NO2 − + NO3 − (11.75–31.98 μM; average, 22.74 ± 6.13 μM) and PO4 3− concentrations 
(0.94–2.20 μM; average, 1.67 ± 0.40 μM) (Table S1 in Supporting Information S1) appeared to be greater 
than the values reported in early summer from December 2013 to January 2014 (NO2 − + NO3 −, 3.4–34.6 μM; 
PO4 3−, 0.8–2.3 μM) (B. K. Kim et al., 2018). The concentrations of DOC in the study area ranged from 41 
to 52 μM (average, 47 ± 3 μM; Figures 2g, 2n and 2u), and were similar to those reported at MLD during 
the austral summer in the Ross Sea (average, 46 ± 2 to 56 ± 5 μM) (Carlson et al., 2000). The average DOC 
concentration at MLD was significantly higher in the EG (range, 49–52 μM; average, 51 ± 2 μM) than in 
the ASP (range, 44–48 μM; average, 46 ± 2 μM) and WG (range, 46–51; average, 48 ± 3 μM) (Table 1). 
Relatively higher DOC concentrations at the EG sites were likely associated with upwelling of buoyant basal 
glacier meltwater containing abundant DOC (average, 51 ± 2 μM) (Figure 2g and Figure S2b in Supporting 
Information S1).

3.2.  Phytoplankton Biomass Associated With the Water Column Structure

Concentrations of Chl-a were higher in the WG (average, 3.11  ±  1.15  μg L −1) than in the ASP (average, 
2.26 ± 0.70 μg L −1) and EG (average, 0.69 ± 0.07 μg L −1) (Table 1). The significantly low Chl-a concentration 
in the EG (Kruskal−Wallis, p < 0.01) (Figure S2a in Supporting Information S1) was associated with the deep 
MLD, which resulted in a decrease in the residence time of phytoplankton in the euphotic layer. On the other hand, 
relatively high Chl-a concentrations in the WG were associated with the pycnocline formed by the salinity gradi-
ent in the shallow water column (30–50 m depth) due to the inflow of sea-ice meltwater (Figures 2i–2k), which 
increased the residence time of phytoplankton in the surface water column with sufficient light and nutrients to 
support high phytoplankton biomass. The Chl-a concentration in the ASP (average, 2.26 ± 0.70 μg L −1) (Table 1 
and Figure 2r) was lower than the values reported in December 2013 to January 2014 (average, 8.89 ± 1.11 μg 
L −1) (Y. Lee et al., 2016) because phytoplankton blooms started further northeast of the ASP and the sampling 
sites at ASP along our sampling transect were not characterized by the blooms at the time of sampling (Fang 
et al., 2020).

Figure 2.  Vertical profiles of physico-chemical and microbiological parameters in the Amundsen Sea.
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3.3.  Enhanced Bacterial Production Uncoupled With Phytoplankton in the Glacier Melting System

Unlike Chl-a, BP was significantly greater in the EG (range, 73.5–104 pM Leu. h −1; average, 85.8 ± 16.1 
pM Leu. h −1) with deep mixed-layer depth (MLD) than in the WG (range, 46.4–54.9 pM Leu. h −1; average, 
50.6  ±  4.27 pM Leu. h −1) and ASP (range, 26.8–29.9 pM Leu. h −1; average, 27.8  ±  0.92 pM Leu. h −1) 
(Kruskal–Wallis, p < 0.01; Figure S2d in Supporting Information S1). In Antarctic waters where terrestrial 
dissolved organic matter (DOM) input is negligible (Ducklow et al., 2007), DOM supplied by phytoplankton 
is a major source of carbon supporting heterotrophic bacterial growth (Ducklow et al., 2012; H. Kim and 
Ducklow, 2016; Morán et al., 2001; Ortega-Retuerta et al., 2008). Previous studies in the ASP revealed that 
BP is tightly coupled with phytoplankton biomass (Hyun et al., 2016; Williams et al., 2016). In the present 
study, the degree of coupling between BP and Chl-a varied according to spatial variations in oceanographic 
conditions (Figure  3a). BP was significantly correlated with Chl-a at the ASP sites (r 2  =  0.47, n  =  15, 
p < 0.01) and WG sites (r 2 = 0.27, n = 15 p < 0.05). However, there was no significant correlation between 
BP and Chl-a in the EG (p > 0.05). In addition, BP at the EG site accounted for 48.9 ± 8.94% on average 
(range, 39.5%–49.8%) of primary production (PP) in MLD (Lim et al., 2019), which was higher than that 
estimated for the WG (average, 10.2 ± 4.98%; range, 7.11%–13.9%) and ASP (average, 9.15 ± 8.59%; range, 
4.09%–19.1%) (Table 1).

Considering the median bacterial growth efficiency (BGE) of 11% (2%–28%) in the ASP (Williams et al., 2016), 
the unusually high BP:PP ratio (0.49 on average) in the EG implies that bacterial carbon demand (BCD = BP/
BGE; 105  ±  32.9  mmol C m −2  d −1; Table S2 in Supporting Information  S1) to support metabolic activities 
(production and respiration) is greater than the organic carbon produced through PP (22.5  ±  11.78  mmol C 
m −2 d −1) (Lim et al., 2019). The positive relationship between BP and the FWF in the EG (r 2 = 0.35, n = 16, 
p < 0.01; Figure 3b), along with the absence of significant relationship between BP and Chl-a, strongly suggests 
that glacial meltwater rather than phytoplankton provides an extra source of DOC to support the high BP in the 
EG (Figure 4a). Indeed, the concentration of DOC was significantly greater in the EG, where warmer glacier 
meltwater upwells to the surface mixed layer, compared with the WG and ASP (Figure S2b in Supporting Infor-
mation S1). Wadham et al. (2019) reported that the potential DOC flux for total organic carbon emissions from 
Antarctic subglacial meltwater is estimated to be approximately 0.17 Tg C year −1, suggesting that significant 
amounts of fresh and labile DOC may be supplied to the surface mixed layer. Previous studies of the Green-
land Ice Sheet have shown that DOC supplied through the export of meltwater is highly bioavailable and has a 
significant impact on microbial productivity and respiration (Bhatia et al., 2013; Lawson et al., 2014). Given that 
the Antarctic glacial ice shelves are considered a massive reservoir of organic carbon (ca. 5.5 Pg C) (Wadham 
et al., 2019), our results strongly imply that increases in glacial meltwater induced by global warming stimulate 
heterotrophic bacterial respiration that metabolizes DOM to CO2, reducing the efficiency of carbon sequestration 
in Antarctic coastal waters.

Figure 3.  Relationships between bacterial production (BP) and chlorophyll-a (Chl-a) (a), and between BP and the freshwater 
fraction (b).
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3.4.  Bacterial Production Coupled With Phytoplankton in the Sea-Ice Melting System

There was a positive relationship between BP and phytoplankton in the WG (Figure 3a), but no significant correla-
tion with the FWF (Figure 3b). The tight coupling between BP and Chl-a in the WG indicates that iron-containing 
meltwater from sea ice stimulates phytoplankton growth in a relatively stratified surface water column (Grotti 
et al., 2005; Lannuzel et al., 2008, 2010; Wang et al., 2014), which provides DOC to support BP (Figure 4b). 
Similarly, the tight coupling between BP and Chl-a in the ASP is consistent with findings reported in previous 
studies showing that phytoplankton are a major source of DOC supporting BP (Figure 3a) (Hyun et al., 2016; 
Williams et al., 2016). The positive relationship between BP and FWF in the ASP indicates that BP is supported 
in part by DOC released from the surrounding sea-ice meltwater (Dinasquet et al., 2017; Sipler & Connelly, 2015) 
(Figure 3b). When sea-ice meltwater was experimentally added to sub-AASWs, the BP increased significantly 
and 63% of the DOC was consumed by bacteria (Kähler et al., 1997). These results suggest that DOC released 
from the surrounding sea-ice meltwater, together with phytoplankton, supports the metabolic activity of hetero-
trophic bacteria in the sea-ice melting system of the ASP (Figures 3a and 3b).

Figure 4.  Schematic diagrams of bacterial responses to the dissolved organic carbon (DOC) derived from glacier meltwater 
in the eastern Getz (EG) Ice Shelf (panel a) and to the DOC derived from phytoplankton in the sea-ice melting system 
of the western Getz (WG) Ice Shelf (panel b) in the Amundsen Sea. Note that the EG region (glacier melting system) is 
characterized by an average deep-water depth of 817 m, which results in the direct contact of basal glacier with warmer 
modified circumpolar deep water (CDW), whereas the WG (sea-ice meltwater dominating system) features a relatively 
shallow water depth (566 m on average), which prevents warm CDW from melting the basal glacier. Consequently, 
the glacier-melting-dominated system (EG) features greatly enhanced bacterial production (BP) that is uncoupled with 
phytoplankton. In contrast, the sea-ice melting system (WG) a features high phytoplankton biomass resulting from shallow 
mixed-layer depth, and moderately enhanced BP coupled to phytoplankton.
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4.  Summary
Given that the Antarctic glacial ice shelves retain a large amount of organic carbon (Wadham et al., 2019), the 
enhanced BP and high BP:PP ratio on the eastern GtzIS, where glacier meltwater upwells into the surface layer, 
have critical implications for the impact of warming-induced glacier meltwater on carbon cycles in Antarc-
tic waters. An increase in glacial meltwater could stimulate heterotrophic bacterial respiration that metabolizes 
DOM to CO2, ultimately weakening carbon sequestration in the Antarctic coastal waters. Our results raise addi-
tional questions about the glacial melting-induced supply of DOC and its effects on the net metabolic balance 
between heterotrophic and autotrophic processes in Antarctic coastal waters.

Data Availability Statement
The primary production data in Table 1 are available from Lim et al. (2019). The physico-chemical and bacterial 
parameters used in this study were uploaded to the Korea Polar Data Center (https://dx.doi.org/doi:10.22663/
KOPRI-KPDC-00001893.2). The data of the current manuscript is provided by Korea Polar Data Center.
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