표지

제 출 문

극지연구소장 귀하

본 보고서를 "국제 심부빙하시추 네트워크를 활용한 대기-빙상 상호작용의 자연적·인위 적 특성 규명"과제의 위탁연구 "불활성기체와 산소기체 성분을 이용한 빙하 연령측정법 개 선"과제의 단계보고서로 제출합니다.

- (본과제) 총괄연구책임자 : 한영철
 - 위탁연구기관명 : 서울대학교
 - 위탁연구책임자 : 안진호

보고서 초록

위탁연구과제명	불활성	불활성기체와 산소기체 성분을 이용한 빙하 연령측정법 개선							
위탁연구책임자	안진호	해당단계 참여연구원수	8	해당단계 연구비	강단계 구비 240,000,000원(3년간)				
연구기관명 및 소속부서명	서울대학교 지구혁								
국제공동연구	상대국명 :		상대국연구기관명 :						
요약(연구결과를 중심으로 개조식 500자이내) 보고서 면수 45									
남극의 빙하는 과거의 기후와 대기 온실가스에 대해 매우 귀중한 정보를 제공한다. 일반적으									

로 천부빙하 코어의 경우에는 얼음동위원소, 이온분석을 통해서 계절별 변화를 확인하고 연령 을 셀 수 있으나, 심부빙하의 경우에는 1년에 해당하는 두께가 얇아져 이러한 방법으로는 연 령측정이 불가능하다. 오랜 연령의 빙하코어의 연령을 알아내기 위해서는 ⁸¹Kr과 같은 방사성 동위원소와 Ar 안정동위원소를 이용한 절대 연령측정법과 산소기체(O₂)의 동위원소 비(δ ¹⁸O-O₂), 얼음의 산소/수소 동위원소를 이용하는 상대적인 연령측정법을 이용할 수 있다. 그러 나, 국내에서는 이러한 연령측정에 대한 경험이 전무하였다. 본 과제에서는 아래와 같이 3가 지 소주제에 대해서 연구를 수행하였다.

(I) 5~O-O₂, ~Kr 및 Ar 안성공위원소를 이용한 Larsen 방하지역 클루아이스(blue ice) 연령력 정

(2) GPR(Ground Penetration Radar) 및 온실기체 측정자료를 이용한 구조적 층서 이해
(3) Larsen 블루아이스(blue ice) 표층에서의 온실기체 변질상태 수평/수직 분포 파악

주요 연구결과는 (1) 라센빙하의 블루아이스 시료의 기체연령은 9.2~23.4 ka이며, 얼음 연령은 5.6~24.7 ka 이며, (2) ⁸¹Kr를 이용하여 구한 절대연령 값은 산소동위원소와 물동위원소 대 비에 의한 연령값과 오차범위에서 일치하고, (3) 라센빙하 지역에서 최근 해빙기 동안 표층 기온은 15±5°C (1σ), 적설량은 1.7-4.6배 상승하였다는 것이다. 블루아이스 상부 1-2미터에 서 뚜렷한 온실가스 농도 변질을 확인하였으나, 정확한 원인규명을 위해서는 추가적인 연구가 필요하다.

색 인 어	한 글	빙하, 남극, 기체연령, 불활성기체, 층서, 온실가스
(각 5개 이상)	ශ් ද	Glacier, Antarctica, Gas Age, Noble Gas, Stratigraphy, Greenhouse Gas

요 약 문

I.제 목

불활성기체와 산소기체 성분을 이용한 빙하 연령측정법 개선

Ⅱ. 연구개발의 목적 및 필요성

○ 연구목적

불활성기체와 산소기체의 동위원소를 이용하여, 만 년 이상 연령을 갖는 빙하코어의 연 령측정법 능력을 향상시킨다.

○ 연구필요성

천부빙하 코어의 경우에는 얼음동위원소, 이온분석을 통해서 계절별 변화를 확인하고 연 령을 셀 수 있으나, 빙하의 심부로 들어갈수록 1년에 해당하는 두께가 얇아져 이러한 방 법으로는 연령측정에 한계가 있다. 최근 100만 년 이상된 빙하코어를 시추하려는 노력이 국제적으로 수행되고 있는데, 이렇게 오랜 연령의 빙하코어의 연령을 알아내기 위해서는 ⁸¹Kr과 같은 방사성 동위원소를 이용한 연령측정, Ar 안정동위원소를 이용한 연령측정법 등을 반드시 이용하여야 한다. 본 위탁과제에서는 불활성기체(Ar, Kr)를 이용한 연령측정 법을 국내 최초로 남극 빙하시료에 적용하였고, 산소기체(O₂)의 동위원소 비(δ¹⁸O-O₂), 얼 음의 산소/수소 동위원소를 이용하는 상대적인 연령측정법을 적용하였다.

Ⅲ. 연구개발의 내용 및 범위

○ δ¹⁸O-O₂, ⁸¹Kr 및 Ar 안정동위원소를 이용한 Larsen 빙하지역 블루아이스(blue ice) 연 령측정

○ GPR(Ground Penetration Radar) 및 온실기체 측정자료를 이용한 구조적 층서 이해 ○ Larsen 블루아이스(blue ice) 표층에서의 온실기체 변질상태 수평/수직 분포 파악

Ⅳ. 연구개발결과

○ 라센빙하의 블루아이스 시료의 기체연령은 9.2~23.4 ka이며, 얼음 연령은 5.6~24.7 ka 이다.

○ ⁸¹Kr를 이용하여 구한 절대연령 값은 산소동위원소와 물동위원소 대비에 의한 연령값과 오차범위에서 일치한다.

○ 라센빙하 지역에서 최근 해빙기 동안 표층 기온은 15±5°C (1σ), 적설량은 1.7-4.6배 상승 하였다.

V. 연구개발결과의 활용계획

○ 엘리펀트모레인 일대 및 라센빙하 지역에서 산출되는 블루아이스 시료에 대한 연령측정에 활용

○ 블루아이스 상부에서 관찰되는 온실가스 농도 변질에 관한 정성 및 정량적 연구기법에 활
 용

○ 학생연구원 참여로 미래 연구인력 양성

○ 실험 결과 및 시설을 대학 수업과 고교생 서울대학교 탐방 프로그램에 활용

SUMMARY

(영 문 요 약 문)

I. Title

Improvement of ice core chronology using gas compositions

- II. Purpose and Necessity of R&D
- \bigcirc Purpose of study

Improving age dating of ice cores older than 10,000 years using isotopes of inert and oxygen gases.

 \bigcirc Research Necessity

In the case of shallow ice cores, seasonal changes can be confirmed and age can be counted through variations of water isotopes and ion chemistry. However, the dating method is not applicable for the deep part of ice sheets due to tinning of ice with depth. Recently, international efforts have been made to drill ice cores that are older than 1 million years. To date the ice cores, radioactive isotopes such as ⁸¹Kr and Ar stable isotopes can be analyzed. In this project, we used isotopes of inert gas (Ar, Kr), oxygen gas (d180-02) and ice (dD and d180 of ice) to determine the age of Antarctic ice samples.

III. Contents and Extent of R&D

- \bigcirc Age measurement of blue ice in Larsen Glacier area using $\delta^{18}O-O_2,\ ^{81}Kr$ and Ar stable isotopes
- Understanding ice stratigraphy using ground penetration radar (GPR) and greenhouse gas concentration data
- Understanding the horizontal/vertical distribution of greenhouse gas alteration in the Larsen blue ice surface
- IV. R&D Results
- Gas age at various shallow vertical coring sites ranges between 9.2-23.4 kyr BP, while the ice age sampled from the surface ranges from 5.6 to 24.7 kyr BP at the Larsen blue ice.
- Absolute radiometric ⁸¹Kr dating for the two vertical cores confirms ages within acceptable levels of analytical uncertainty.
- A tentative climate reconstruction suggests a large deglacial warming of 15 ± 5 °C (1σ) and an increase in snow accumulation by a factor of 1.7-4.6 (from 24.3 to 10.6 kyr BP).
- V. Application Plans of R&D Results
- \bigcirc Dating bue ice occurred in Elephant Moraine are in Antarctica

 \bigcirc Qualitative and quantitative studies for the alteration of greenhouse gas compositions in the surface blue ice

 \bigcirc Nurturing future scientists in ice core science

 \bigcirc Using the experimental results and facilities for the classes at Seoul National University

목 차

제 1 장 서론 1절. 연구개발의 목적 2절. 연구의 필요성 3절. 연구범위

제 2 장 국내외 기술개발 현황 1절. 국내·외 연구동향 2절. 본 연구의 독창성

제 3 장 연구개발수행 내용 및 결과 1절. 연구개발 추진체계 및 내용 2절. 세부 연구수행 방법 및 대응 3절. 연구결과

제 4장 연구개발목표 달성도 및 대외기여도 1절. 연구개발목표 달성도 2절. 연구종료후 성과창출 계획

제 5 장 연구개발결과의 활용계획 1절. 활용방안

2절. 기대효과

제 6 장 연구개발과정에서 수집한 해외과학기술정보

제 7 장 참고문헌

제 1 장 서론

1절. 연구개발의 목적

1. 중·장기적인 궁극적 연구목적

불활성기체와 산소기체의 동위원소를 이용하여, 만 년 이상 연령을 갖는 빙하코어의 연령측 정법 능력을 향상시킨다.

2. 본 과제의 최종 연구목표

본 연구의 최종 목표는 Kr, Ar, O₂ 와 같은 가스상(gas phase)의 동위원소비를 이용하여 1만년 이상의 연령을 가진 빙하코어의 연령측정하고, 그 과정에서 측정기술을 확보하는데 있다. 시료는 1만년 이상의 연령을 가질 것으로 추정되었던 라센 빙하지역의 블루아이스 천부(0~10미터) 코어를 사용하되, 시료의 변질 가능성을 확인하기 위하여 서로 다른 방법 에 의한 결과를 비교하여 최종적으로 연령을 결정한다.

연차	연구 목표	연구 내용	비고
1차년 도(202 0)	δ ¹⁸ O-O ₂ , ⁸¹ Kr 및 Ar 안정동위원소를 이용한 Larsen 빙하지역 블루아이스(blue	동남국 Larsen Glacier 블루아이스(blue ice)시료를 이용한 δ ¹⁸ O-O2 및 δ ¹⁸ Oice 자료 확보및 층서 이해 ⁸¹ Kr를 이용한 Larsen 블루아이스(blue ice)절대연령 측정Ar 안정동위원소(⁴⁰ Ar, ³⁸ Ar, ³⁶ Ar)를 이용한	
2차년 도(202 1)	ICE) 현영득성 GPR(Ground Penetration Radar) 및 온실기체 측정자료를 이용한 구조적 층서 이해	Larsen 플루아이스(blue ice) 언덩해석 GPR 자료를 이용한 수평적 거리변화/연령변화 비율과 수직적 거리변화/연령변화에 대한 정량적 이해 신뢰할 만한 깊이구간에서의 온실기체 농도를 이용한 빙하기/간빙기 연령조건 파악	
3차년 도(202 2)	Larsen 블루아이스(blue ice) 표층에서의 온실기체 변질상태 수평/수직 분포 파악	Larsen 블루아이스(blue ice) 0-2미터 구간에서의 온실기체(CO ₂ , CH ₄ , N ₂ O) 농도 측정 표층에서의 자연적 온실기체 농도 변질정도의 수직적/수평적 분포 파악	Vostok replicate 코어 시료 사용이 불가능하여, 당초 계획 중에 B안을 선택하여 수해

3. 정성적 목표

2절. 연구의 필요성

1. 기존 연구의 문제점

대한민국 장보고 과학기지 건설과 맞물려 동남극 내륙에서의 빙하시추 및 고기후/빙하학 연구가 계획되어 진행되고 있다. 심부빙하시추가 이루어 질 경우에 빙하코어의 연령측정 에 필요한 관련 연구기술을 습득하는 것이 반드시 수행되어야 한다. 천부빙하 코어의 경 우에는 얼음동위원소, 이온분석을 통해서 계절별 변화를 확인하고 연령을 셀 수 있으나, 빙하가 심부로 들어갈수록 1년에 해당하는 두께가 얇아져 이러한 방법으로는 연령측정에 한계가 있다. 이러한 문제점을 해결하기 위해서는 CH₄과 같은 미량기체의 농도측정과 타 빙하코어와의 대비로 연령을 알아낼 수 있다. 최근 100만 년 이상된 빙하코어를 시추하려 는 노력이 국제적으로 수행되고 있는데, 이렇게 오랜 연령의 빙하코어의 연령을 알아내기 위해서는 화산재층 연령측정, ¹⁰Be 연령측정, ⁸¹Kr과 같은 방사성 동위원소를 이용한 연령 측정, Ar 안정동위원소를 이용한 연령측정법 등을 반드시 이용하여야 한다.

2. 연구과제의 중요성(필요성)

본 위탁과제에서는 불활성기체(Ar, Kr)를 이용한 연령측정법을 국내 최초로 남극 빙하시 료에 적용하여 연령측정 기술을 개발하였다. 또한, 산소기체(O₂)의 동위원소 비($\delta^{18}O-O_2$), 온실기체, 얼음의 산소/수소 동위원소를 이용하여, 상대적인 연령측정법을 적용하였다. 본 연구에 사용된 시료는 1차적으로 동남극 Larsen빙하지역에 산출되는 블루아이스(blue ice) 표층 시료 코어이며, 수만 또는 수십만 년에 해당하는 연령을 갖고 있을 것이라 추 측되었으나 정확한 연령은 알려지지 않았다. 본 위탁과제가 수행되기 이전까지 국내 연구 진에 의해서 시추된 가장 깊은 코어가 Styx빙하인데, 약 210미터의 깊이까지 시추되었으 며, 시료상태가 좋은 깊이까지의 연령은 약 1500년에 해당한다. 따라서, 본 과제에서 측정 하려는 시료의 연령 구간은 국내 연구자에 의해서 연령측정이 수행된 바 없었다. 본 과제 에서 습득된 연령측정 기술은 향후 심부시추 빙하코어 및 백 만년 이상된 연령을 갖는 블루아이스 연령 측정 연구에 바로 활용될 수 있다는 점에서 빙하연구의 기반 기술확보 에 크게 기여할 수 있다.

3절. 연구범위

1. Larsen 빙하지역 블루아이스(blue ice) 산출상태

제안된 과제에서는 2018/2019 남극 하계시즌에 핸드오거를 이용하여 49개 공에 대해서 표층 시료를 시추하였다. 사전 연구에서 약 40만 년의 연령이 될 것으로 추정하였으나, 학계에서 인정받는 연령보고는 없었다. 특별히, 블루아이스의 경우에는 연령이 수평적인 거리에 따라 증가하거나 감소할 수 있고, 일정 연령구간만 관찰이 가능하기 때문에, 전통적인 연령측정법 만 가지고는 정확한 연령을 추정하기 어렵다. 따라서, 최근 분석기법에 개발된 Kr, Ar가 같은 불활성기체의 동위원소를 이용한 연령측정을 함께 활용하여 오랜 연령의 빙하시료에 대한 연 령측정 능력을 함양할 수 있다. 라센빙하는 장보고과학기지에서 남서쪽으로 몇 84km 떨어져 있으며, 헬리콥터로 약 25분 거리에 있어서 접근이 비교적 용이하다(그림 1). 다만, 블루아이 스 지역은 일반적으로 바람이 강하기 때문에, 초속 10m/sec 이하로 풍속이 떨어질 때에만 시 추작업을 수행할 수 있다는 단점이 있다.

그림 1. 라센빙하 지역에서의 블루아이스(blue ice) 분포와 핸드오거로 시추한 지역(빨간색 원).

2. ⁸¹Kr 및 Ar 안정동위원소를 이용한 Larsen 빙하지역 블루아이스(blue ice) 연령측정

가. Ar안정동위원소를 이용한 절대연령 측정결과 분석

⁴⁰Ar은 지각에서 광물에 분포하는 ⁴⁰K의 방사성붕괴로 계속해서 생성되어 대기로 방출된다. 따라서, 대기에서의 ⁴⁰Ar 비율은 계속해서 증가하게 된다. 이러한 이유로, 빙하에 포집된 화석 공기 중에서 ⁴⁰Ar의 농도비를 측정하게 되면, 연령측정에 사용할 수 있다(Bender et al., 2008, PNAS). 보통, Ar의 안정동위원소비 (⁴⁰Ar/³⁸Ar, ³⁸Ar/³⁶Ar)를 이용하여, 그 비가 현재 대기의 값과 다른 정도를 이용하게 된다. 아래 식에서 좌측항의 값이 100만년에 약 0.007‰씩 증가하 는 것을 (이미 연령을 알고 있는) Vostok빙하코어를 이용하여 알아내었다(그림2).

 $\delta^{40/38} Ar_{paleoatmosphere} = \delta^{40/38} Ar_{sample} - 1.002 \times \delta^{38/36} Ar_{sample}$

다만, Ar 안정동위원소를 이용한 연령측정법은 오차가 커서 약 40만년의 경우에 50%에 이르 며, 100만년의 경우에도 약 20% 정도가 되어서 정확한 층서 결정에는 한계가 있다.

나.⁸¹Kr을 이용한 절대연령측정

⁸¹Kr은 반감기가 23만 년으로서 수십 만년~ 수백 만년의 연령의 빙하시료 연령측정에 적당하 다. 대기 중 농도(mixing ratio)는 약 6 X 10⁻¹³으로서 측정이 매우 어려웠으나, 최근 원자물 리학의 측정기술 발전으로 분석이 가능하게 되었다. 1kg의 빙하시료에 약 100ml (STP conditions)의 공기가 포집되어 있다고 가정한다면, ⁸¹Kr 연령측정에 필요한 빙하코어 시료는 5~10kg이 된다(그림 3). 측정오차는 연령에 따라 달라지게 되는데, 10%정도의 오차범위를 갖 는 자료를 획득하게 된다면, 빙하기-간빙기 싸이클의 반복된 시기 중에서 어느 한 시기를 결 정짓는데 매우 유용하게 사용할 수 있다.

그림 2. 대기 중 Ar 안정동위원소비 값의 변화에 대한 검정(calibration) 곡선 (Bender et al., 2008, PNAS)

그림 3. ⁸¹Kr 연령측정에 필요한 빙하시료 양과 오차범위(Z-T Lu박 사 제공)

3. δ¹⁸O-O₂, δ¹⁸O_{ice} (또는 δD_{ice})를 이용한 충서대비

⁸¹Kr 또는 Ar 안정동위원소를 이용하여 절대연령을 측정했다고 하더라도 여전히 연령오차는 10% 이상을 갖게 되기 때문에, 자세한 연령은 δ¹⁸O-O₂, δ¹⁸O_{ice} (또는 δD_{ice})의 대비를 이용하

여 확정지을 수 있다. 한 예로서, 동남극 Allan Hills에서 산출되는 블루아이스를 이용한 연대 측정에서 산소기체의 동위원소(δ^{18} O-O₂)와 얼음의 산소 또는 수소 동위원소비를 대비시켜 1000년 정도의 오차범위로 연령을 확정지었던 사례가 있다(그림4 참조). Larsen빙하에서 산출 되는 블루아이스의 연령이 40만년 정도가 된다는 것이 분명히 규명된다면, 지금까지 블루아 이스 표층 시료의 연령 중에서 가장 오래된 것으로서, 향후 백만 년 이상된 오랜 연령의 빙 하시료를 획득하는데 매우 중요한 선행 연구결과가 될 것으로 기대된다.

Nicole E. Spaulding et al. (2013), Quaternary Research 80

그림 4. 남극 앨런힐즈(Allan Hills)지역에서 산출되는 블루아이스 얼음의 수소 동위원소(δD_{ice})와 산 소기체의 동위원소(δ¹⁸O-O₂) 대비를 이용한 연령설정. 자료출처; Spaulding et al. (2013, Quarternaryd Research)

4. 라센빙하지역 블루아이스 GPR(Ground Penetration Radar) 및 온실기체 측정자료를 이용한 구조적 층서이해

2018/2019 남극 하계시즌에 획득된 GPR자료와 기체동위원소 자료를 함께 활용하면, 라센빙 하에 분포하는 블루아이스의 공간적 층서 이해가 가능하다. 제안된 과제에서는 빙하 흐름방 향을 따라 연령이 증가하는 속도와 수직적인 빙하코어(약10미터)에서 예상되는 연령증가를 추정하였다. 또한, GPR자료와 인공위성 지표사진 자료를 볼 때, 일부 지역에서 습곡이 관찰 된다. 따라서, 층서가 역전되거나 복잡한 구조를 보이는 곳이 있을 것으로 예상되었으며, 비 교적 층서가 단순한 구간에 대한 집중적인 연구를 수행하였다.

5. Larsen 블루아이스(blue ice) 표층에서의 온실기체 변질상태 분석

블루아이스(blue ice)는 표층에서 매우 오랜 연령의 빙하시료를 시추할 수 있다는 장점이 있 다. 그러나, 빙하에 포집된 기체의 경우에는 표면 수 미터의 깊이에서 변질된 것이 관찰되었 다. Taylor Glacier에 분포하는 블루아이스의 경우, 표층 약 2미터 깊이의 메탄 농도가 자연

그림 5. 라센빙하 블루아이스(blue ice) 지역에서의 GPR 자료(극지연구소 주현태연구원 제공). 빙하바닥 지형과 일부 빙하층이 관찰된다.

그림 6. 남극 Taylor Glacier 블루아이스 표층에 서 관찰되는 메탄 농도의 변질(Baggenstos et al., 2017, Climate of the Past)

적인 범위를 넘어서는 낮은 농도 값을 보이거나, 급격히 농도가 변하는 것을 관찰할 수 있다(그림6). 따라서, 시추깊 이 및 지역를 결정하기 전에 기체성분 변화에 대한 사전 이해가 필요하다.

메탄 뿐만 아니라 산소 기체의 동위원소 비(δ¹⁸O-O₂), Ar/N2 기체 농도비 등에서 표층의 시료는 변질될 수 있는데 (Spaulding et al., 2013, Quarternary 깊이가 Research), 지역마다 변질되는 달라 질 수 있다. 변질 원인에 대해서는 아직까지 명확히 규명된 것은 없으나, 지열의 영향을 적게 받는 표면에서 찬 공기와 상승하는 빙하가 만나면서 빙하 가 수축되어 균열(crack)이 발달하고, 현 생의 공기가 들어가 오염시킬 수 있을 것으로 추정하고 있다. 그러나, 이러한

추정으로는 그림6에서 관찰되는 것처럼 낮은 농도의 메탄값을 설명할 수 없다. 변질 원인에 대한 규명은 다른 연구과제에서 심도있게 수행되어야 할 것으로 판단되며, 제안된 과제에서 는 연구대상 지역(Larsen Glacier)에서의 변질 정도를 파악하고, 향후 시추에 필요한 기초 자 료를 확보하는 것에 목적을 둘 것이다.

제 2 장 국내외 기술개발 현황

1절. 국내·외 연구동향

 국내에서 남북극 빙하에 포집된 과거의 화석공기 연구 실험장비를 보유하고 인력을 배 출한 기관은 서울대학교 지구환경과학부가 유일함.

 서울대학교 빙하/고기후 연구실은 이미 빙하를 이용한 과거 온실가스 농도 측정기술에 서 세계 최고의 분석기술을 확보하고 있으나, 각종 공기 화학종에 대한 동위원소 분석기술 은 관련분야 선진국과 비교하여 초보적인 수준임.

3. 기존에 국내에서 Styx 빙하에 포집된 화석공기 중 CH₄ 농도 측정과 기존 빙하코어 자 료와의 대비를 이용하여 기체연령을 알아내는데 성공한 바 있으나, Styx 빙하코어의 길이 가 짧아, 과거 약 1500년에 해당되는 구간에 대해서만 연령을 알아내는 것이 가능하였음.

4. 중국과기대(University of Science and Technology of China)의 Zheng-Tian Lu박사팀 은 ⁸¹Kr를 이용하여 빙하 내 포집된 기체의 절대연령을 성공적으로 측정할 수 있음이 증 명하였다. 그러나, 분석에 필요한 빙하시료의 양이 약 10kg 수준으로, 심부빙하의 고해상 도 연령측정에는 한계가 있음. 한편, 블루아이스의 경우 다량의 시료확보가 가능하여, ⁸¹Kr 를 이용한 연령측정법 활용이 수월함.

5. 미국은 남극 알렌힐즈(Allen Hills) 지역의 블루아이스 연령을 δ¹⁸O-O₂, 와 Ar 안정동위 원소 분석법을 활용하여 기체연령을 알아내고, 270만년 이상된 빙하가 남극에 존재함을 알 아내었음. 그러나, 층서가 복잡하여 100만년 이상된 연령에 대해서는 연속적인 고기후자료 를 확보하지 못하고, 단속적인 자료만을 생성하여, 지속적인 연구가 필요함.

2절. 본 연구의 독창성

1. 국내 빙하연구에서 독자적으로 1500년 이상된 빙하의 연령을 알아낸 경험이 없었으나, 본 과제에서 처음으로 2만 년에 해당하연 연령까지 연령측정의 범위를 확대하였다.

ィー人

2. 본 과제에서 사용한 라센빙하는 블루아이스에 해당하는 것으로서, 깊은 곳에 있던 빙하가 표면에 노출된 것임. 또한, 블루아이스를 이용한 온실가스 농도 복원 연구의 기초에 해당하는 온실가스 농도 변질과정에 대한 연구를 본 과제에 포함시킴으로서, 향후 국내에서도 오랜 연령 (수만 년 이상)의 빙하시료를 블루아이스 지역에서 확보하고, 이를 이용한 온실가스 연구가 가 능하게 되는 기초 연구가 됨.

 빙하에 포집된 화석공기 내의 Kr과 Ar의 동위원소를 이용하여 연령을 측정하는 연구는 미 국과 프랑스 정도에서만 현재까지 연구가 수행되어 온 것으로서, 국내에서는 연구비 부족으로 관련 장비를 확보하기는 어려우나, 본 과제를 국제협력 기반으로 수행하여 관련 기술확보와 관 련 인력양성을 수행함.

제 3 장 연구개발수행 내용 및 결과

1절. 연구개발 추진체계 및 내용

1. δ¹⁸O-O₂, δ¹⁸O_{ice}, ⁸¹Kr 및 Ar 안정동위원소를 이용한 Larsen 빙하지역 블루아이스(blue ice) 연령측정

가. 불활성기체의 동위원소 측정장치는 거액의 장비와 운영시스템을 필요로하기 때문에 국 제 공동연구 방식으로 국내에 확보된 시료를 해외 관련 시설에서 분석했고, 국내에서 측정 가능한 얼음의 산소/수소동위원소는 극지연구소에 이미 설치된 장비를 이용했다.

2. GPR(Ground Penetration Radar) 및 온실기체 측정자료를 이용한 구조적 층서 이해 가. 극지연구소와 공동연구를 통해 기존에 조사한 Larsen 빙하지역 GPR 자료를 통해 얼 음 층서 해석.

나. 국내에서 측정 가능한 온실기체 농도는 서울대학교에 이미 설치된 온실기체 분석 장비 를 이용했다.

3. Larsen 블루아이스(blue ice) 표층에서의 온실기체 변질상태 수평/수직 분포 파악
가. 국내에서 측정 가능한 온실기체 농도는 서울대학교에 이미 설치된 온실기체 분석 장비
를 이용했다.

극지연구소

연차	연구 목표	비고	
	$\delta^{18}O_{ice}, \ \delta^{18}O-O_2,$	동남극 Larsen Glacier 블루아이스(blue ice)	
	⁸¹ Kr 및 Ar	시료를 이용한 δ ¹⁸ Ο-Ο ₂ 및 δ ¹⁸ Ο _{ice} 자료 확보	
1카너드	안정동위원소를	및 층서 이해	
(2020)	이용한 Larsen	ལKr를 이용한 Larsen 블루아이스(blue ice)	
(2020)	빙하지역	절대연령 즉정	
	블루아이스(blue	Ar 안정동위원소(⁴⁰ Ar, ³⁸ Ar, ³⁰ Ar)를 이용한	
	ice) 연령측정	Larsen 블루아이스(blue ice) 연령해석	
	GPR(Ground	GPR 자료를 이용한 수평적	
	Penetration	거리변화/연령변화 비율과 수직적	
2차녀도	Radar) 및	거리변화/연령변화에 대한 정량적 이해	
2시·연도 (2021)	온실기체		
(2021)	측정자료를	신뢰할 만한 깊이구간에서의 온실기체 농도를	
	이용한 구조적	이용한 빙하기/간빙기 연령조건 파악	
	층서 이해		
	A안 : CH ₄ 대비를		Vostok
	이용한 Vostok	Vostok parallel 코어 CH4 농도 시험측정	replicate
	parallel코어 층서		코어 시료
	예비연구		사용이
	(Vostok parallel	Vostok parallel 코어 CH4과 대비를 이용한	가늦한
	core 사용 <u>가능</u> 할	층서상태 확인 및 층서교란 이해	겨우
	경우)		- 10 T
3차녀도	B안: Larsen		
(2022)	블루아이스(blue	Larsen 블루아이스(blue ice) 0-2미터	
	ice) 표층에서의	구간에서의 온실기체(CO ₂ , CH ₄) 농도 측정	Vostok
	온실기체		replicate
	변질상태		코어 시료
	수평/수직 분포		사용이
	파악	표중에서의 자연적 온실기체 농도 변질정도의	불가능할
	(Vostok parallel	수직적/수평적 분포 파악	경우
	core 사용이		
	<u>불가능</u> 할 경우)		

2절. 세부 연구수행 방법 및 대응

1. δ¹⁸O-O₂, δ¹⁸O_{ice}, ⁸¹Kr 및 Ar 안정동위원소를 이용한 Larsen 빙하지역 블루아이스(blue ice) 연령측정

가. ⁸¹Kr 측정은 중국과기대(University of Science and Technology of China)의 Zheng-Tian Lu박사팀과 공동으로 Larsen 블루아이스에서 추출한 공기분석.

나. δ¹⁸O-O₂, 일본 극지연구소의 Kenji Kawamura 박사팀과 공동으로 측정. 서울대학교 연 구원 2명을 파견하여 약 3주간 분석 수행.

다. Ar 안정동위원소 분석은 기존에 측정된 자료를 활용하고, 자료 해석을 위하여 미국 스 크립스 해양연구소 Jeff Severinghaus 교수와 토의.

라. 얼음의 산소 및 수소동위원소 분석은 극지연구소의 한영철 박사팀에서 사용하는 Picarro L2130-i를 이용하여 동시 측정.

2. GPR(Ground Penetration Radar) 및 온실기체 측정자료를 이용한 구조적 층서 이해 가. Larsen 빙하지역의 공간적 층서 이해를 위해 2018/2019 남극 하계시즌에 획득된 GPR 자료 활용. 자료 해석을 위해 극지연구소 주현태 연구원과 토의.

나. 온실기체(CO₂, CH₄) 농도 측정은 서울대학교 안진호교수 연구실의 고해상도 측정장치 를 활용. CH₄는 습식추출방식을 이용하고, CO₂는 물에 대한 용해도가 높아 건식추출방식 을 이용했다.

3. Larsen 블루아이스(blue ice) 표층에서의 온실기체 변질상태 수평/수직 분포 파악
가. 온실기체(CO₂, CH₄) 농도 측정은 서울대학교 안진호교수 연구실의 고해상도 측정장치
를 활용. CH₄는 습식추출방식을 이용하고, CO₂는 물에 대한 용해도가 높아 건식추출방식
을 이용했다.

3절. 연구결과

1. 연구결과 요약

성과목표	세부목표	연구수행방법 (이론적·실험적 접근방법)	구체적인 내용
$\delta^{18}O-O_2$, ⁸¹ Kr	·δ ¹⁸ O-O2 측정 및 빙하기/간빙기 시	Picarro L2130-i를 이용 하여 얼음의 산소, 수소 동위원소비 동시 측정	마지막 빙하기 최성기 시 기에 해당함을 밝힘
위원소를 이용 한 Larsen 빙 하지역 블루아 이스(blue ice) 연령측정	기 파악 · ⁸¹ Kr를 이용한 연령측정 · Ar 안정동위원소 를 이용한 연령측 정	질량분석기로 산소 기체의 동 위원소 비율 측정	빙하기-간빙기 전환기 중 하나에 해당하는 시기임을 밝힘
		ATTA 문적 기법을 통해 Kr 의 동위원소비 측정 질량분석기로 Ar 기체의 동 위원소 비율 측정	9-41 ka, 14-43 ka에 해당 하는 시기임을 밝힘 394 ± 178 ka 시기에 해당 함을 밝힘
		50 MHz 레이다 시스템을 이 용한 빙하 내부 층서 구조 파 악	층서구조가 비교적 복잡하 지 않은 지역임을 확인
GPR(Ground Penetration Radar) 및 온 실기체 측정자 료를 이용한	 · GPR자료를 이용 한 내부구조 분석 · CH₄ 농도를 이용 한 연령제한 · CO₂ 농도를 이용 한 연령제한 	습식 추출 후 가스크로마토그 래피를 이용해 빙하 내의 CH4 농도 측정	산소기체 동위원소 자료를 같이 이용하여 마지막 빙 하기 종말기 시기 임을 밝 힘
<u>-</u> 조직 중지 이해		건식 추출 후 가스크로마토그 래피를 이용해 빙하 내의 CO ₂ 농도 측정	산소기체 동위원소 자료를 같이 이용하여 마지막 빙 하기 종말기 시기 임을 밝 힘
		습식 추출 후 가스크로마토그 래피를 이용해 빙하 내의 CH4 농도 측정	4.6 m 깊이부터 변질되지 않은 CH4 가 측정됨
Larsen 블루 아이스(blue ice) 표층에서 의 온실기체 변질상태 , 수	 표층 (0-2미터 구간) CH₄ 및 CO₂ 변질상태 확인 향후 블루아이스 연구에 필요한 시 추깊이조건 이해 	건식 추출 후 가스크로마토그 래피를 이용해 빙하 내의 CO ₂ 농도 측정	4.6 m 깊이부터 변질되지 않은 CO ₂ 가 측정됨. 그러 나 다른 빙하코어 기록과 여전히 차이를 보임
3/가격 군포 과악		다른 블루아이스 빙하코어 자 료와 비교.	지표면 온도와 변질되지 않은 온실기체가 산출되는 깊이가 서로 반비례 관계 에 있음을 확인

2. 연구결과 세부 내용

가. δ¹⁸O-O₂, ⁸¹Kr 및 Ar 안정동위원소를 이용한 Larsen 빙하지역 블루아이스(blue ice) 연 령측정

(1) δ¹⁸O-O₂ 측정 및 빙하기/간빙기 시기 파악

(가) δ¹⁸O-O₂ 측정

⁸¹Kr 또는 Ar 안정동위원소를 이용하여 절대연령을 측정했다고 하더라도 여전히 연령오차 는 10% 이상을 갖게 되기 때문에, 자세한 연령은 δ¹⁸O-O₂, δ¹⁸O_{ice} (또는 δD_{ice})의 대비를 이용하여 확정지을 수 있다. Larsen 빙하의 δ¹⁸O_{atm} 값(1.126 ‰ ~ -0.075 ‰)은 전형적인 빙하 종결 기간에 해당한다 (그림7a).

그림 7. $\delta^{18}O_{atm}$ and $\delta^{2}H_{ice}$ (δD_{ice}) records from Larsen BIA. (a) $\delta^{18}O_{atm}$ from each ice core at a 1.95 m depth (horizontal measurement). The $\delta^{18}O_{atm}$ of the horizontal measurement was gravity-corrected. (b) $\delta^{2}H_{ice}$ from near-surface ice (~5-10 cm depth surface ice samples and 10-30 cm depth ice core samples) and ice core #23. The surface ice record was matched with core #23 using two tie-points (orange dots) and show a r² value of 0.85 (p < 0.001).

(나) δD_{ice} 자료 측정

δD_{ice}는 600-800 m의 수평 거리 주변에 하류지역에서 상류지역으로 올라가면서 국소적인 하강 경향을 가지며, 이는 일시적인 저온 이벤트를 나타낸다(그림 7b). 일시적인 저온 이 벤트의 δD_{ice}는 약 70 ‰까지 급락하면서 상류 얼음으로 향한다. 시추코어 23번은 횡단면 의 중간에 위치하며 수직 δD_{ice} 얼음 프로파일의 범위는 -353 ‰에서 -291 ‰ 사이다.

(다) 타 빙하코어 자료와의 비교

EPICA Dome C(EDC) 기록에 따르면 I, II, IV, V, VII는 마지막 800 kyr 동안 음의 δ¹⁸ O_{atm} 값과 > 1.0 ‰ 값을 모두 갖는 Termination 이다(그림 8). 따라서, Larsen 빙하지역의 연대 추정에서 Termination III와 VI를 제외할 수 있다. 후보 기간 중 Termination V도 제외해야 하는데 EDC 기록의 최대 δ¹⁸O_{atm} 값이 ~1.4 ‰로 Larsen의 기록보다 상당히 높 기 때문이다. Larsen 빙하지역 횡단면 중간의 δ²H_{ice} 감소(그림7b)는 Antarctic Cold Reversal 시기 (ACR, 12.7 - 14 kyr BP) 때와 유사하다. 이는 EDC δ²H_{ice} 기록(그림 9)에 서 관찰된 바와 같이 후보 Termination (Termination I, II, IV, VII) 중 Termination I 에 서만 나타나는 특징이다.

그림 8. Comparison of Larsen $\delta^{18}O_{atm}$ with the EDC record. $\delta^{18}O_{atm}$ records are from Landais et al. (2013) for 0 - 40 ka and Extier et al. (2018) for 100 - 800 ka, respectively. Green vertical bars represent the candidate age intervals for Larsen blue ice. T: termination. The range of Larsen $\delta^{18}O_{atm}$ values is shown as a vertical grey bar. Horizontal grey bars with dashed lines represent the uncertainty in the measured $\delta^{18}O_{atm}$ from the Larsen BIA.

그림 9. $\delta^2 H_{ice}$ records from EDC. $\delta^2 H_{ice}$ records for T1, T2, T4, and T7 on the AICC2012 scale are from Bazin et al. (2013). The blue vertical bar represents the time interval of the ACR (12.7 - 14.6 kyr BP).

(2) ⁸¹Kr를 이용한 연령측정

시추 코어 23번과 TF의 ⁸¹Kr 측정에는 각각 5.3 kg(깊이: 711~1040 cm)과 5.4 kg(깊이: 798~1192.5 cm)의 얼음이 사용되었다. ⁸¹Kr 측정을 위한 공기는 중국과학기술대학교 (USTC)가 제공한 기기를 사용하여 서울대에서 추출되었다. ⁸⁵Kr은 현생 공기의 오염을 정 량화하기 위해 ⁸¹Kr과 동시에 측정되었다. 측정된 ⁸⁵Kr은 검출 한계 미만이었기 때문에 현 생 공기 오염에 대한 보정이 필요하지 않았다. 마지막으로, ⁸¹Kr 연대를 통해 Larsen 빙하 의 나이를 확인했는데, TF와 23번 시추 코어의 얼음에 대해 각각 9-41 및 14-43 ka를 나타냈다(표 1).

샘플명	질량	공기량	air content	깊이	⁸¹ Kr age	⁸⁵ Kr
	kg	mL LTP	mL LTP/ kg	cm	ka	dpm/cc
TF	5.4	393	73	798-1192.5	9-41	< 1.2
Larsen#23	5.27	495	94	711-1040	14-43	< 0.7

표 1. Larsen Glacier에서 샘플링한 빙하 코어 중 TF와 #23 코어에 대해서 ⁸¹Kr 분석용 공기 추출을 진행함. (LTP= Lab temp and pressure, 25℃ and 1bar)

		ALIQUO)T VALU	Age	Age unc.	Depth (cm)	
샘플명	δ ^{40/36} Ar	δ ^{40/38} Ar	δ ^{38/36} Ar	$\Delta 40(\text{Jeff})$	(ka)	(ka)	859-896,
TF	0.579	0.27679	0.3021	-0.026	394.12	177.71	1009-1018

표 2. Ar 안정동위원소를 이용해 TF코어에 대해서 연령측정을 실시함. 측정에 의하면 TF코어 는 394 ± 178 ka에 해당한다. Ar 안정동위원소를 이용한 연령측정법은 오차가 커서 약 40만년 의 경우에 50%에 이르며, 100만년의 경우에도 약 20% 정도가 되어서 정확한 층서 결정에는 한계가 있다.

나. GPR(Ground Penetration Radar) 및 온실기체 측정자료를 이용한 구조적 층서 이해

(1) GPR자료를 이용한 내부구조 분석

(가) 23번 시추코어의 수직적 분포와 수평적 자료 간의 화학분석값 대비

두 개의 δ²H_{ice} 프로파일(시추코어 23번 측정과 지표면 부근 얼음의 수평 측정)을 비교하기 위해, 시추코어 23번의 가장 깊은 결과를 시추코어 104번의 지표면 부근 얼음 결과에 정확 히 일치시켜 시추코어 23번의 깊이를 수평 거리로 변환했다. 두 δ²H_{ice} 프로파일은 r² 값 0.86 (p<0.001)으로 통계적으로 유의미하게 잘 일치한다(그림 7b). 이러한 수직 측정과 수 평 측정 사이의 δ²H_{ice}의 유사성은 얼음 층서가 큰 교란을 받지 않았음을 보여준다.

극지연구소

- 21 -

(나) GPR 기반 경사도 자료와 화학적 분석값 기반 경사도와 비교
GPR 조사에서 우리는 얼음 흐름 방향과 평행한 얼음층을 확인했다(그림 10). 얼음층의 각 도 1 ~ 6° 범위이며, 상류에서 하류 방향으로 감소하는 추세를 확인했다(그림 10c).
약 10 m 길이의 23번 시추 코어는 약 117 m의 수평 거리에 해당하는 연령에 해당하며,
4.96°의 얼음층을 가지는 것으로 계산된다(그림7b). 이는 GPR 프로파일에서 파생된 평균 얼음층 각도와 비슷한 값을 가진다(그림10c).

그림 10. Ground penetrating radar (GPR) survey profile. (a) Bedrock elevation and ice thickness of Larsen BIA. (b) GPR profile of the transect (AA ' in (a)) through the blue ice field. Identifiable ice layers are indicated in orange lines. Ice layers are not well identified at a distance of < 800 m. (c) Enlarged upper 80 m of the GPR profile.

(다) 얼음층 경사도를 이용한 수평적/수직적 연령 결정

Larsen의 수평 $\delta^{18}O_{atm}$ 값을 WD2014 타임스케일의 WAIS Divide의 $\delta^{18}O_{atm}$ 값에 상관시켜 잠정적인 가스 연령을 개발했다 (그림 11a, b, c). 잠정적인 수평 가스 연령과 시추 코어 23번의 깊이-수평거리 관계(그림 7b에서 구함)를 기반으로 시추 코어 23번의 가스 연령 (~10 m 수직 얼음 코어)을 결정했다. 시추 코어 23의 CH₄ 기록과 WAIS Divide의 CH₄ 기 록을 비교한 결과 작은 시간적 차이만이 나타났으며 (53.6 ± 38.5 년) (그림 11d의 빨간색 과 짙은 파란색 선의 차이), 이는 시추 코어 23번의 수평적/수직적 연령의 성공적인 대비 를 의미한다.

그 팀 11. Correlation of Larsen $\delta^{18}O_{atm}$ and CH₄ records with the WAIS Divide. (a) Interpolated $\delta^{18}O_{atm}$ value at 5m from the Larsen BIA with a spline curve. (b) $\delta^{18}O_{atm}$ record from the WAIS Divide with a spline curve (Severinghaus, 2015). Six tie points were used to correlate each other. (c) Comparison of synchronized Larsen $\delta^{18}O_{atm}$ with the EDC (Landais et al., 2013) and WAIS Divide records. (d) Comparison of the CH₄ record from Larsen no. 23 (>4:6m depth) with the WAIS Divide (Rhodes et al., 2017). Tentative gas age determined by $\delta^{18}O_{atm}$ correlation with the WAIS Divide is tuned by correlating the CH₄ record using four tie points. The WD2014 timescale for the WAIS Divide and EDC is from Sigl et al. (2016) and Buizert et al. (2021), respectively.

(2) CH₄ 농도를 이용한 연령제한

(가) 수직적 CH₄ 분포에 따른 신뢰할 만한 농도 깊이구간 확인
시추 코어 23번의 CH₄ 기록은 0-4.6 m 깊이 구간에서 크게 변동한다. 4.6m 이상 깊이에
서 부터는 변동성이 감소하며 실제 고(古)대기의 값을 반영한다(그림 12).

그림 12. Vertical profiles of greenhouse gas concentrations at the Larsen BIA ice cores. (a) CH_4 records. (b) CO_2 records. CH_4 was measured using a wet-extraction method, while CO_2 was measured via both dry- and wet-extraction methods at SNU and NIPR, respectively. Results of the TF core are from Jang et al. (2017).

(나) 23번 시추코어 코어의 CH4 자료와 WAIS Divide 코어 CH4 간의 대비를 이용한, 라 센빙하 기체연령 결정

시추 코어 23번의 수평적/수직적 관계를 통한 연령 설정 결과 시추 코어 23번의 CH₄ 기록 과 WAIS Divide의 CH₄ 기록 사이에 작은 시간적 차이가 나타났다(53.6 ± 38.5 년). 이 간 격을 없애기 위해 네 개의 점(주황색 점)을 선택하고 선형 보간을 했다(그림5d). 그 결과 13.3 - 14.1 kyr BP에 해당하는 가스 연령은 CH₄를 통해 더 정확하게 얻어졌다.

(3) CO₂ 농도를 이용한 연령제한
(가) 수직적 CO₂ 분포에 따른 신뢰할 만한 농도 깊이구간 확인
시추코어 23번의 CO₂ 기록은 점차적으로 감소하고 >4.6 m 깊이에서 변동성이 감소한다.

(나) 23번 시추코어의 CO₂ 자료와 WAIS Divide 코어 CO₂ 간의 대비를 이용한, 라센빙하 기체연령 결정

3번 시추코어의 4.6m 이상 깊이에서도 여전히 다른 빙하코어의 같은 연령에 비해서 CO₂ 농도가 약 10-20 ppm 높다(그림 13).

그림 13. Comparison of the CO_2 - CH_4 and $\delta^{18}O_{atm}$ - CO_2 relationship in Larsen ice core no. 23 with existing records during glacial terminations.

다. Larsen 블루아이스(blue ice) 표층에서의 온실기체 변질상태 수평/수직 분포 파악 (1) 표층 (0-2미터 구간) CH4 변질상태 확인

(가) 수직적 CH4 분포에 따른 신뢰할 만한 농도 깊이구간 확인

빙하 표면에서 수직으로 0-10 m 깊이까지 CH4 농도 분포양상과 다른 빙하코어 CH4 자료와의 농도 차이를 알아내었다 (그림14). 자연적으로 변질되지 않은 CH4 농도의 분포 범위는 400-700 ppb 사이의 값을 보이는 반면 Larsen 블루아이스의 CH4 농도 분포는 200-1700 ppb 사이의 값을 보여준다. Larsen 블루아이스 CH4가 원래 당시의 CH4 농도보다 높은 값을 보이 는 경우는 미생물의 작용 또는 현생대기의 유입으로 인한 변질일 것으로 추정된다. Larsen 블 루아이스 CH4가 원래 당시의 CH4 농도보다 낮은 값을 보이는 경우도 있는데 미생물 또는 대 기화학적인 메커니즘에 따른 CH4 산화작용이 일어났을 것으로 추정된다. CH4의 수직적 분포 양상은 상부에서 약 1 m 깊이까지는 농도가 증가하고 그 이후 깊이까지는 농도가 감소하는 것으로 보인다. Larsen 23번 시추 코어 분석 결과 최소 4.6 m 이상의 깊이에서 변질되지 않은 CH4가 산출되는 것으로 보인다.

그림 14. Larsen 블루아이스와 다른 빙하코어(WAIS Divide, EDC)의 CH4 농도 분포.

(나) 약 2미터 깊이에서의 CH₄ 농도를 이용한 빙하기-간빙기 조건 확인
 약 2 m 깊이에서의 CH₄ 농도를 이용해(그림14의 초록색 선) 상류 빙하 지역은 간빙기, 하
 류 빙하지역은 빙하기 시기임을 확인(그림14).

(2) 표층 (0-2미터 구간) CO2 변질상태 확인

(가) 수직적 CO₂ 분포에 따른 신뢰할 만한 농도 깊이구간 확인 빙하 표면에서 수직으로 0-10 m 깊이까지 CO₂ 농도 분포양상과 다른 빙하코어 CO₂ 자료와의 농도차이를 알아내었다 (그림15). 자연적으로 변질되지 않은 CO₂ 농도의 분포 범위는 200-280 ppm 사이의 값을 보이는 반면 Larsen 블루아이스의 CO₂ 농도 분포는 210-340 ppm 사이의 값 을 보여준다. Larsen 블루아이스 CO₂는 원래 당시의 CO₂ 농도보다 높은 값을 보이는데 이는 미생물의 작용 또는 현생대기의 유입으로 인한 변질일 것으로 추정된다. 상부에서 깊이가 깊어 질수록 CO₂ 농도가 점진적으로 감소하는 분포를 보인다. Larsen 23번 시추 코어 분석 결과 4.6 m 이상의 깊이에서 CO₂ 농도 분포가 안정되게 나타난다. 그러나 다른 빙하코어의 CO₂ 농 도보다 ~10 ppm 이상의 농도 차이를 보인다. CH₄과 다르게 CO₂는 여전히 4.6 m 이상의 깊이 에서도 변질 작용이 있는 것으로 파악된다.

그림 15. Larsen 블루아이스와 다른 빙하코어(WAIS Divide, EDC)의 CO₂ 농도 분포.

(나) 약 2미터 깊이에서의 CO₂ 농도를 이용한 빙하기-간빙기 조건 확인
약 2 m 깊이에서의 CO₂ 농도를 이용해(그림15의 초록색 선) 상류 빙하 지역은 간빙기, 하
류 빙하지역은 빙하기 시기임을 확인(그림15).

(3) 향후 블루아이스 연구에 필요한 시추깊이 조건 이해

(가) 수평적 2미터 깊이에서의 가스 자료와 23번공의 수직적 자료와의 비교

δ¹⁵N-N₂과 δ¹⁸O_{atm}은 여러 시추 코어의 매우 얕은 깊이의 얼음 시료를 이용해(~1.95m) 측 정되었기 때문에 해당 결과값을 시추코어 23번의 수직 분포와 비교했다. 1.95m의 얼음 시 료에서 얻은 δ¹⁵N-N₂과 δ¹⁸O_{atm} 값은 0.5 m 미만의 매우 얕은 깊이에서 얻은 값을 제외하 고 시추코어 23번의 수직 분포의 값과 유사하며(그림 16), 가스 동위원소 비율이 1.95 m의 깊이에서 일반적으로 신뢰할 수 있음을 확인했다. 23번 시추 코어의 기록과 수평 기록의 차이가 약 0.05 ‰이기 때문에 δ¹⁵N-N₂과 δ¹⁸O_{atm} 값의 불확실성을 ±0.05 ‰ (1σ)로 추정했 다.

그림 16. Nitrogen and oxygen gas isotope record of ice core no. 23 and horizontal measurement. Horizontal measurement is conducted using ice cores at 1.95m depth. Depth of ice core no. 23 was converted to horizontal distance at 1.95m depth. The uncertainty in a measured δ ¹⁸O_{atm} at a depth of 1.95m is assumed to be ±0.05 ‰.

(나) 2미터 깊이의 시추코어 자료를 이용한 수평적인 연령변화를 이용한 역전층 유무 검사

극지연구소

δ¹⁸O_{atm}의 수평 측정 결과에서 유의한 간격, 불연속성 또는 이상 징후는 발견되지 않았으 며, 이는 상대적으로 방해받지 않는 층서를 나타낸다(그림 7a, 11a).

3. 연구결과 데이터

표3. Larsen BIA 1.95m 깊이의 가스 동위원소 비율과 온실 가스 농도.

Core	Horizont al distance (m)	Gas age (yrBP,AI CC2012)	Gas age (yr BP, WD2014)	$\overset{\delta^{15}N-N_2}{(\%)}$	$\delta^{18}O_{atm} \atop (\%)$	δO ₂ /N ₂ (‰)	$\underset{(\%)}{\delta Ar/N_2}$	CH ₄ (ppb)	CO ₂ (ppm)
306	378.77	9441	9237	0.194	-0.075	-2.793	-0.373	767.7	293.3
305	411.00	9569	9561	0.224	0.053	-10.880	-4.337	785.7	301.0
303	467.16	10239	10125	0.305	0.242	-6.356	-2.838	771.3	310.7
302	495.81	10580	10412	0.307	0.260	-3.557	-1.517	757.7	309.8
301	527.89	10988	10811	0.320	0.453	-31.774	-15.280	740.1	303.3
300	557.12	11359	11174	0.243	0.443	-6.380	-3.042	716.1	305.7
9	573.62	11535	11425	0.264	0.564	-16.668	-8.325	676.4	286.6

98	614.57	12185	12048	0.288	0.668	-13.158	-5.474	540.8	295.9
23	663.09	12850	12785	0.423	0.741	-6.268	-3.636	748.4	309.9
100	695.43	13576	13294	0.445	0.769	-5.752	-2.420	677.1	266.9
101	715.00	13714	13551	0.406	0.807	-8.249	-3.113	588.8	267.7
103	752.92	14214	13993	0.282	1.014	-15.452	-5.500	748.4	268.2
104	779.27	14533	14414	0.365	1.054	-6.370	-2.957	1185. 2	314.9
105	797.29	14754	14697	0.316	0.988	-13.788	-4.587	778.3	274.0
106	815.72	15068	14986	0.370	1.126	-23.224	-11.120	669.0	273.6
108	857.49	15816	15563	0.403	1.051	-18.432	-8.732	584.3	279.0
109	879.39	15975	15850	0.364	1.004	-10.485	-3.366	730.6	290.5
110	894.80	16087	16052	0.410	1.052	-0.642	0.122	571.5	268.1
111	918.71	16433	16365	0.416	1.070	-6.541	-4.175	671.8	290.6
112	935.91	16861	16590	0.403	1.040	-4.301	-2.079	583.6	263.0
114	981.22	17326	17184	0.393	1.033	-3.888	-1.797	779.0	263.6
115	1002.67	17598	17465	0.353	0.965	-7.884	-3.071	798.9	283.1
116	1022.44	18190	17724	0.361	0.949	-13.753	-6.743	859.2	269.6
117	1042.56	18476	17988	0.409	0.954	-1.397	-1.158	797.2	250.3
119	1083.62	19294	18670	0.368	0.971	-6.792	-5.241	503.4	214.4
120	1102.39	19564	18990	0.315	1.005	-23.341	-10.666	534.7	217.1
121	1120.63	19809	19301	0.338	0.924	-9.681	-4.745	509.8	211.7
122	1141.29	20057	19653	0.286	0.944	-4.697	-2.821	522.3	213.0
124	1181.95	20790	20346	0.403	0.909	2.806	-0.153	538.2	NA
125	1200.40	21337	20661	0.383	0.927	-14.874	-6.969	509.9	216.3
207	1219.27	21586	20982	0.391	0.942	-10.068	-5.146	495.2	217.9
206	1240.66	21793	21347	0.379	0.902	-8.148	-4.949	537.1	217.3
205	1261.12	22072	21696	0.362	0.858	-4.888	-2.992	472.6	213.5
202	1323.25	22895	22750	0.367	0.905	-7.014	-3.050	539.9	215.3
200	1363.86	23390	23439	0.379	0.877	-12.966	-9.195	487.2	248.5

표4. Larsen BIA 23번 시추코어의 가스 동위원소 비율과 온실 가스 농도.

Depth (cm)	Gas age (yrBP,AI CC2012)	Gas age (yrBP,W D2014)	$\overset{\delta^{15}N-N_2}{(\%)}$	$\delta^{18}\!O_{atm}_{(\%)}$	$\delta O_2 / N_2 \ (\%)$	$\underset{(\%)}{\delta Ar/N_2}$	CH ₄ (ppb, NIPR)	CH ₄ (ppb, SNU)	CO ₂ (ppm)
15	12565	12470						537.7	
25	12579	12487						631.4	
35	12595	12505						707.7	
45	12611	12522	0.327	0.609	-9.067	-3.545	801.9	940.1	339.0
55	12627	12540						719.8	
65	12643	12557						680.8	
75	12659	12575						691.1	
85	12674	12592						634.8	
95	12688	12610	0.390	0.721	-5.661	-1.575	672.2	707.6	354.2
105	12702	12627						645.2	
115	12717	12645						787.4	
125	12731	12662						679.8	
135	12748	12680						827.6	
145	12765	12697						875.0	
155	12783	12715	0.386	0.773	-16.407	-6.893	859.2	807.2	316.4
165	12799	12732						724.5	
175	12816	12750						714.0	
185	12832	12767						716.3	
195	12850	12785	0.423	0.741	-6.268	-3.636	748.4	708.1	309.9
205	12867	12802						763.4	
215	12884	12820						727.7	
225	12901	12837						719.4	
235	12919	12855	0.415	0.709	-7.730	-3.459	745.5	782.1	284.5
245	12938	12873						841.6	
255									
265	12978	12908						736.1	
275	12998	12925						778.8	
285	13018	12943	0.400	0.700	0 701	0.400	200.0	741.2	050 5
295	13048	12960	0.433	0.792	-6.721	-2.463	690.9	720.2	272.7
305	13082	12978						694.7	
315	13115	12995						753.7	
325	13148	13013						735.3	
335	13178	13030						750.8	
345	13208	13046						706.6	
355	13238	13063						715.6	
365	13268	13080						698.1	
375	13298	13096						704.5	
385	13327	13113	0 407	0.750	0.110			753.7	007 4
395	13357	13130	0.437	0.759	-2.119	0.065	687.5	694.0	267.4
405	13387	13146						676.9	
415	13413	13163						679.3 779.5	
425 425	13439	13179						790 1	
435	13466	13196						720.1	
445	13493	13213						692.6	

455 465 475 485 495 505 515 525 535	13520 13566 13576 13585 13594 13602 13611 13619 13627	13229 13278 13293 13308 13323 13338 13354 13369 13384						677.8 656.2 673.4 673.9 668.2 661.3 660.3 663.6 675.6	
545	13635	13399	0.476	0.778	-6.777	-2.612	644.5	657.4	249.4
555	13643	13414						658.0	
565	13651	13429						655.1	
575	13659	13444						654.7	
585	13667	13459						652.5	
595	13675	13474						643.4	
605	13682	13490						638.2	
615	13690	13505						639.6	
625	13698	13520						631.4	
635	13706	13535						626.8	
645	13713	13550						605.9	
655	13720	13562						621.2	
665	13727	13574						609.1	
675	13738	13586						627.9	
685	13748	13599	0.000	0.000	15.0.40	= 100		634.7	
695	13759	13611	0.360	0.838	-17.349	-7.488	624.7	633.7	248.4
	10550	10000						001.0	
705	13770	13623						621.6	
705 715	13770 13781	13623 13635						621.6 642.3	
705 715 725	13770 13781 13792	13623 13635 13647	Ę					621.6 642.3 661.0	
705 715 725 735	13770 13781 13792 13803	13623 13635 13647 13659	극지					621.6 642.3 661.0 659.5	
705 715 725 735 745	13770 13781 13792 13803 13814	13623 13635 13647 13659 13671	국지					621.6 642.3 661.0 659.5 669.2	
 705 715 725 735 745 755 765 	13770 13781 13792 13803 13814 13827	13623 13635 13647 13659 13671 13684	국자					621.6 642.3 661.0 659.5 669.2 682.0	
 705 715 725 735 745 755 765 775 	13770 13781 13792 13803 13814 13827 13842 13858	13623 13635 13647 13659 13671 13684 13696	₹₹					621.6 642.3 661.0 659.5 669.2 682.0 676.0	
705 715 725 735 745 755 765 775 785	13770 13781 13792 13803 13814 13827 13842 13858 13872	13623 13635 13647 13659 13671 13684 13696 13708 12720	₹₹					621.6 642.3 661.0 659.5 669.2 682.0 676.0 678.3 671.4	
 705 715 725 735 745 755 765 775 785 795 	13770 13781 13792 13803 13814 13827 13842 13858 13873 13888	13623 13635 13647 13659 13671 13684 13696 13708 13720 13732	Ę					621.6 642.3 661.0 659.5 669.2 682.0 676.0 678.3 671.4 683.6	
705 715 725 735 745 755 765 765 775 785 795 805	13770 13781 13792 13803 13814 13827 13842 13858 13873 13888 13904	13623 13635 13647 13659 13671 13684 13696 13708 13720 13732 13744	₹₹					621.6 642.3 661.0 659.5 669.2 682.0 676.0 676.0 678.3 671.4 683.6 679.1	
705 715 725 735 745 755 765 765 775 785 795 805 815	13770 13781 13792 13803 13814 13827 13842 13858 13858 13873 13888 13904 13919	13623 13635 13647 13659 13671 13684 13696 13708 13708 13720 13732 13744 13757	₹₹					621.6 642.3 661.0 659.5 669.2 682.0 676.0 678.3 671.4 683.6 679.1 704.2	
705 715 725 735 745 755 765 765 775 785 785 795 805 815 825	13770 13781 13792 13803 13814 13827 13842 13858 13873 13888 13904 13919 13934	13623 13635 13647 13659 13671 13684 13696 13708 13720 13732 13744 13757 13769	Ę					621.6 642.3 661.0 659.5 669.2 682.0 676.0 678.3 671.4 683.6 679.1 704.2 669.1	
705 715 725 735 745 755 765 765 775 785 795 805 815 825 835	13770 13781 13792 13803 13814 13827 13842 13858 13873 13888 13904 13919 13934 13951	13623 13635 13647 13659 13671 13684 13696 13708 13708 13720 13732 13744 13757 13769 13781	Ę					621.6 642.3 661.0 659.5 669.2 682.0 676.0 678.3 671.4 683.6 679.1 704.2 669.1 672.5	
705 715 725 735 745 755 765 775 785 795 805 815 825 835 845	13770 13781 13792 13803 13814 13827 13842 13858 13873 13888 13904 13919 13934 13951 13967	13623 13635 13647 13659 13671 13684 13696 13708 13720 13732 13744 13757 13769 13781 13793	Ę					621.6 642.3 661.0 659.5 669.2 682.0 676.0 678.3 671.4 683.6 679.1 704.2 669.1 672.5 658.6	
705 715 725 735 745 755 765 765 775 785 795 805 815 825 835 835 845	13770 13781 13792 13803 13814 13827 13842 13858 13873 13888 13904 13919 13934 13951 13967 13983	13623 13635 13647 13659 13671 13684 13696 13708 13708 13720 13732 13744 13757 13769 13781 13793 13805	Ę					$\begin{array}{c} 621.6\\ 642.3\\ 661.0\\ 659.5\\ 669.2\\ 682.0\\ 676.0\\ 678.3\\ 671.4\\ 683.6\\ 679.1\\ 704.2\\ 669.1\\ 672.5\\ 658.6\\ 660.1 \end{array}$	
705 715 725 735 745 755 765 775 785 795 805 815 825 835 845 845 865	13770 13781 13792 13803 13814 13827 13842 13858 13873 13888 13904 13919 13934 13951 13967 13983 14000	13623 13635 13647 13659 13671 13684 13696 13708 13708 13720 13732 13744 13757 13769 13781 13793 13805 13817	Ę					621.6 642.3 661.0 659.5 669.2 682.0 676.0 678.3 671.4 683.6 679.1 704.2 669.1 672.5 658.6 660.1 656.6	
705 715 725 735 745 755 765 765 775 785 795 805 815 825 835 835 835 845 855 865	13770 13781 13792 13803 13814 13827 13842 13858 13873 13888 13904 13919 13934 13951 13967 13983 14000 14016	13623 13635 13647 13659 13671 13684 13696 13708 13708 13708 13720 13732 13744 13757 13769 13781 13793 13805 13817 13829	Ę					621.6 642.3 661.0 659.5 669.2 682.0 676.0 678.3 671.4 683.6 679.1 704.2 669.1 672.5 658.6 660.1 656.6 675.4	
705 715 725 735 745 755 765 775 785 795 805 815 825 835 845 845 845 845 865 875 885	13770 13781 13792 13803 13814 13827 13842 13858 13873 13888 13904 13919 13934 13951 13967 13983 14000 14016 14032	13623 13635 13647 13659 13671 13684 13696 13708 13720 13732 13744 13757 13769 13781 13793 13805 13817 13829 13842						621.6 642.3 661.0 659.5 669.2 682.0 676.0 678.3 671.4 683.6 679.1 704.2 669.1 672.5 658.6 660.1 656.6 675.4 666.4	
705 715 725 735 745 755 765 765 775 785 795 805 815 825 835 835 845 855 865 875 885 895	13770 13781 13792 13803 13814 13827 13842 13858 13873 13888 13904 13919 13934 13951 13967 13983 14000 14016 14032 14048	13623 13635 13647 13659 13671 13684 13696 13708 13708 13708 13720 13732 13744 13757 13769 13781 13793 13805 13817 13829 13842 13854	0.290	0.921	-5.297	-2.170	657.3	621.6 642.3 661.0 659.5 669.2 682.0 676.0 678.3 671.4 683.6 679.1 704.2 669.1 672.5 658.6 660.1 656.6 675.4 666.4 663.2	252.1
705 715 725 735 745 755 765 775 785 795 805 815 825 835 845 835 845 845 855 865 875 895 905	13770 13781 13792 13803 13814 13827 13842 13858 13873 13888 13904 13919 13934 13951 13967 13983 14000 14016 14032 14048 14064	13623 13635 13647 13659 13671 13684 13696 13708 13708 13720 13732 13744 13757 13769 13769 13781 13793 13805 13817 13829 13842 13854 13854 13866	0.290	0.921	-5.297	-2.170	657.3	621.6 642.3 661.0 659.5 669.2 682.0 676.0 678.3 671.4 683.6 679.1 704.2 669.1 672.5 658.6 660.1 656.6 675.4 666.4 663.2 672.6	252.1
705 715 725 735 745 755 765 765 775 785 795 805 815 825 835 835 845 835 845 855 845 855 865 875 885 905 915	13770 13781 13792 13803 13814 13827 13842 13858 13873 13888 13904 13919 13934 13951 13967 13983 14000 14016 14032 14048 14064 14081	13623 13635 13647 13659 13671 13684 13696 13708 13708 13708 13720 13732 13744 13757 13769 13781 13793 13805 13817 13805 13817 13829 13842 13854 13854 13866 13878	0.290	0.921	-5.297	-2.170	657.3	621.6 642.3 661.0 659.5 669.2 682.0 676.0 678.3 671.4 683.6 679.1 704.2 669.1 672.5 658.6 660.1 656.6 675.4 666.4 663.2 672.6 672.6 676.9	252.1

935	14132	13917						657.6	
945	14158	13936						642.6	
955	14185	13955						632.7	
965	14201	13975						615.0	
975	14214	13994						594.6	
985	14228	14013						604.3	
995	14241	14033	0.322	1.004	-5.658	-2.747	599.9	608.2	252.4
1005	14251	14052						641.5	
1015	14251	14071						636.8	
1025	14251	14091						642.6	
1035	14251	14110						621.8	

표5. 서울대에서 분석한 Larsen 시추 코어 #23의 CO₂ 농도.

Depth (cm)	CO ₂ (ppm,SNU)	
17.5	344.6	
27.5	325.5	
37.5	332.7	
47.5	340.1	
57.5	314.2	
67.5	346.2	
77.5	341.2	
87.5	342.9	
97.5	327.0	
107.5	300.8	
117.5	305.9	コペジナン
127.5	316.7	
137.5	323.9	
147.5	342.1	
157.5	297.7	
167.5	293.5	
177.5	295.2	
187.5	292.0	
197.5	299.0	
207.5	300.8	
217.5	284.5	
227.5	287.1	
237.5	272.4	
247.5	287.9	
267.5	278.2	
277.5	282.3	
287.5	282.7	
297.5	273.7	
307.5	267.2	
317.5	261.0	
327.5	263.6	

337.5	268.4	
347.5	260.7	
357.5	271.2	
367.5	268.4	
377.5	265.5	
387.5	261.7	
397.5	260.2	
407.5	266.0	
417.5	258.3	
427.5	256.8	
437.5	258.8	
447.5	254.7	
457.5	250.1	
467.5	249.8	
477.5	253.3	
487.5	246.8	
497.5	245.9	
507.5	248.5	
517.5	249.3	
527.5	246.9	
537.5	254.4	
547.5	251.3	
556.5	250.1	
567.5	246.1	
577.5	247.8	
587.5	249.8	
597.5	248.7	
607.5	251.3	
617.5	259.0	
627.5	250.3	
637.5	247.9	
647.5	248.1	
657.5	245.0	
667.5	247.7	
677.5	250.6	
687.5	245.2	
697.5	244.6	
707.5	244.5	
717.5	248.1	
727.5	259.9	
737.5	257.4	
747.5	250.8	
757.5	246.1	
767.5	241.0	
777.5	250.8	
787.5	246.5	
797.5	262.9	
807.5	252.3	

817.5	250.3
827.5	254.3
837.5	253.9
847.5	249.2
857.5	249.4
867.5	256.6
877.5	256.3
887.5	254.3
897.5	251.7
907.5	253.6
917.5	250.4
927.5	259.1
937.5	257.2
947.5	256.3
957.5	254.8
967.5	252.6
977.5	252.9
987.5	252.5
997.5	256.6
1007.5	253.5
1017.5	245.7
1027.5	253.4
1037.5	257.5

표6. 표층 빙하 샘플의 물 안정동위원소 측정값.

Surface ice and core number	Horizontal distance(m)	Ice age (yrBP,AI CC2012)	Ice age (yrBP,W D2014)	$\delta^{18}\!\!\!\!\!\operatorname{O_{ice}}_{(\%)}$	$\overset{\delta^2H_{ice}}{(\%)}$	d-excess (‰)
81W	0.00	5631	5608	-31.25	-244.60	5.40
80W	7.30	5706	5682	-30.98	-239.40	8.44
79W	17.67	5819	5788	-34.72	-272.30	5.46
78W	28.74	5939	590	-33.02	-259.10	5.06
77W	41.55	6055	6032	-33.68	-266.90	2.54
76W	51.60	6155	6134	-33.53	-264.40	3.84
75W	67.33	6307	6294	-34.41	-273.30	1.98
74W	93.74	6574	6564	-33.38	-262.90	4.14
73W	106.82	6705	6697	-35.75	-282.80	3.20
72W	122.31	6867	6855	-37.37	-295.66	3.30
71W	142.26	7038	7025	-35.02	-273.86	6.30
70W	166.07	7244	7228	-40.27	-319.93	2.23
69W	186.50	7420	7401	-35.09	-289.41	-8.69
68W	207.56	7594	7581	-39.09	-310.09	2.63
67W	230.11	7792	7773	-36.05	-286.58	1.82
66W	249.63	7966	7939	-36.66	-290.60	2.68
65W	268.46	8133	8099	-37.59	-299.15	1.57
64W	289.96	8316	8282	-36.99	-291.88	4.04
63W	306.76	8460	8425	-38.48	-304.43	3.41

62W	327.70	8668	8636	-33.91	-269.63	1.65
61W	346.18	8888	8852	-35.08	-277.94	2.70
60W	368.26	9154	9110	-34.61	-274.32	2.56
306	378.77	9284	9233	-37.37	-298.17	0.79
59W	387.15	9386	9331	-38.86	-307.72	3.16
58W	405.33	9605	9544	-36.55	-291.82	0.58
305	411.00	9672	9610	-37.66	-301.19	0.09
57W	425.54	9842	9780	-39.49	-313.81	2.11
304	437.65	9984	9921	-38.09	-304.52	0.20
56W	446.53	10087	10025	-37.08	-294.57	2.07
303	467.16	10337	10266	-36.10	-289.17	-0.37
55W	478.47	10471	10398	-39.14	-308.81	4.31
302	495.81	10667	10601	-39.68	-318.47	-1.03
54W	498.00	10694	10626	-38.82	-307.05	3.51
53W	518.03	10941	10860	-35.83	-283.80	2.84
301	527.89	11057	10976	-38.84	-310.82	-0.10
52W	538.29	11180	11097	-36.20	-287.00	2.60
51W	556.13	11400	11306	-35.16	-278.74	2.54
300	557.12	11412	11317	-35.09	-280.80	-0.08
1W	573.62	11621	11510	-37.13	-294.90	2.14
9W	584.70	11760	11640	-36.60	-291.65	1.15
20W	604.26	12006	11868	-37.62	-300.50	0.46
21W	624.47	12260	12104	-39.26	-312.55	1.53
99	633.80	12499	12321	-41.02	-328.30	-0.14
22W	644.54	12785	12595	-41.49	-328.49	3.43
23W	661.00	13210	13015	-44.45	-355.33	0.27
23	663.09	13264	13068	-42.75	-342.69	-0.69
24W	684.07	13824	13603	-41.70	-333.23	0.37
100	695.43	14124	13893	-43.08	-345.48	-0.84
25W	703.79	14354	14106	-40.43	-321.65	1.79
101	715.00	14478	14223	-38.86	-310.92	-0.04
26W	723.30	14562	14304	-37.14	-296.40	0.72
102	729.98	14629	14368	-38.87	-311.28	-0.32
27W	745.60	14792	14519	-36.13	-288.42	0.62
103	752.92	14866	14590	-40.29	-323.20	-0.88
28W	764.49	15019	14729	-40.35	-321.13	1.67
104	779.27	15298	14982	-38.80	-312.96	-2.56
29W	785.15	15411	15082	-40.81	-326.37	0.11
105	797.29	15625	15290	-40.41	-325.45	-2.17
30W	806.61	15786	15450	-40.25	-322.12	-0.12
106	815.72	15936	15605	-39.18	-315.25	-1.81
31W	825.10	16086	15766	-41.02	-328.15	0.01
107	836.67	16272	15964	-40.91	-329.30	-2.02
32W	846.48	16427	16132	-40.52	-323.73	0.43
108	857 49	16588	16320	-41.52	-334 00	-1.84
33W	866 76	16721	16478	-40.78	-325 74	0.50
109	879 39	16903	16695	-40.45	-325.53	-1 Q2
34W	888.00	17026	168/19	-41 18	-329.00	0.32
	000.00	1020	10044	11,10	00.00	0.00

110	894.80	17125	16958	-40.61	-327.29	-2.41
35W	909.18	17332	17204	-41.03	-328.87	-0.63
111	918.71	17469	17367	-40.75	-328.81	-2.81
36W	928.74	17614	17539	-41.63	-333.48	-0.44
112	935.91	17713	17661	-40.05	-322.77	-2.37
37W	948.00	17892	17868	-40.66	-325.47	-0.19
113	960.85	18082	18088	-42.43	-343.63	-4.19
38W	969.41	18209	18234	-42.40	-339.84	-0.64
114	981.22	18384	18436	-42.00	-339.84	-3.84
39W	990.17	18523	18590	-43.37	-347.85	-0.89
115	1002.67	18715	18803	-43.29	-350.42	-4.10
40W	1010.13	18827	18931	-43.02	-344.43	-0.27
116	1022.44	19007	19142	-43.39	-350.76	-3.64
41W	1029.57	19112	19263	-42.46	-341.39	-1.71
117	1042.56	19298	19486	-43.92	-355.62	-4.26
42W	1050.15	19405	19616	-45.28	-364.57	-2.33
118	1060.80	19550	19798	-44.57	-361.61	-5.05
43W	1071.24	19693	19976	-44.26	-355.93	-1.85
119	1083.62	19877	20188	-45.26	-366.55	-4.47
44W	1091.17	19995	20317	-43.32	-348.81	-2.25
120	1102.39	20169	20509	-43.93	-356.82	-5.38
45W	1111.95	20329	20673	-44.47	-357.51	-1.75
121	1120.63	20470	20821	-44.66	-361.97	-4.69
46W	1133.72	20696	21045	-44.30	-357.08	-2.68
122	1141.29	20826	21172	-45.49	-369.26	-5.34
47W	1153.30	21021	21360	-46.23	-371.87	-2.03
123	1162.13	21165	21499	-46.30	-374.83	-4.43
48W	1176.66	21418	21727	-46.63	-375.53	-2.49
124	1181.95	21513	21810	-45.37	-367.45	-4.49
49W	1195.69	21758	22025	-45.82	-367.80	-1.24
125	1200.40	21841	22099	-46.09	-372.64	-3.92
207	1219.27	22178	22395	-45.62	-367.52	-2.56
206	1240.66	22559	22731	-45.39	-367.65	-4.53
205	1261.12	22924	23052	-44.91	-363.52	-4.24
204	1281.89	23294	23378	-44.79	-362.54	-4.22
203	1302.52	23664	23701	-44.42	-358.95	-3.59
202	1323.25	24044	24037	-46.57	-374.88	-2.32
201	1343.56	24413	24367	-45.49	-366.71	-2.79
200	1363.86	24763	24696	-45.68	-369.33	-3.89

표7. Larsen 시추 코어 23번 샘플의 물 안정동위원소 측정값.

Depth (cm)	Ice age (yrBP,AI CC2012)	Ice age (yrBP, WD201 4)	$\overset{\delta^{18}O_{ice}}{(\%_{0})}$	$\overset{\delta^2 H_{ice}}{(\%_0)}$	d-exce ss (‰)	
20	13264	13068	-43.11	-343.35	1.53	
40	13323	13127	-41.99	-333.65	2.27	
60	13382	13185	-42.21	-335.07	2.61	
80	13443	13243	-42.71	-340.45	1.23	
100	13504	13302	-41.53	-330.80	1.44	
120	13564	13360	-44.31	-353.13	1.35	
140	13624	13418	-41.86	-333.05	1.83	
160	13686	13477	-42.11	-334.98	1.90	
180	13749	13535	-42.46	-337.40	2.28	
200	13814	13594	-43.20	-343.65	1.95	
220	13871	13652	-41.84	-332.76	1.96	
240	13929	13710	-42.01	-334.70	1.38	
260	13995	13769	-42.37	-338.12	0.84	
280	14055	13827	-42.76	-340.90	1.18	
300	14116	13886	-42.59	-339.16	1.56	
320	14179	13944	-42.31	-336.71	1.77	
340	14242	14002	-40.83	-325.98	0.66	
360	14305	14061	-41.76	-331.42	2.66	
380	14359	14112	-41.14	-327.94	1.18	
400	14385	14135	-41.61	-331.05	1.83	
420	14411	14159	-40.15	-319.31	1.89	
440	14436	14183	-40.79	-324.81	1.51	
460	14461	14207	-40.10	-319.61	1.19	
480	14486	14231	-38.88	-309.62	1.42	
500	14510	14253	-37.85	-301.67	1.13	
520	14533	14275	-36.78	-293.20	1.04	
540	14555	14297	-37.44	-298.78	0.74	
560	14578	14319	-37.64	-300.60	0.52	
580	14600	14341	-37.96	-302.78	0.90	
600	14623	14363	-39.47	-314.93	0.83	
620	14647	14386	-38.70	-308.72	0.88	
640	14672	14408	-38.37	-306.84	0.12	
660	14696	14430	-37.87	-302.48	0.48	
680	14721	14452	-36.47	-291.05	0.71	
700	14745	14474	-36.33	-290.77	-0.13	
720	14768	14496	-37.57	-300.33	0.23	
740	14791	14518	-39.10	-312.76	0.04	
760	14814	14540	-39.16	-312.46	0.82	
780	14837	14563	-39.66	-316.51	0.77	
800	14861	14585	-40.64	-324.28	0.84	
820	14889	14611	-40.43	-322.58	0.86	
840	14920	14638	-41.65	-332.37	0.83	
860	14950	14666	-40.08	-319.07	1.57	

880	14980	14693	-40.62	-325.04	-0.08
900	15011	14721	-41.07	-328.47	0.09
920	15050	14757	-39.77	-317.57	0.59
940	15093	14796	-40.58	-324.67	-0.03
960	15136	14835	-40.80	-326.04	0.36
980	15179	14874	-39.95	-319.04	0.56
1000	15221	14913	-40.21	-321.83	-0.15
1020	15266	14953	-40.57	-325.75	-1.19
1035	15298	14982	-39.36	-315.88	-1.00

표7. Larsen 시추 코어 1.95 m 깊이 얼음 샘플의 물 안정동위원소 측정값.

Core number	Horizontal distance(m)	Ice age (yrBP,AI CC2012)	Ice age (yrBP,W D2014)	$\overset{\delta^{18}O_{ice}}{(\%_0)}$	$\overset{\delta^2H_{ice}}{(\%_0)}$	d-excess (‰)
306	378.77	9571	9511	-36.96	-294.15	1.53
305	411.00	9951	9888	-37.91	-301.60	1.68
304	437.65	10265	10199	-39.11	-310.45	2.43
303	467.16	10612	10544	-38.22	-303.76	2.00
302	495.81	10960	10879	-39.64	-315.29	1.83
301	527.89	11345	11253	-37.92	-301.06	2.30
300	557.12	11713	11595	-36.51	-288.81	3.27
9	573.62	12014	11876	-36.54	-291.57	0.75
98	614.57	12764	12574	-42.87	-342.69	0.27
99	633.80	13089	12901	-43.53	-347.73	0.51
23	663.09	13605	13400	-43.58	-346.93	1.71
100	695.43	14406	14155	-37.31	-297.60	0.88
101	715.00	14731	14461	-38.66	-308.26	1.02
102	729.98	14898	14619	-39.64	-316.59	0.53
103	752.92	15196	14890	-39.67	-317.33	0.03
104	779.27	15783	15446	-41.49	-331.35	0.57
105	797.29	16143	15826	-40.97	-327.56	0.20
106	815.72	16436	16141	-41.24	-329.49	0.43
107	836.67	16738	16499	-40.81	-326.89	-0.41
108	857.49	17038	16855	-41.45	-332.03	-0.43
109	879.39	17354	17230	-41.70	-334.30	-0.70
110	894.80	17576	17494	-42.45	-340.13	-0.53
111	918.71	17922	17903	-43.13	-346.96	-1.92
112	935.91	18177	18197	-42.19	-338.87	-1.35
113	960.85	18554	18623	-43.89	-352.57	-1.45
114	981.22	18862	18972	-44.25	-355.34	-1.34
115	1002.67	19176	19339	-44.52	-358.66	-2.50
116	1022.44	19455	19677	-45.03	-361.80	-1.56
117	1042.56	19702	19988	-45.91	-368.69	-1.41
118	1060.80	19952	20270	-43.46	-351.40	-3.72
119	1083.62	20278	20622	-46.18	-371.69	-2.25
120	1102.39	20588	20941	-45.23	-365.15	-3.31
121	1120.63	20908	21251	-44.12	-355.70	-2.74

122	1141.29	21274	21599	-45.44	-369.04	-5.52
123	1162.13	21646	21927	-46.52	-375.28	-3.12
124	1181.95	21999	22238	-46.68	-375.32	-1.88
125	1200.40	22329	22528	-46.82	-376.75	-2.19
207	1219.27	22666	22825	-45.66	-368.20	-2.92
206	1240.66	23048	23161	-44.51	-358.81	-2.73
205	1261.12	23416	23484	-45.55	-367.31	-2.91
204	1281.89	23790	23812	-44.78	-360.72	-2.48
203	1302.52	24162	24139	-44.89	-360.77	-1.65
202	1323.25	24530	24475	-46.65	-375.73	-2.53
201	1343.56	24878	24804	-45.80	-368.64	-2.24
200	1363.86	25211	25131	-47.28	-379.52	-1.28

제 4 장 연구개발목표 달성도 및 대외기여도

1절. 연구개발목표 달성도

연차	연구 목표	연구 내용	달성도 (%)
1차년 도	δ ¹⁸ O _{ice} , δ ¹⁸ O-O ₂ , ⁸¹ Kr 및 Ar 안정동위원소를 이용하 Larsen 빈하지역	동남극 Larsen Glacier 블루아이스(blue ice) 시료를 이용한 δ ¹⁸ Ο-Ο ₂ 및 δ ¹⁸ Ο _{ice} 자료 확보 및 층서 이해 ⁸¹ Kr를 이용한 Larsen 블루아이스(blue	100
(2020)	블루아이스(blue ice) 연령측정	ice) 절대연령 측정 Ar 안정동위원소(⁴⁰ Ar, ³⁸ Ar, ³⁶ Ar)를 이용한 Larsen 블루아이스(blue ice) 연령해석	100
2차년 ㄷ	GPR(Ground Penetration Radar) 및 오시기체 측정가리를	GPR 자료를 이용한 수평적 거리변화/연령변화 비율과 수직적 거리변화/연령변화에 대한 정량적 이해	100
(2021)	이용한 구조적 층서 이해	신뢰할 만한 깊이구간에서의 온실기체 농도를 이용한 빙하기/간빙기 연령조건 파악	100
3차년 도	Larsen 블루아이스(blue ice) 표층에서의	Larsen 블루아이스(blue ice) 0-2미터 구간에서의 온실기체(CO ₂ , CH ₄) 농도 측정	100
(2022)	온실기체 변질상태 수평/수직 분포 파악	표층에서의 자연적 온실기체 농도 변질정도의 수직적/수평적 분포 파악	100

2절. 연구종료후 성과창출 계획

구분	주요내용	의의(시사점)	비고
논문	○SCI급 논문 주저자 1편	- 블루아이스에서 관찰되는 주 요 온실가스(CO ₂ , CH ₄)의 변질 과정은 물리적/생물학적 원인과 관련되었을 것으로 예상되며, 향후 Astrobiology 분야로 빙하 연구과 확대될 수 있는 계기가 될 것임	학생 1저자, 연구책임자 교신저자
지적재산권	해당사항 없음		
인력양성	극지 빙하, 고기후, 온실가스 연구 의 전문가 계속 양성(2명 석박통 합, 3명 석사 학위과정 이행 예정)	향후 대륙기지 건설 및 블루아 이스 연구와 맞물려 빙하코어 연구에 중요한 인적자원이 될 것으로 기대됨.	
기타	본 과제에서 개발된 빙하 연령측 정 기술은 향후 국내에서 시추하 는 빙하코어 시료에 활용 (빙하코 어 연령측정 및 기후변화 원인규 명에 기여)		

제 5 장 연구개발결과의 활용계획

1절. 활용방안

1. 향후 빙하코어를 이용한 고기후 연구에서 연령측정에 활용

 과제 수행 중 이루어진 한-중-일-미 간의 국제 공동연구로 형성된 네크워크와 신뢰관계를 향후 국제 공동연구에 활용

 획득되는 연령측정 기술을 향후 대륙기지 건설과 연계되어 진행될 본격적인 빙하코어 연구에 활용

4. 블루아이스를 이용한 온실가스 연구에서 표층시료의 변질과정 이해에 활용

2절. 기대효과

1. 국내 빙하연구의 효율성 증대

2. 국내 극지연구의 위상 격상으로 대한민국 국가브랜드 가치 증대

3. 빙하를 이용한 고기후 및 빙하거동 연구에 필요한 인령양성

4. 미래 기후 예측을 위한 모델자료로 활용

5. 고기후/빙하학/대기화학/해양학의 다학제간 연구분야에 기여

제 6 장 연구개발과정에서 수집한 해외과학기술정보

1절. 블루아이스 연구 동향

1. 미국은 2021년부터 미국연구재단(NSF)의 지원으로 COLDEX (Center for Oldest Ice Exploration)라는 대학연합체 연구센터 설립하고, 이 센터를 중심으로 100만 년 이상된 연령의 빙하시료를 찾고, 관련된 고기후 연구를 수행. 현재까지는 심부시추 보다는 남극 알렌힐스 (Allen Hills) 블루아이스 지역에서 200미터 정도의 천부시추를 수행하고, 시추된 빙하시료를 분석하는데 주력하고 있음.

 미국은 Ar 동위원소를 이용한 연령측정법의 정밀도를 꾸준히 향상시키고 있으나, Kr 동위 원소를 이용하는 중국과학자로부터 Ar 연령측정법의 정확도를 더욱 시험할 필요가 제기됨.

3. 미국은 RAID (Rapid Access Ice Drill) 프로그램을 수행하고 있는데, 작은 직경으로 빙하를 빠른 속도를 뚫은 다음, 빙하 시추공 속에 광학 및 온도센서를 넣어 층서/연령에 대한 정보를 빠르게 획득하고, 지열속(geothermal flux)을 측정하여, 가장 오래된 연령의 빙하존재 여부 판 단의 정확도를 높이는 기술을 확보하였으나, 아직까지 심부에 해당하는 깊이의 빙하에 적용한 사례가 없음.

극지연구소

제 7 장 참고문헌

t, 2013.

- Bazin, L., Landais, A., Lemieux–Dudon, B., Toyé Mahamadou Kele, H., Veres, D., Parrenin, F., Martinerie, P., Ritz, C., Capron, E., Lipenkov, V. Y., Loutre, M.–F., Raynaud, D., Vinther, B. M., Svensson, A. M., Rasmussen, S. O., Severi, M., Blunier, T., Leuenberger, M. C., Fischer, H., Masson–Delmotte, V., Chappellaz, J. A., and Wolff, E. W.: delta Deuterium measured on ice core EDC on AICC2012 chronology, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.824891, 2013.
- Extier, T., Landais, A., Bréant, C., Prié, F., Bazin, L., Dreyfus, G., Roche, D. M., and Leuenberger, M.: δ¹⁸O_{atm} records between 100 - 800 ka from EPICA Dome C ice core, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.887323, 2018.
- Jang, Y., Han, Y., Ryu, Y., Moon, J., Ju, H.-T., Yang, J.-W., Lee, H.-G., Jun, S. J., Lee, J., Hur, S. D., Lee, J. I., and Ahn, J.: A preliminary study for blue ice in Victoria Land, East Antarctica, Journal of the Geological Society of Korea, 53, 567 - 580, https://doi.org/10.14770/jgsk.2017.53.4.567, 2017.
- Landais, A., Dreyfus, G. B., Capron, E., Jouzel, J., Masson-Delmotte, V., Roche, D. M., Prié, F., Caillon, N., Chappellaz, J., Leuenberger, M., Lourantou, A., Parrenin, F., Raynaud, D., and Teste, G.: EPICA Dome C Ice Core Terminations I and II Air Isotopes and CO2 Data, NOAA/WDS for Paleoclimatology [data set], https://www.ncei.noaa.gov/pub/data/paleo/icecore/antarctica/epica_domec/edc2013d18oatm.tx
- Rhodes, R. H., Brook, E. J., Blunier, T., McConnell, J. R., and Romanini, D.: Experiment-time-integrated CH4 data from all 3 instruments, calibrated and corrected for solubility and gravitational effects of the WAIS-Divide ice core, Antarctica, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.875980, 2017.
- Severinghaus, J. P.: Low-res δ15N and δ18O of O2 in the WAIS Divide 06A Deep Core, U.S. Antarctic Program (USAP) Data Center [data set], https://doi.org/10.7265/N5S46PWD, 2015.
- Sigl, M., Fudge, T. J., Winstrup, M., Cole-Dai, J., Ferris, D., McConnell, J. R., Taylor, K. C., Welten, K. C., Woodruff, T. E., Adolphi, F., Bisiaux, M., Brook, E. J., Buizert, C., Caffee, M. W., Dunbar, N. W., Edwards, R., Geng, L., Iverson, N., Koffman, B., Layman, L., Maselli, O. J., McGwire, K., Muscheler, R., Nishiizumi, K., Pasteris, D. R., Rhodes, R. H., and Sowers, T. A.: The WAIS Divide deep ice core WD2014 chronology Part 2: Annual-layer counting (0 31 ka BP), Clim. Past, 12, 769 786, https://doi.org/10.5194/cp-12-769-2016, 2016.
- Buizert, C., Fudge, T. J., Roberts, W. H. G., Steig, E. J., Sherriff-Tadano, S., Ritz, C., Lefebvre, E., Edwards, J., Kawamura, K., Oyabu, I., Motoyama, H., Kahle, E. C., Jones,

T. R., Abe-Ouchi, A., Obase, T., Martin, C., Corr, H., Severinghaus, J. P., Beaudette, R., Epifanio, J. A., Brook, E. J., Martin, K., Chappellaz, J., Aoki, S., Nakazawa, T., Sower, T. A., Alley, R. B., Ahn, J., Sigl, M., Severi, M., Dunbar, N. W., Svensson, A., Fegyveresi, J. M., He, C., Liu, Z., Zhu, J., Otto-Bliesner, B. L., Lipenkov, V. Y., Kageyama, M., and Schwander, J.: Antarctic surface temperature and elevation during the Last Glacial Maximum, Science, 372, 1097 - 1101, https://doi.org/10.1126/science.abd2897, 2021.

