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A study of propagation of ULF waves using Antarctic
magnetometer network and satellite measurements
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Multi—instrument data from Jang Bogo Station (JBS) in Antarctica were utilized to
study ionospheric responses to the 11 May 2019 moderate geomagnetic storm.
These include Vertical IncidentPulsed lonospheric Radar (VIPIR)/Dynasonde,
Fabry—Perot Interferometer (FPI), GPS vertical total electroncontent (VTEC), and
magnetometer. The VIPIR/ Dynasonde observed long—lasting (>11 hr) severe
depletion of the electron density in the F—region ionosphere over JBS. During the
depletion interval, GPS TEC also correspondingly decreased, FPI neutral temperature
was significantly enhanced, and the polar magnetic field variations showed positive
and negative excursions in the Y (east) and Z (vertical) components, respectively.
GK—-2 A satellite, located ~2.5 hr west of JBS, observed negative magnetic field
perturbations in the azimuthal BD component at geosynchronous orbit during the
depletion of ionospheric plasma. Such a BD perturbation at geosynchronous orbit is
due to the field—aligned currents flowing out of the ionosphere. From these
observations we suggest that transpolar ionospheric currents connected to the
field—aligned currents flowing on a substorm wedge—shaped circuit act as a source
of polar atmospheric heating during the moderate geomagnetic storm interval and
that elevated heavy molecular gases (02 and N2) by atmospheric heating contribute
to the electron density depletion via increased recombination rate.
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Abstract Mult-instrument dats from Jang Bogo Stafion (JBS) in Anlarctics were utilized Lo stsdy
ionospheric msponses o the 11 May 2019 moderate peomagnesic storm. These include Vertical Incident
Pulsed Ionospheric Radar (VIPIR VDynasonde, Fabry-Ferot Interferometer (FPI), GPS vertical total electron
conient (v TEC), and magnetometer. The VIFIR/Dynasonde observed long-lasting (=11 hr) severe depletion

of the clectron density in the F-region ionosphere over JBS. During the depletion interval, GPS TEC also
cormespondingly decreased, FPI neotral e mperature was significantly enhanced, and the polar magnetic Geld
variations showed positive and negative excursions in the Y (cast) and Z {vertical) components, respectively.
GE-2 A sarllite, located ~:2.5 hr west of JBS, obsened nepative magnetic field perturbations in the arimuthal
By, component at grosynchromous orbit during the depletion of ionospheric plasma. Such a B, perturbation

at peosynchronous orbit is doe to the field-aligned corrents flowing out of the ionesphere. From these
ohaervations we sugpest that ranspolar ionospheric curents connected to the field-alipned curents flowing on
& substorm wedge-shaped circuif act a5 a source of polar atmospheric heating during the moderaie. peomagnetic
storm interval and that elevated heavy mobecular gases (O, and N,) by atmospheric heating contribute to the
electron density depletion via increased recombination rate.

Plain Language Summary Geomagnetic storms considerably influsnce the high-latitude
ionosphere in its density distributions as well as dynamics. In the present paper, we neport msalis of mult-
instruments observations of the stom-fime ionospheric chanpes with simultineously oheerved thermospheric
anc magnedospheric changes. The Vertical Incident Pulsed lonospheric RadarDynasonde and total electron
conienis measured by ground GPS recriver observed depletion of the ionospheric electron density, We
confirmed from model msolis that the depletion was caused by the epwelling atmospheric molecular pases,
The heated neotral atmosphen was also confirmed by the observations for the themosphere from o Fabry-Perot
interferometer. The current syslem is 4 key process to enhanced the lower atmospheric emperature. During
the depletion inferval, the magnetic field on the ground showed significant vanations. The geosynchronoes
saiellie also obaerved negative Muctuations in the azimuthal component at around Jang Bogo Station, which
cormesponds to the fluctuation of the pround magnetic field. Such fluctuations at prosynchronos orbit ans
strongly miged with field-aligned curment that ame part of 8 cerent sysiem associated with substorm. These
ohservations support that field-aligned current plays as & soarce of polar ionespheric heating during the
moderale promagnelic siorm.

1. Imtroduction

We have been monitoring the state of the jonospher: sinoe 2015 at Jang Bopo Station (JBS) which is bocated at
Terra Mova Bay in Northern Vicloria Land, Antarclica (geographic: 74.62°5, 164.22°E/AADGM peomagnetic:
TY.9°8, 53.6°W), using an ionospheric soanding system (Ham et al., 2020; KEwon et al., 2018). The radio pulscs
transmitted from sounding system are reflected at varions ionospheric layers below the peak. and the ionospheric
electron densities are determined by analyring the receiving signals from the bottomside ionosphere.

It is well known thet the ionosphers in the polar region haes distinct Eatures by compering with low- and mid-lat-

medium, provided the originsl work =
propechy cied. itwde. Figumes la and b show typical daily variations of the ionospheric electron density during summer and
EWON ET AL 1 of 16
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wedge and the intensification of substorm mepresented by SML in Figure 9a. The positive perturbation in By
starting at 11:36 UT was followed by a large negative excursion at 12:10 UT. This may be due to the fact that the
location of the fisld-aligned current flowing out of the ionosphere changes from east to west with espect w JBS.
Mote that the large negative GE-2A B, perturbation occurred simultaneously with the large perturbations of the
magnetic field almost coincides with the initiation of the ionospheric depletion (~10:30-22:00 UT) over JBS.
Themfore, it is concluded that the polar cap fonospheric depletion on 11 May 2019 may be closely associated
with substorm-related currents.

5. Conclusions

The ionospheric responses to the 11 May 2019 moderak: geomagnetic storm ame investigated vsing multi-instru-
ment data obtained from VIPIR, FPI, GPS, and magnetometer st JBS in the polar cap region and electron flux
and magnetic ficld data measured by GR-2A at geosynchronous orbit. We observed long-lasting (=11 hr) clec-
tron density depletion in the F-region fonosphere over JBS. During the F-region depletion interval, the F-region
depletion was observed to be correlated with magnetic perturbations in the azimuathal B, component at GE-24
satellite, which is located ~1.5 hr west of JBS. Such a B perturbation at geosynchronous orbit is due to field-
aligned currents flowing out of the ionosphere. The polar magnetic ficld variations measured at JBS showed
positive and negative excursions in the Y and Z components, respectively, during the negative By, perturbation
at geosynchronous orhit. The JBS magnetic field perturbations am mainly due to transpolar ionospheric curments
connected to the field-aligned currents flowing on a substorm wedge-shaped circuit. These currents act as a
source of polar upper atmospheric heating during the moderate geomagnetic storm inerval. We suggest that
elevaied heavy molecular gases (0, and N,) by atmospheric heating contribute to the electron density depletion
via enhanced mcombination.

Data Avallability Statement

The data set eecorded at the Jang Bogo Station can be accessed online (at httpsoVkpde koprime kr). The data of
GK-2A are available from Mational Metcorological Satellite Center (hitpe/nmsc.kma.go.kr') and the high-res-
olution data need to be mquested. TheThe solar wind and IMF data are available from MASA Goddard Space
Flight Center Space Physics Data Facility (https:fomniweb. gafenasa gov). The SML auroral electrojet index was
provided by SuperMAG (https:/supermag jhuapl edu). The polar cap magnetic index was obtained from hitps/
peindex.org.
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September 12, 2018 s

indicates that wave—in

We report the concurrent observations of

-

—region plasma changes and
(FACs) above isolated proton auroras (IPAs) associated with

electromagnetic ion cyclotron Pc1 waves. Key events on March 19, 2020 and

how that ground magnetometers and all—sky imagers detected

concurrent Pc1 wave and IPA, during which NOAA POES observed precipitating
energetic protons. In the ionospheric F—layer above the IPA zone, the Swarm
satellites observed transverse Pc1 waves, which span wider latitudes than IPA.
Around IPA, Swarm also detected the bipolar FAC and localized plasma density

enhancement, which is occasionally surrounded by wide/shallow depletion. This

duced proton precipitation contributes to the energy transfer

from the magnetosphere to the ionosphere.
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Isolated Proton Aurora Driven by EMIC Pcl Wave:
PWING, Swarm, and NOAA POES Multi-Instrument
Observations

Hyangpyo Kim'? (), Karuo Shickawa! [, Jacheung Park™ | Yoshizumi Miyoshi 1),
Yukinaga Miyashital® U, Claudia Stolle ', Hyunju Kim Connor? (7, Junga Hwang4 [,
Stephan Buchert® ©, Hyuck-Jin Ewon’ ', Satoko Nakamura', Kohki Nakamura' -,
Shin-Ichiro Ovama'® |, Yuichi Otsuka® ', Tsutomn Nagatsuma® ', and Kaori Sakaguchi® (7

Institote for Space-Earth Emaronmental Rosearch, Napoya University, Nagoys, Japan, *Geophysical Institute,
University of Alaski, Fairhanks, AK, USA, "Korea Astronomy and Space Science Institute, Deegeon, South Korea,
“Korea University of Science and Technology, Daegeon, South Eorea, *GFE Germun Research Centre for Gessciences,
Paislam, Germany, *Swedish Insiituis of Space Physics, Uppsals, Sweden, "Kores Polar Besesrch Instttute, Incheon,
South Korez, "Notonal Institule of Polar Research. Tachikewa, Japan, YMatonal Instituie of Infbrmaton and
Commumnications Technology, Tokyn, Iapan

Abstract We repont the concurrent observations of F-region plasma changes and feld-aligned
currents { FACs) above isplated proton auroras {IPAs) ssseciated with electromagnetic ion cyclotron Pel
waves. Key events oo March 19, 2020 and September 12, 2018 show that pround magnetometers and
all-sky imagers detected concurrent Pel wave and [PA, during which NOAA POES observed precipitating
enerpetic protons. In the ionosphenc F-layer above the [PA zone, the Swarm =atellites observed transverse
Pcl waves, which span wider latitudes than IPA. Around 1PA, Swarm also detected the bipolar FAC and
localized plasma density enhancement, which is occasionally surrounded by wide/shallow depletion.
Thiz indicates that weve-induced proton precipitation contributes to the energy transfer from the
magnetosphere to the ionosphere.

Plain Language Summary Electromagnetic ion cyclotron {EMIC) wave is known to
precipitate energetic protons into the Earth's atmosphere via pitch angle scattering. Observations

from ground-based mapnetometers, all-sky imagers, and low Earth orbit satellites have shown that

the precipitsting protons scattered by EMIC waves can generate proton aurora isolated at a subauroral
latitude. Thiz kind of aurora is celled isolated proton aurora {IPA, or detached proton awroral arc) In

the present paper, we report the observations of concurrent Pcl wave, proton precipitation, ionospheric
perturbation, field-aligned currents (FACs}, and IPA using data from groond instruments, and from the
Swarm and NOAA POES satellites. The observations show that the lztitudinal {L-shell) size of EMIC wave
at Swarm altitude iz larger than that of the IPA. We also investipated the effects of proton precipitation
on the ionospheric F-layer from Swerm satellite data. and found localized plasme density enhancement
and FAC near the central IPA region. Our results demonstrate that the EMIC-driven proton precipitation
contributes to the energy transfer from the magnetosphere to the ionosphere.

1. Introeduction

Electromagnetic ion cyclotron (EMIC) Pcl waves have been known to precipitate energetic protons (Comn-
wall et al., 1970 Erlandson & Ukhorskiy, 2001; Jordanova et al., 2001} and relativistic electrons {Miyoshi
et al., 2008; Usanova et al, 2014} into the Earth's stmosphere via pitch angle scattering induced by resonant
wave-particle interactions, Observations of precipitating protons (>30 keV) associated with Pcl wave were
first reported by Yehnina et al. (2000} using dats from the MOAA-12 satellite and the Sodankyld ground
magnetometer. Yahninz et al. (2003} investigated energetic proton precipitation with/without lower en-
ergy (<20 keV) counterparts during Pcl wave activity and showed that the type of Intervals of Pulsations
with Diminizhing Periods (IPDP) Pcl waves is mostly accompanied by lower-energy proton precipitations.
Miyoshi et al. {2008) first reported simultsneoas observations of relativistic electron and energetic proton
precipitations caused by the EMIC wave.
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{e:g.. Archer et al., 20019) are accompanied by icnospheric irregularities with local density enhancements
{SAR arc)and depletion=s {(STEVE) in the auroral regions. Our study also showed that an TPA event is accom-
panied by localized plasma density enhancemenis in the plasma trough. Hence. it is worth investigating the
stutistical ionospheric response to 1PAs based on more evenits and additional data sets, including magneto-
spheric satellites. In conclusion, our observations demonstrated that energetic proton precipitation driven
by EMIC wuves contributes to the energy transfer from the magnetosphere to the ionosphere.

Data Avallabllity Statement

The PWING ASI and induction magnetometer data are distributed from the ERG-Science Center (ASL
hitps:/ ferpsc.isee. naguya-u_ac jp/datafenzse)/ ground/ camern/omti/esif, Induction magnetometer: hitps://
erpsc. isee. nagova-u.ac. jpldataergse) ground geomag fisee/induction/) operated by 1SAS/TAXA and [SEE/
Magova University {Mivoshi et al., 2018). The induction magnetometer data set recorded at the K55 is pro-
vided by EOPRI (lead institute, South Korea) and can be downloaded at hitp://mirl unh edu/ULF/cdF,
The Swarm Vector Field Magnetometer, Langmuir Probe and FAC data were obtained online from hitps://
swarm-diss.eo.esaint/. NOAA POES SEM-2 data were downloaded at https://satdztngde noaa.gov/sem/
poes/data)
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We present observations of broadband (~10-50 mHz) Pc3-Pc4 waves on 4 January

2014. The waves were detected on the dayside simultaneously in a compressional
component (J&Bz) at the Radiation Belt Storm Probes A (RBSP-A) in the inner
magnetosphere and in the north-south component (J4) on the ground at a
low-latitude Bohyun (BOH) station (L = 1.3) during an interval of small interplanetary
magnetic field cone angle, suggesting that upstream ultralow frequency (ULF) waves
were the source of the magnetospheric Pc3-Pc4 waves. We observed the
ground-satellite high coherence between RBSP-A JBz and BOH JH for a prolonged
time interval lasting 6.5 hr, which has not been reported previously, during which
RBSP-A was on the inbound and outbound legs moving from L = ~3.3 to ~6.3. In
order to understand the spatial mode structure of the compressional waves, we
examined the ground-satellite cross phase for the high-coherence interval and found
that the waves observed in and out of the plasmasphere propagated earthward at the
average fast-mode speed of ~700-1,000 km/s. We also observed cross-phase values
smoothly changing with the radial distance of the spacecraft across the
plasmapause. This indicates that the presence of the plasmapause has little effect

on our fast-mode waves propagating into the inner magnetosphere and to the ground
low-latitude station.

X AL Entel Aty 7z

xlof et L T[2o| otz | oY AFoIM ALEE 2MIIHE2
A =&E%tet Pe1-2 mbsof dlof Fuleot &2 | ULF ots ATz ALEE Jtsdol =2 A
Pc 3-4 mlsS EME=2EMN F mtse| XolE | 2 7|HEch

gl st




L)

ADVANCE Chack for

|
AV i

JGR Space Physics

RESEARCH ARTICLE
10.1029/ 2020/ ADZE074

Special Section:

Probing the Magnetasphere
through Magnetoseismology
and Ultra-Low-Frequency
Waves

Key Points:

+ Poi-Pod woves wers simulbneously
abserved inspece and on the ground

2t a leree-Tatitude shtion
+ The gromd satellile coherenos was

high in the 10-50 mHz hand fora &

5-hr imterval

+ The broadhand Foi-Pod waves
propagaied into the nner
magnetmsphers and to the ground

Correspondence to:
E-H Kim,
klen@khuac

Citation:

Kim, G-1, Kim, E-H, Kwon, HoAd,
Shinlarwa, K, Takahashi, K &
Huang, I (3140 Lng-hxting
ground-saiellite high coherence of
compressional dayside Pod-Pol
pulsations. foumal af Feophsml]
Reseroh: Spoce Physics, 125,
AT AGERITS . hitps i ongy
101029 A0 LR T4

Rereived 2 APR 20130
Accepied 25 JUN 030
Accepied articls anline 16 JUL 30

EN1A0. Ammerican Geophysical Union.
Al Rights Reserved.

Long-Lasting Ground-Satellite High Coherence

of Compressional Dayside Pc3-Pc4 Pulsations

Gi-Jeong Kim', Khan-Hyuk Kim" (), Hyuck-Jin Kwon', Kazuo Shiokawa',

Kazne Takahashi® (), and Junga Hwang®* ()

'School of Space Research, Kyung Hee Unlversty, Seoul, South Korea, *Institute for Space-Earth Environmen tal
Resaarch, Nagova University, Magoya, Japan, Yohne Hopkins U nivesity Appliad Physies Laboratory, Laurel, MD, USA,

*Einrea Agronomy and Space Science Institute, Dasjeon, South Korea, *Department of Astronomy snd Space Sclence,
Universty of Solence and Techrology, Dasjeon, South Eorea

Abstract We present observations of broadband {~10-50 mHz) Pe3-Pod waves on 4 January 2014,
The waves were detected on the dayside simultaneously in a compressional component (58, at the
Radiation Belt Storm Probes A (RBSP-A) in the inner magnetesphere and in the north-south component
(&H) on the ground at a low-latitude Bohyun (BOH) station (L = 1.3) during an interval of small
interplanetary magnetic field cone angle, sugpesting that upstream ultral ow frequency (ULF) waves were
the source of the magnetospheric Ped-Ped waves. We observed the ground-satellite high coherence between
RBSP-A 8B, and BOH §H for a prolonged time interval lasting 6.5hr, which has not been reported
previously, during which RBSP-A was on the inbound and outbound legs moving from L =~33to ~63. In
order to understand the spatial mode structure of the compressional waves, we examined the
ground-zatellite cross phase for the high-coherence interval and found that the waves observed in and out of
the plasmasphere propagated earthward at the average fast-mode speed of ~700-1,000 km/fs. We also
observed cross-phase values smoothly changing with the radial distance of the spacecraft across the
plasmapause. This indicates that the presence of the plasmapause has lHttle effect on our fast-mode waves
propagating into the inner magnetosphere and to the ground low-latitude station.

1. Introduction

In the solar wind upstream of the bow shock, large-amplitude ultralow frequency (U LF) waves (upstream
waves) in the Pe3-Ped band (7-100 mHz) have been observed when the interplanetary magnetic field
(IMF) cone angle issmall (Fairfield, 1969; Russell, 1994}, It has been known that these upstream waves are
generated by ion-beam instability in the solar wind upstream of the bow shode. Since the strength of the
IMF is one of parameters for the ion cyclotron resonance condition of the fon beam directed upstream from
the bow shock, the IMF magnitude is an impaortant factor controlling the frequency of the upstream waves,
Pe3-Pod magnetic pulsations are commonly observed in the dayside magnetosphere and are believed to pro-
pagate into the inner magnetosphere and to the ground. Previous studies reported that the occurrence prob-
ahility, amplitude, and fequency of Pe3-Ped pulsations detected in the magnetosphere and on the ground
depend on the IMF direction and magnitude (Bol'shakova & Troitskaya, 1968; Greenstadt & Olson, 1977;
Odera, 1986; Russell & Hoppe, 1981; Troitakaya et al., 1971; Yumoto et al, 1985). These observations have
been taken asevidence that upstream ULF waves are a major source of magnetospheric Pe3-Ped pulsations.

Pe3—Ped pulsations of upstream origin are expected to be in a compressional component in the magneto-
sphere because only the magnetosonic fast mode is capable of transferring energy across a closed magneto-
patse {(McKenze, 1970). Spaoecraft observations of compressional Pe3-Ped magnetic pulsations in the outer
magnetosphere (e.g., Matsuoka et al, 1997; Odera et al., 1994, Takahashi, Anderson, etal,, 1994; Takahashi,
1994 and in the inner magnetosphere (e.g., Kim et al, 1998; Kim & Takahachi, 1999; Takahachi et al., 2010,
2015) provide strong support for propagation of the external Pe3-Pod waves into the magnetosphere. Such
compressional waves are also seen at ground stations at high latitude (eg., Takahashi, Anderson, et al,
1994 ) and low latitude (eg., Ansari & Fraser, 1986), indicating propagation of ULF waves from the upstream
region to the ground.

Although simultaneous ground-satellite observatdons provide clear evidenoe for propagation of external
compressional Pe3-Ped waves into the inner magnetosphere and to the ground, there remains a question
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time delay along a radial path between RBSP-A to BOH as a function of L. The RBSP-A orbit was split into
inbound (blue) and outhound (red) legs crossing the plasmapause at 16,6 and 11L.1h MLT, respectively.
The average fst-mode ve ocity and time dd ey shown in Figures 15b and 15¢ is a repeat of Figure 9 but plotted
separately for the inbound and outbound legs as a function of L. It is confirmed that the dme delay (ie.
fast-mode propagation tme) is monotonically decreasing as decreasing L without a significant ime delay
across the plasmapause. This indicates that the presence of the plasmapause has little effect on our
fast-mode waves propagating from the outer magnetosphere o the deep magnetosphere,

5. Conclusions

We have studied the properties of compressional Pe3-Ped pulsations observed on the dayside simulta-
neously by multiple spacecraft in the magnetsphere over a wide range of radial distance and on the
ground at a low-latitude BOH station (L = 13} From the IMF condition we confirmed that the souroe
of dayside Pc3-Pod pulsations is upstream ULF waves. The ground-satellite coherence between RBSP-A
8B, and BOH &H is persistently high in the 10- to 50-mHz band for a prolonged time interval lasting
6.5 h during which RESP-A was on the inbound and outbound legs moving from L = ~3.3 to 6.3. We
examined the ground-satellite cross phase to determine whether the Pa3-Pod compressional waves ane
propagating ar standing in the inner magnetosphere over the high-coherence interval and found that
the com pressional waves observed in and out of the plasmasphere are propagating earthward. We also
observed cross-phase values smoothly changing with the radisl distance of the sppoecraft cossing the
plasmapause. This indicates that the presence of the plasmapause hag litle effect on our fast-mode waves
propagating from the outer magnetos phere to a low-latitude statdon. It should be noted that the present
study examined a single evenl. More study needs 0 be conducted to understand the effect of the plasma-
pause on compressional waves radially propagating into the deep inner magnetosphere and to the ground
and also to understand why some events (Takahashi et al, 2009, 2010) appear as radially standing waves
in the plasmasphere.

Data Availability Statement

Radiation Belt Storm Probes data used in this study are available online (at bttps:// cdaweb gsfc nasa gov )
The THEMIS data were obtained from the THEMIS data website (hitp://themisssl berkeley.edu)
Geomagnetic indices were provided by the Warld Data Center for Geomagnetism, Eyolo University
Chttp:ffwde kugi kyoto-uwacjp) The OMNI solar wind data are publidy available from the MASA Space
Physics Data Facility, Goddard Space Flight Center (http:/fomniweb.gsfc.nasa gov/ow himl). The Bohyun
(BOH) magnetic field data were provided by the Solar amd Space Weather Research Group in Korea
Astronomy and Space Science Institute (http/fkswre. kasirekrfen/) The Lanzhou (LZH) and Learmonth
(LMR) are available online (at https: /Moo inter magnet org).
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The Van Allen Probe A spacecraft observed strong ~0.5—Hz helium (He+) band and
weak ~0.8—Hz hydrogen (H+) band EMIC waves on April 17, 2018, at L = ~4.5-.2,
in the dawn sector, near the magnetic equator, and close to the plasmapause. We
examined low—energy ion fluxes observed by the Helium Oxygen Proton and Electron
(HOPE) instrument onboard Van Allen Probe A during the wave interval and found
that low—energy He+ flux (<10 eV) enhancements occur nearly simultaneously with
He—band and H—band EMIC wave power enhancements in a direction mostly
perpendicular to the background magnetic field without significant low—energy H+
and O+ flux variations. We suggest that cold He+ ions ({1 eV) are preferentially and
transversely heated up 10 eV through the interaction with EMIC waves inside the
plasmasphere. The low—Earth orbit spacecraft observed localized precipitations of
energetic protons in the upper ionosphere at subauroral latitudes near the magnetic
field footprint of Van Allen Probe A. Our observations provide a clear evidence that
EMIC waves play an important role in the overall dynamics in the inner

magnetosphere, contributing to the high—energy particle loss and low—energy particle
energization.
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A Case Study of Transversely Heated Low-Energy Helium
Ions by EMIC Waves in the Plasmasphere
Khan-Hyuk Kim' ', Hyoack-Tin Ewon® ', Junhyun Lee', Ho Jin', and Jungjoon Seough’

Schood of Space Research, Kyung Hee University, Gyeonggt, South Koren “Diviston of Climate Change Resesrch,
Korea Polar Research Institute, Incheon, South Komea, *Kores Astronomy and Space Science Instttute, Decpeon, South
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Abstract The van Allen Probe A spaceceaft ohserved strong ~0.5-Hz helium (He*) band and weak
~0.8-Hz hydrogen (H*) band EMIC waves on April 17, 2018, at L = ~4.5-5.2, in the dawn sector, near
the magnetic equator, and close to the plasmapause, We examined low-energy ion fuxes observed by

the Helium Oxygen Proton and Electron { HOPE) instrument onboard Van Allen Probe A during the
wave interval and found that bow-enengy He™ flux (<10 V) enhancements oocur nearly simultanecusly
with He-band and H-band EMIC wave power enhancements in a direction mostly perpendicular to the
background magnetic field without significant low-energy HY and 0% fux variations. We suggest that
cold Het ions (<1 V) are preferentially and transversely heated up 10 eV through the interaction with
EMIC waves inside the plasmasphere. The low-Earth orbit spacecraft observed localized precipitations of
energetic profons in the upper ionosphere at subaurorl latitudes near the magnetic field footprint of Van
Allen Probe A, Our observations provide a clear evidence that EMIC waves play an important role in the
overall dynamics in the inner magnetosphere, contributing to the high-energy particle loss and low-energy
particle energization.

1. Intreduction

Early theoretical works described that electromagnetic ion cyclotron {EMIC) waves are generated as trans-
verse left-handed polarized wuves near the magnetic equator by anisotropic (T, > Ty) protons with en-
ergies of ~10-100 keV, which are typical ion energies in the ring current (e.g., Cornwall, 1965; Kennel &
Petzchek, 1968). EMIC waves are excited during peomegnetically disturbed intervals associated with geo-
magnetic storms, substorms, znd solar wind dynamic pressure variations {e.g., Fraser & McPherron, 1982;
Ishida et al, 1087; Kim et al., 2007, https://doi.org/ 10,1029/ 20205 AD2850%; Meredith et al., 2002; Ol'son &
Lee, 1983; Usanova et al., 2008) and also occur under quiet peomagnetic conditions (K.-H. Kim et al., 2016b,
hitps://doi.one/ 10,1028/ 20205 AD28503; Park et al., 2014) over a wide L range {~4-12) at all local imesin the
Earth's magnetosphere (eg., Allen et zl., 2015; Anderson et al., 1992z, 1992h; Fraser & Nguyen, 2001; Keika
etal, 201%; G.-1. Kim et al., 2016z; Min et al | 2012; Saikin et al., 2015; Usancva et al., 2012}, The frequency
of EMIC waves obeerved in the magnetosphere falls in the Pel-Pe2 geomagnetic pulsation band {frequen-
cy = ~0.1-3 Hz). Ground magnetometers located at low to high latitudes routinely detect geomagnetic
pulsations in the Pcl-Po2 band (e.g., Bortnik et al., 20608; Engebreteon et al., 2002; Kwon et al., 202(;Mann
et al., 2014; Nomura et zl, 2011}, These ground Pel-Pc2 pulsations have been attributed to EMIC waves
propageting to the ground through the fonosphere along the field lines from the source region in the mag-
netosphere (e.g., H. Kim et al., 2017; Usanova et al., 2008},

Studies of EMIC waves including cold heavy jons {He* and O%) reported that the hesvy fons pley a signifi-
cant rode in determining the spectrzl and propagution properties of EMIC waves even though in small con-
centrations of cold heavy ions {~5%-10% for He* and ~1%-2% for O} {Kozyra et al., 1984; Mauk ot al., 1981;
Rouxet al., 1982; Young et al., 1981). In the presence of such cold heavy ions, EMIC waves can be generated
in three distinct bands: a H-band between the local H gyrofrequency (f,-) and He* myrofrequency (B )
i He-band between the local He* gyrofrequency (fm'J and OF gyrofrequency (fn,_]-, and an O-band below
1;:__. In situ observations in the inner and outer magnetosphere have provided clear evidence for the cold

heavy ion effects. Statistical stedies of EMIC waves using AMPTE/CCE and THEMIS data showed that the
He-band cccurrence rate is high in the late afternoon at L = ~% and that the occurrence rate of H-band
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Figure 8 {2} Linear growth mte of EMIC waves as a functdon of normalized frequency at Van Allen Probe A orbil for 2 plasma composition assumsed io be cold
prodons {E9% ), cobfd heltum fons (10%), and energetic protoms (1%} The energetic proton populations ere constdered to be T,/ Ty = 2.0 for two parallel energles
of 10 keV (black) and 33 keV (red ). The cold plasma denstty (¥, = 165 cm™") and background magnetic field intenstty {8y = 210 o) observed at Van Allen
Prusbe A foz the inderval of 11:24-11:25 UT ame ased for the caloulation. (b) The same as the magnetic feld inlensity and plasma parameters wsed to calcuinte the
result shown in Figure 10s excepl for 0.4% warm He® lons. 88.6% cold protons. EMIC, electromagnetic ion cyclotron,
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the H-band when the spacecraft wes just inside the plasmapause near the magnetic equator. Previous theo-
retical studies sugpested that cold He' jons can be heated by H-band and/or He-bhand EMIC waves. In our
casa it is likety that He-band waves play 3 key role in heating the cold He” ions.

The case event in oor study shows that the He* ions heated up to 10 @V, This energy is lower than that in the
previous studies. Since the present study is based on only one event observed on a single Van Allen Probe
A pass inside the plasmasphere, we cannot peneralize the guantitative arpument for the question: What is a
critical factor for the EMIC wave-driven Het heating? To answer the guestion, we need to ohserve the EMIC
wave-associated He™ heating events at various latitudes, longitudes, and radial distances and under various
background plasma and magnetic field conditions. Carrently, we statistically examine the relationship be-
tween EMIC He-band waves and cold ion heating. and the results will be presented in a related publication.

Data Avallability Statement

The Van Allen Probe A EMFISIS data were obtained from the University of lowa (hitpe//emfisis.physics.
uigwaedu), and the Van Allen Probe A HOPE data were obtained from the Van Allen Probes ECT web-
site- (https:! fwwwrrbsp-ect lanl goviscience/DataDirectories.php/ ). NOAA-I5 data are available at https://
cdeweb.gsfo nasa.gov
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Although electromagnetic ion cyclotron (EMIC) waves are commonly observed in the

magnetosphere and are believed to energize background cold ions, it is not clear
whether EMIC waves play a significant role in determining spacecraft potential
change. In this paper, we present two strong He—band EMIC wave events observed
by the Van Allen Probe—B spacecraft inside the plasmasphere. One event occurred
on 11 March 2016 when the spacecraft was on the dayside, and the other occurred
on 9 October 2016 when the spacecraft was in the postmidnight sector. When a
strong He—band EMIC wave activity was detected, low—energy ion flux
enhancements occurred nearly simultaneously with the EMIC wave power
enhancements. Both events presented in this study are clearly unique in that
He—band wave power and enhanced proton flux are extremely high. During the wave
activity interval, we found that the spacecraft charged more positively without a
significant change in the ambient electron density. We discuss whether low—energy
ions energized by EMIC waves can contribute to the spacecraft potential change.
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Spacecraft Potential Changes Associated With EMIC Waves in
the Inner Magnetosphere
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Ho Jin' O, Hyscks Jin Kwin?® O, Seul-Mia Back® ©, John Wygant* &), and Forrest 5. Muzer®
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Abstract Atthough electromagnetic ion cyclotron (EMIC) waves an commonly observed in the
magnetosphene and ane believed to epergize background cold jons, it is not clear whether EMIC waves play

a significant role in determining spacecraft potential change. In this paper, we present two strong He-hand
EMIC wave cvents observed by the Ven Allen Probe-B spececraft inside the plasmasphese. One event oocured
on 11 March 20 16 when the spacecraft was on the dayside. and the other occurmed on 9 October 2016 when

the spacecrafi was in the postmidnight sector. When a strong He-hand EMIC wave activity was detected,
low-cnergy fon flux enhancements occurmed nearly simaltaneously with the EMIC wave power enhancements,
Both events presented in this study are clearly unigue in that He-band wave power and enhanced proton flux am
extremely high. During the wave activity interval, we found that the spacecraft charged more positively without
& significant change in the ambicot clectron density. We discass whether low-cnergy ions energized by EMIC
waves can confribute to the spacecrali potential change.

Plain Language Summary inthe Earths magnetosphere the spacecrail poential is determined

biy the current balance between escaping photoelectrons and incoming ambient electrons. Since the jons am
considerably momr massive than the electrons, implying that electrons are mobile than ions, the ion curmenis
from the ambient plasma have been neplected for the current balance. Spacecrafi interactions with the ambient
plusma give rise to spacecrafi charging. During the interval we focus on in this study, the spacecrafi charged
positively, indicating that the photoelectron current is larper than the electron carrent from the ambéent plasma.
When the spacecraft observed strong electromagnedic ion cyclotron (EMIC) wave activity, low-cnergy proton.
and helium ion flux enhancements occurred nearly simultaneously with the EMIC power enhancemnents. At
the time of EMIC waves, the spacecraft charped more positively. From these ohservations, we supgest that
wave-associaied low-coergy ion flux enhancements, cormsponding to the secumulation of positive ions from
the surrounding plasma on spacecrafl surface, lead to mone positive sarface charging.

1. Introduction

The spacecraft poiential is primarily determined by the balance between the incoming thermal electron current
from the surrounding plasma and the photoelectron corment emitted from the spacecraft in the Earth's magneto-
sphem whene both currents sre dominent current sources {e.g., Escoubet ef al., 1997; Pedersen, 1995). Spacecraft
interactions wilh the ambient plasma give rise to spacecraft charging. Negafive charging is predominzant since the
electron flux is aboot two orders of magnitude preaier than the jon flun &< long as the ion and electron enerpies
are of the same order of magnitude. During intense electron flux periods, electrons peoerate & strong incoming
clectron corment and cause large negative spacecrafl charging by overiaking the photoelectron curment (Mullen
et al, 1986; Olsen, 1983; Samo-Smith et al.,, 2016). That is, them is a connection betwesn negative chargping
and electron fluxes. When a saseHite is in sunlight, positive charging 15 measered. This is doe to photoslectron
current, which is exceeding the thermal electron current from the ambient plasma. The ions ar considerably
mamr massive than the electrons, implying thal electrons s more mobile than ions, and thus, the amhient elec-
tron flux is much greater than that of the ambient jons. Consequently, the electron current is much larper than the
ion cwrend. In & useal magnetospheric condition, the ion currents from the ambient plasmia have been neglected
fior the current belance. High-energy electrons produce secondary electrons, which cause extra electron loss,
forcing the spacecrafi body to charpe positive to reattract them snd achieve corment balance (e.g., Garrett, 1961).
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We have studied two intervals exhibiting spacecrafi potential chanpes associated with strong He-band EMIC
waves obazrved by Van Allen Probe B inside the plasmasphere. We conclude the following:

1. Dwring the He-band EMIC wawe cvents, lew-energy proton, and heliom jon flor enhancements occormed
nearly simulteneosly with the EMIC power enhancemenis.

2. When the low-energy proton fluxes ane strongly enhanced, the spacecraft charped momr positively without &
significant change in the backpround electron density.

3. EMIC waves encrpize cold fons up to suprathermal energies (lens of eV-a Ew hunded V)

4. We guantitatively examined whether EMIC wave-associated jon flux enhancements can lead to positive
spacecraft charping.

5. Owr guantitative analysis indicates that the enhanced proton curment estimaied in this study is neglecied for the
curment balance, determining the spacecraft potential.

6. Enhanced photoelectron escape driven by EMIC wave electric fizlds may contribute to more positive surface
charging.

Data Availability Statement

Van Allen Probe B EMFISIS dats wen: oblained from the University of lowa (hitpYemfisis physics. towaedu),
the Van Allen Probe-B HOPE data wen: obtained from NASA Goddard Space Flight Center Space Physics
Doata Facility Coordinaed Dats Analysis Web (hitpsicdaweb.psic nasa pov/pubidata’rhsp'y, and Van Allen
Probe-B EFW dats wers obtained from the University of Minnesota (hitpi/fararw space.umn edu/missions!
rhspe fw - home- university- oFminne sota).
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