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Abstract
High-throughput sequencing can produce hundreds of thousands of 16S rRNA sequence

reads corresponding to different organisms present in the environmental samples. Typi-

cally, analysis of microbial diversity in bioinformatics starts from pre-processing followed by

clustering 16S rRNA reads into relatively fewer operational taxonomic units (OTUs). The

OTUs are reliable indicators of microbial diversity and greatly accelerate the downstream

analysis time. However, existing hierarchical clustering algorithms that are generally more

accurate than greedy heuristic algorithms struggle with large sequence datasets. To keep

pace with the rapid rise in sequencing data, we present CLUSTOM-CLOUD, which is the

first distributed sequence clustering program based on In-Memory Data Grid (IMDG) tech-

nology–a distributed data structure to store all data in the main memory of multiple comput-

ing nodes. The IMDG technology helps CLUSTOM-CLOUD to enhance both its capability

of handling larger datasets and its computational scalability better than its ancestor, CLUS-

TOM, while maintaining high accuracy. Clustering speed of CLUSTOM-CLOUD was evalu-

ated on published 16S rRNA human microbiome sequence datasets using the small

laboratory cluster (10 nodes) and under the Amazon EC2 cloud-computing environments.

Under the laboratory environment, it required only ~3 hours to process dataset of size 200 K

reads regardless of the complexity of the human microbiome data. In turn, one million reads

were processed in approximately 20, 14, and 11 hours when utilizing 20, 30, and 40 nodes

on the Amazon EC2 cloud-computing environment. The running time evaluation indicates

that CLUSTOM-CLOUD can handle much larger sequence datasets than CLUSTOM and is

also a scalable distributed processing system. The comparative accuracy test using 16S

rRNA pyrosequences of a mock community shows that CLUSTOM-CLOUD achieves
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higher accuracy than DOTUR, mothur, ESPRIT-Tree, UCLUST and Swarm. CLUSTOM-

CLOUD is written in JAVA and is freely available at http://clustomcloud.kopri.re.kr.

Introduction
Microorganisms constitute a vital component of the biosphere. They are remarkably abundant
and occupy many kinds of environments including various human body sites [1]. Microbes
play crucial roles in ecosystems. They are involved in nitrogen fixation, utilized in the medicine
and food industry, cause numerous diseases, and are a rich source of new genes for other
organisms. Despite having been extensively studied for decades, many aspects of microbial
ecology and evolution still remain unexplored. Since the vast majority of microbes cannot be
cultured, it is desirable to analyze microbial diversity directly from environmental samples.
Recent advances in next-generation sequencing (NGS) have enabled generation of large
amount of 16S ribosomal RNA (rRNA) sequence data recovered directly from a variety of envi-
ronmental samples. Although the data provide a unique opportunity to deeply examine micro-
bial diversity and community structure, its efficient handling remains a bioinformatics
challenge.

The first step in the analysis of microbial samples recovered from various environments is
pre-processing, which includes trimming tag sequences, filtering out the low-quality reads,
removing chimera errors and dereplication [2]. Pre-processing is followed by clustering 16S
rRNA sequences into operational taxonomic units (OTUs). Since the number and size of
OTUs are obligatory indicators of the richness (e.g., number of different species) and evenness
(relative abundance of individual species across taxonomic groups) of microbial taxa present in
the samples [3, 4], sequence clustering is regarded as one of the most important and influential
steps in analyzing environmental data. Sequence clustering is effectively a taxonomy-indepen-
dent (or de novo) approach that can group microbial taxa even in the absence of reference data-
bases of known organisms [5]. Moreover, the use of representative OTUs greatly reduces the
computational time required in the downstream analysis of extensive data generated by high-
throughput sequencing platforms. Several algorithms have therefore been developed for accu-
rate and fast clustering of sequences into OTUs. Some well-known options include DOTUR
[6], ESPRIT [7], Cd-hit [8], UCLUST [9], mothur [10], CLUSTOM [11] and Swarm [12]. In a
recent comparative study, we showed that CLUSTOM gave superior clustering performance
and guaranteed both optimal accuracy and speed relative to its contemporaries [11]. Specifi-
cally, the clustering accuracy of CLUSTOM was similar to DOTUR but better than other hier-
archical clustering algorithms. Importantly, CLUSTOM that uses k-mer thresholds in
clustering sequences outperformed DOTUR and mothur in terms of computational time even
though the computational complexity of the three programs is basically O(N2). While both Cd-
hit and UCLUST (greedy heuristic clustering algorithms of complexity O(N1.2)) were faster
than CLUSTOM, their accuracy did not reach desirable levels [11]. Therefore, CLUSTOM
should be considered the method of choice to efficiently and accurately cluster 16S rRNA
sequences into OTUs, and importantly, is based on the natural phenomenon of prokaryotic
species divergence, unlike other algorithms [11]. However, the original version of CLUSTOM
relied on the CPU and memory resources of a single computational node, which limited its use
to small-scale datasets (generally up to 300K reads). To overcome this limitation we present
CLUSTOM-CLOUD, a significant upgrade to CLUSTOM, which can run in both the distrib-
uted and cloud-computing environments and can be conveniently scaled to process over one
million 16S sequences.

CLUSTOM-CLOUD: Sequence Clustering Based on In-Memory Data Grid
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Current distributed computing techniques such as Message Passing Interface (MPI) and
MapReduce of the Hadoop ecosystem are widely used to analyze large-scale sequence data in
bioinformatics fields. MPI has been in use for some time and offers portability and reliable per-
formance [13]. However, it is difficult to make application durable of fault tolerance which
means the ability to recover from one or more component failures in a manner with a transpar-
ent or application-driven mechanism. In turn, MapReduce of the Hadoop offers high scalabil-
ity and fault tolerance and is relatively easier to use [14–16]. However, it suffers from
occasional performance degradation and slow speed due to I/O bottlenecks between the CPU
and the hard disk [17, 18]. In addition, Hadoop MapReduce-based programs demand specific
installations and settings similar to MPI, which can be difficult to implement and time-con-
suming. Because of these limitations, a different distributed computing approach such as the
‘In-Memory Data Grid (IMDG)’ technology needs to be considered. This distributed approach
has recently become popular in industrial and information science fields to handle “big data”.
Some well-known applications include online banking, risk analysis, trading systems, e-com-
merce, and online gaming [19]. The IMDG data structure can store terabytes of data in Ran-
dom Access Memory (RAM) shared by multiple nodes. It provides three key advantages over
MPI and Hadoop MapReduce: (i) processes data much faster because all data can be stored
and accessed in memory, (ii) can be relatively easily scaled and executed without any compli-
cated installation, and (iii) is easy to implement for both parallel and distributed computing
systems.

To assess the speed performance of CLUSTOM-CLOUD, we prepared four sequence data-
sets of various sizes (50 K, 100 K, 150 K, and 200 K) from 16S rRNA data of microbial commu-
nities sequenced from different human body sites [1] exhibiting high, intermediate, and low
microbial complexity (see Methods). To demonstrate the scalability of CLUSTOM-CLOUD,
we analyzed one million randomly sampled sequences from the above-mentioned datasets by
gradually increasing the computing nodes on the Amazon Elastic Compute Cloud (EC2) com-
puting environment (20, 30, and 40 nodes). Comparative accuracy evaluation of clustering pro-
grams was also conducted using 16S rRNA sequences of a mock community. The speed and
accuracy comparison results revealed that implementation of IMDG technology and its addi-
tional enhancements such as sequence dereplication and k-mer transformation method (read
below) in CLUSTOM-CLOUD yielded speedier processing of large sequence datasets than its
ancestor CLUSTOM while maintaining the high accuracy. CLUSTOM-CLOUD is platform-
independent and can be conveniently scaled and upgraded to keep pace with the continuous
rise of biological sequence data.

Methods

System architecture
OTUs are inferred from the genetic distance between each pair of 16S rRNA sequences. While
the precise calculation of genetic distance requires exhaustive implementation of dynamic pro-
gramming such as the Needleman-Wunsch (NW) algorithm, determining optimal alignments
between millions of possible sequence pairs can be computationally intensive. While the heavy
computational time is difficult to reduce, we can significantly reduce the wall clock time by
building a high-performance distributed computing system. Following this rationale, we
adopted the k-mer transformation method and sequence dereplication steps (read below) to
significantly reduce the computational time while also considering network overhead effects by
finding optimal data granularity. Moreover, the majority of raw and intermediate data needs to
be stored in memory (i.e., IMDG data structure) rather than the hard disk of individual nodes
for faster execution. In consideration of these points, CLUSTOM-CLOUD has utilized a hybrid
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architecture comprising both peer-to-peer (useful for high-performance distributed comput-
ing) and client-server (appropriate because most data needs to be stored in memory) cluster
approaches [20]. The hybrid architecture consists of two components: Cluster and Application
(Fig 1).

Cluster is a collection of N-nodes that share the computational task of deriving OTUs and
determining sequence clusters. To support IMDG, each Cluster Node partially stores overall
data in the ‘owner’ area of RAM (Fig 1), referenced by the ‘key-value’ data structure (read
below). To avoid data loss resulting from the unexpected shutdown of some nodes, each node
has an additional ‘backup’ area linked to another node (solid lines in Fig 1). The owner and
backup constitute a single data partition [20] and a similar design is implemented across N-
nodes to store the entire dataset directly into memory. In turn, Task Tracker is a logical unit for
processing requested tasks. It contains definitions of operations, information about the
required number of threads, and the range of sequences to be processed by each node. Task
Tracker processes a distributed task in parallel using multi-threads and is assigned to each
node by the Job Tracker of Application.

The Application unit activates the Cluster upon user request. It is composed of Job Tracker
and Data Manager. Job Tracker assigns Task Tracker to each Cluster Node (dotted lines in Fig
1) and routinely checks its status. In case of any malfunction, it can automatically reassign
Task Tracker to another node, thus continuing the operational chain. Although the IMDG data
structure provides functionality for checking node heartbeat, it does not support reassigning a
failed task to another node. Therefore, Job Tracker is a crucial component of the architecture to
support the high availability of CLUSTOM-CLOUD. In turn, Data Manager integrates partial
results from multiple Task Trackers and generates initial and final clustering results (Fig 1,

Fig 1. System architecture.CLUSTOM-CLOUD consists of Application andCluster units. Application is composed of Job Tracker and Data Manager. Job
Tracker assigns Task Tracker to each Cluster Node in Cluster and checks its status. Task Tracker processes a distributed task in parallel using multi-threads.
Data manager manages processed results and generates clustering results.Cluster is a set of N-nodes, which are unified by IMDG.Cluster is composed of
Cluster Node and Task Tracker. A part of RAM in eachCluster Node is assigned to IMDG data structure and backup area.

doi:10.1371/journal.pone.0151064.g001
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double dashed line). It also clears temporary data from memory to ensure maximum availabil-
ity of resources during all stages of processing.

Clustering workflow
The workflow of the previous version CLUSTOM consisted of three major steps: k-mer thresh-
old determination, initial clustering and refinement. In the k-mer threshold determination step,
CLUSTOM randomly samples a subset of sequences from a given 16S input dataset. Next, k-
mer and NW distances between all possible sampled sequence pairs are calculated to determine
the k-mer threshold that corresponds to the user-defined NW distance threshold (e.g., 3% dis-
similarity of 16S sequences). In the initial clustering step, CLUSTOM calculates k-mer distance
of each pair in the 16S input sequences, chooses sequence pairs below the k-mer threshold,
connects the two sequences of the individual pairs to each other and constructs an initial net-
work only with the selected sequence pairs [11]. CLUSTOM then searches for the sequence to
which the largest number of other sequences is directly connected. This highly connected node
in the network is then treated as seed that, along with its directly connected sequences, is used
to build an initial cluster. This process is repeated to determine additional seeds and clusters
from the remaining sequences until each cluster is left with only one sequence (i.e., a singleton).
The refinement step then calculates NW distance for each pair of seed sequences as well as the
singletons determined in the initial clustering step and builds a refined network. The sequence
to which the largest number of sequences is connected is treated as the refined seed. CLUSTOM
then determines the first final cluster consisting of the refined seed, sequences in the refined
network directly connected to the refined seed (neighbors) and sequences in the initial network
directly connected to either the refined seed or its neighbors [11]. Next, final clusters are itera-
tively determined in the same manner as described in the initial clustering step. Although
CLUSTOM-CLOUD clusters sequences in a similar way, the workflow is different because of
distributed processing based on IMDG and additional enhancements. Below, we outline the
workflow of CLUSTOM-CLOUD focusing primarily on the upgrades that led to significant
performance improvement in sequence clustering (Fig 2). More methodological details and
rationale for the CLUSTOM workflow can be found in [11].

Preprocessing
Before loading data into IMDG, each input FASTA file consisting of 16S rRNA reads is prepro-
cessed by, (i) the removal of duplicate sequences and (ii) transformation of k-mer strings into
numeric values (Fig 2). Sequence data produced by microbial diversity projects may contain
duplicate sequences depending on the properties of microbial diversity in samples [21]. In
CLUSTOM, duplicates were used to find the most connected nodes during the initial clustering
and refinement steps. However, they were retained through the entire clustering procedure and
unnecessarily consumed additional computing time and resources. Therefore, an additional
feature of CLUSTOM-CLOUD is the dynamic treatment of duplicate reads. Specifically, dupli-
cates are removed before loading data into IMDG but are recovered during the clustering steps.
Similar to other clustering programs (e.g., mothur, ESPRIT-Tree, UCLUST, Swarm, etc.), the
dereplication contributes to reducing the overall processing time. Similarly, calculation of k-
mer distances between each pair of input sequences was the most time-consuming step in
CLUSTOM, requiring polynomial complexity O(N2), with N representing the total number of
sequences. Therefore, performance could be significantly improved if k-mer distance calcula-
tion time was somehow accelerated. We accomplished this task by loading all k-mer strings
and their corresponding number of occurrences directly into memory before distance calcula-
tion. Because this operation still involved a huge number of comparisons between k-mer
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strings, we transformed k-mers into numeric values using the hash map data structure (Fig
3A). Specifically, each k-mer in sequence (key) was transformed into a non-redundant numeric
value corresponding to each key in the hash map (Fig 3B). For k-mer strings not present in the
hash map, a new key and value was dynamically created.

Initial clustering
The k-mer distance between each input sequence pair is calculated using parallel and distrib-
uted computing (Fig 2A). All tasks are distributed to Cluster Nodes sequentially by the Job
Tracker and then processed in parallel using multi-threads by Task Tracker. To reduce com-
munication overhead associated with sending data between nodes and IMDG, intermediate
results generated during the process of the unit task are first saved in the local memory of the
processing node. Upon completion of the unit task, processed results are merged sequentially
into IMDG (Fig 2B, Merge phase) with simultaneous removal of intermediate data from the
local memory. The workflow is similar to that of Hadoop MapReduce [22] but differs in the
timing of when processed results are merged. In MapReduce, results are merged upon comple-
tion of all distributed tasks. In turn, CLUSTOM-CLOUDmerges processed results after each

Fig 2. Schematic diagram of clustering workflow. 16S rRNA sequences in FASTA format are provided as
input. Each input file, already checked for low-quality and chimera errors, is pre-processed by the removal of
duplicates and transformation of k-mer into numeric values. A fixed number of sequence pairs are distributed
to each cluster node for k-mer (initial) and NW (refinement) distance calculation. Processed results are
merged upon completion of each unit task. Clusters are determined based on criteria described previously
[11] and in text. Output files are created and data are cleared frommemory.

doi:10.1371/journal.pone.0151064.g002
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task is finished to prevent shortage of memory in local nodes. Once all tasks are completed and
results are merged, a set of representative initial clusters is determined (Fig 2C) based on k-mer
distance calculations and seed selection. Clusters are chosen via parallel processing on the
Application node because cluster-determination via distributed processing can be relatively less
efficient due to higher communication cost and load imbalance. However, distributed process-
ing functionality is also supported as an alternative in CLUSTOM-CLOUD.

Refinement
For each pair of the most connected sequences in the initial clustering step, NW distances are
calculated as described above (Fig 2D and 2E). Once all distributed tasks are finished, final clus-
ters are determined, similar to CLUSTOM [11] (see also Fig 2F).

Output
Results are archived to the local file system of Application. Three output files identical in format
and structure to CLUSTOM are generated from the final cluster analysis (Fig 2): (i) sequences
per OTU (FASTA), (ii) representative sequences of OTUs (FASTA), and (iii) number of
sequences per OTU (Plain text). All data are cleared from IMDG following output generation.

Fig 3. Representation of k-mer transformationmethod. The diagram summarizes the layout of the k-mer
transformation method. (A) All k-mer strings in the input sequence dataset along with non-redundant numeric
values are loaded into hash map. (B) All k-mer in each sequence are replaced with numeric values
corresponding to each key in hash map.

doi:10.1371/journal.pone.0151064.g003

CLUSTOM-CLOUD: Sequence Clustering Based on In-Memory Data Grid

PLOS ONE | DOI:10.1371/journal.pone.0151064 March 8, 2016 7 / 20



Dataset preparation for evaluation of running time
The composition of microbial populations largely depends on the features of the natural envi-
ronment [23]. Some habitats favor the growth of certain species while restrict the others.
Therefore, sequence data extracted from different environmental samples exhibit varying levels
of microbial complexity and this property naturally relates to the performance of clustering
algorithms. Therefore, we prepared test datasets with varying levels of microbial complexity to
assess the running time of CLUSTOM-CLOUD. We first retrieved 16S rRNA sequences corre-
sponding to 18 different human body sites from the data archive of the Human Microbiome
Project (http://hmpdacc.org/HM16STR, download date: May 14, 2015). Microbiome sequences
were generated using the Roche-454 FLX Titanium platform (hereafter 454-HMP) and were
already trimmed and error-corrected. Additionally, we filtered out sequences below 300 bp
from each of the 18 sampled locations. A set of 10 K sequences was then randomly extracted
from each sampled location and was analyzed by CLUSTOM for richness and evenness, two
well-known indicators of microbial diversity [3, 4]. Based on the alpha-diversity patterns, body
sites were pooled into three datasets exhibiting high (2,666,826 total reads containing ~19.67%
duplicates), intermediate (2,520,233 reads containing~25.77% duplicates), and low (1,234,923
reads containing ~36.73% duplicates) microbial complexity (S1 Fig). From each pooled dataset,
we randomly extracted 50 K, 100 K, 150 K, and 200 K sequences (average sequence length
474–482 bp with a standard deviation of 55–57) for performance analysis. Additionally, we
randomly sampled one million reads (~23.58% duplicates, average length = 478 bp, standard
deviation = 56) from the three datasets to evaluate the running time of CLUSTOM-CLOUD
under the Amazon EC2 cloud-computing environment.

Test environment
The running time evaluation was conducted on a small computer cluster consisting of one
Application and 10 Cluster Nodes using the three datasets described above (high, intermediate,
and low). Each node was equipped with a single quad-core Intel(R) Xeon(R) CPU E3-1270 v3
@ 3.50GHz, 32 G of ECC RAM, 2 TB hard disk (40 total cores, 320 GB total memory), and a
Cent OS 6.4 operating system connected to 1 Gigabit Ethernet. In addition, Amazon EC2 clus-
ters of one Application and 20, 30, and 40 Cluster Nodes were tested under the cloud-comput-
ing environment using one million reads. In each case, Application was a High-CPU Extra
Large Instance (virtualized 64-bit computer with 60 GB of memory) equivalent to 32 processor
cores clocked at approximately 2.8 GHz, whereas each Cluster Node was an EC2 High-Memory
Extra Large Instance (virtualized 64-bit computer with 30.5 GB of memory) equivalent to four
processor cores clocked at approximately 2.5 GHz.

Determination of optimal granularity
The amount of work assigned to parallel and distributed tasks (granularity) is the major factor
influencing the performance of parallel and distributed computing systems [24]. If granularity
is too fine (small size), communication overhead between tasks may take longer than computa-
tion, resulting in performance degradation. In contrast, coarse granularity (large size) implies
improved performance but may cause load imbalance due to unequal allocation of workload,
leading to some nodes or processors being idle [25]. To determinate the optimal granularity of
CLUSTOM-CLOUD, we measured the computational time required for calculating k-mer (ini-
tial clustering) and NW (refinement) distances for a 100 K sample of high complexity by repeat-
edly changing the number of sequence pairs distributed to each Cluster Node (1 K, 1.5 K, 2 K,
2.5 K and 3 K) and the total number of nodes (5 and 10) under the test environment described
above (i.e., small computer cluster connected to 1 Gigabit Ethernet). Although granularity
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could also fluctuate somewhat based on the network environment, we executed tests at 1 Giga-
bit network speed, which is the recommended and default speed to execute CLUSTOM-
CLOUD. Moreover, users can customize the number of sequence pairs distributed to each task.
Therefore, optimal granularity calculated in the test environment is expected to be a close
approximation of the real environment.

Fine-grained task distribution
Calculation of k-mer and NW distances between every sequence pair was the major contribut-
ing factor to computational time in CLUSTOM. Because all distributed tasks were processed
independently in each node, performance could suffer from load imbalance. To overcome
these limitations, we developed a fine-grained task distribution method in CLUSTOM-
CLOUD (Fig 4): (i) for n sequences, the total number of sequence pairs to be compared are
given by the relation n�(n-1)/2, shown as the right-angled triangle in Fig 4A; (ii) a fixed number
of sequence pairs are assigned to each task based on the optimal granularity of the system (e.g.,
fixed-size chunks of 2 K sequence pairs shown in Fig 4B); (iii) tasks are evenly distributed to
cluster nodes by Job Tracker in the order of top to bottom and left to right (Fig 4C and 4D);
and (iv) then processed in parallel using multi-threading by Task Tracker in Fig 4E. The task
(Ti) assigned by Job Tracker of Application will be divided into smaller sub-tasks (tj) by Task
Tracker on each cluster node. The sub-tasks (tj) will be processed in parallel way using multi-
threads (wk) in compliance with the number of threads of each cluster node. Table 1 shows the
execution time of the cluster node.

Evaluation of k-mer transformation approach
To evaluate whether implementation of k-mer transformation improved clustering efficiency in
terms of running time andmemory usage, we analyzed 100K sequence datasets (high-, intermedi-
ate- and low-complexity) using CLUSTOM-CLOUD with- and without k-mer transformation
method. In this exercise, we avoided sequence dereplication that significantly influences the
k-mer distance calculation time. Tests were conducted three times for each dataset on the small
computer cluster in the lab.

Speed performance evaluation in the small computer cluster in the lab
To evaluate the speed of CLUSTOM-CLOUD in clustering sequence datasets exhibiting high,
intermediate, and lowmicrobial complexity, we measured the running time and memory usage
for analyzing 50 K, 100 K, 150 K, and 200 K samples by repeating three times per each dataset.
All experiments were conducted using the small computer cluster in the lab. Since running
time also depends on genetic distance thresholds and other program options, we used 3% dis-
similarity threshold, which is regarded as standard to resolve species [7, 26], and other default
options. Even though a global threshold may not appropriately and accurately delimit different
OTUs, the 3% dissimilarity of 16S sequences is the most conventional threshold in the fields of
molecular-sequence based microbial ecology. So, the adoption of a single threshold is not prob-
lematic in evaluating the performance of CLUSTOM-CLOUD under the given computing
environment.

Speed performance evaluation under the cloud-computing environment
To evaluate the speed performance and scalability of CLUSTOM-CLOUD in analyzing large
amount of sequence data, we measured the running time for processing one million reads
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using Amazon EC2 clusters consisting of one Application unit and 20, 30, and 40 Cluster
Nodes. All tests were performed under default options and a distance threshold of 3%.

Running time comparison to CLUSTOM
CLUSTOM was optimized for parallel processing in a single node. In turn, CLUSTOM-
CLOUD is designed to operate under distributed computing environment based on IMDG
data structure. Therefore, performance of CLUSTOM-CLOUD deteriorated in a single node

Fig 4. Fine-grained task distribution in CLUSTOM-CLOUD. The figure summarizes the workflow of distributed processing in CLUSTOM-CLOUD. (A) The
number of all possible sequence pairs that need to be compared for distance calculation is represented as a right-angled triangle; n represents the total
number of sequences. (B) A chunk-size based on system granularity is determined to distribute only a fixed number of sequence pairs (shown here with 2 K)
to each cluster node. (C) Each task (e.g., Ti) is assigned to nodes from top to bottom and left to right. (D) Each node takes and processes tasks in the order of
task priority. (E) The assigned task (Ti) is divided into smaller sub-tasks (tj) and processed in parallel using multi-threads (wk) depending on the number of
threads on the cluster node.

doi:10.1371/journal.pone.0151064.g004
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likely caused by network overhead to connect IMDG. To provide a realistic assessment of
CLUSTOM-CLOUD performance relative to CLUSTOM, we developed a new Java-based ver-
sion of CLUSTOM (CLUSTOM-J) optimized for parallel processing in a single node and iden-
tical to the implementation of CLUSTOM-CLOUD except that it did not use the IMDG data
structure. To evaluate clustering performance between CLUSTOM-J and CLUSTOM, we mea-
sured the running time for analyzing 100 K sequences extracted from each of the three datasets
(high, intermediate, and low) using the single node under default options and distance thresh-
old of 3%. Since CLUSTOM can only be executed under Linux environment installed with
GCC 4.1.2 or an earlier version, we prepared a single computing node equipped with 64-core
AMD Opteron 2.3GHz processor and 256 GB of ECC RAM.

Implementation
CLUSTOM-CLOUD is implemented in Java (ver. 1.7). Hazelcast (ver. 3.3.5) (http://hazelcast.
com) was used to implement the distributed processing system based on IMDG and to support
platform independence and various computing environments. The program is composed of
two executables for IMDG: Cluster and Application. Input to CLUSTOM-CLOUD is a FASTA
file of 16S rRNA sequences and an XML configuration file (see S1 Text) that includes the IP
addresses of Cluster Nodes, data size for allocation, and number of threads per node. All the
details of computing system requirements, installation and configuration that are necessary for
running CLUSTOM-CLOUD can be found in S2 Text. Output is three files, similar to CLUS-
TOM: (i) sequences per OTU (FASTA), (ii) the representative sequences of OTUs (FASTA),
and (iii) the number of sequences per OTU (plain text). CLUSTOM-CLOUD and its user
guide are freely available at http://clustomcloud.kopri.re.kr.

Clustering accuracy evaluation
In order to compare the clustering accuracy of existing programs against CLUSTOM-CLOUD,
we prepared a mock community sequence dataset. We first retrieved 16S rRNA pyrosequences

Table 1. CLUSTOM-CLOUD running time for each step according to the complexity of the microbial diversitya.

Initial clustering Refinement

Dataset Size k-mer distance calculationb Cluster determination NW calculation Cluster determination Total

High 50 K 8.6 m 0.2 m 25.1 m 0.6 m 34.5 m

100 K 30.2 m 1 m 26 m 1.4 m 58.6 m

150 K 68.2 m 2.6 m 45.9 m 2.6 m 119.3 m

200 K 111.8 m 7.1 m 56.2 m 2.7 m 177.8 m

Intermediate 50 K 8.2 m 0.2 m 19.7 m 0.6 m 28.7 m

100 K 26.2 m 0.8 m 22.5 m 1.4 m 50.9 m

150 K 55.3 m 2.4 m 24.9 m 1.9 m 84.5 m

200 K 96.8 m 5.6 m 24.5 m 2.8 m 129.7 m

Low 50 K 6.3 m 0.3 m 7.1 m 0.6 m 14.3 m

100 K 19.4 m 1.4 m 16.9 m 1.2 m 38.9 m

150 K 41.1 m 4.2 m 18.5 m 1.8 m 65.6 m

200 K 68 m 9.1 m 20.2 m 2.4 m 99.7 m

a measured using one application node and 10 cluster nodes, each equipped with a single quad-core Intel(R) Xeon(R) CPU E3-1270 v3 @ 3.50GHz and

32 GB of RAM.
b This includes running time required at the steps of dereplication and k-mer threshold determination.

doi:10.1371/journal.pone.0151064.t001
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of a mock community that was constructed by pooled DNA of 21 human-associated prokaryotic
strains with even concentration (SRR072219 download on December 28, 2015). Tags and low-
quality reads were trimmed out using PyroTrimmer [2] prior to sequence clustering. The V1-3
region of sequences was extracted using an in-house script. Next, individual sequences were
BLASTn-searched against the dataset of [27] containing 16S sequences of the 21 strains. Taxo-
nomic information of the top BLAST hits was then assigned to the corresponding query sequences.
From 35,106 sequences with taxonomic information, 10 K sequences (hereafter HMP-Mock-com-
munity, average length = 439 bp, standard deviation = 46) were randomly extracted and clustered
using CLUSTOM-CLOUD, CLUSTOM, DOTUR-AL-PSA (AL = average-linkage; PSA = pairwise
sequence alignment), ESPRIT-Tree, mothur-AL-MSA (MSA =multiple sequence alignment),
mothur-AL-PSA, UCLUST and Swarm. In case of Swarm, two different distance thresholds (d = 1
and 3) were used in clustering while the remaining programs were ran using 3% (species-like) and
5% (genus-like) conventional thresholds. Specifically, UPARSE that discards singletons by default
may result in the elimination of rare OTUs followed by distortion of natural microbial community
[28, 29]. Since low abundance taxa sometimes play important roles in certain environments, they
should be retained in evaluating the clustering accuracy of programs. Therefore, we used UCLUST
in this comparative exercise that is the previous version of UPARSE and still produces singletons in
its clustering results. We then evaluated the clustering accuracy of individual programs by counting
howmany pairs of sequences were correctly clustered. Each of the possible sequence pairs were
assigned to one of the four different status categories: true positive (TP), false positive (FP), true
negative (TN) and false negative (FN). Sequence pairs derived from the same strain and clustered
together in a single OTU were regarded as TP. Sequence pairs clustered in an OTU but originated
from different strains were regarded FPs. Sequence pairs originated from the same strain but
belonging to different OTUs were FNs. While, the remaining sequence pairs were regarded as TNs.
We then calculated precision TP/ (TP+FP) and recall TP/ (TP+FN). Consequently, precision
increased when the OTUs included greater number of sequences derived from same strain while
the recall decreased when the sequences from a single strain were more evenly distributed in differ-
ent OTUs. The harmonic mean of the precision and recall was computed using formula of F-mea-
sure II (F2) [30].

Results

Determination of optimal granularity
Determining optimal granularity is critical for the success of each algorithm in parallel and dis-
tributed computing. Here, granularity refers to the optimal number of sequence pairs to be
compared by each Cluster Node and was determined by repeatedly assigning 1 K, 1.5 K, 2 K,
2.5 K, and 3 K sequence pairs from 100 K high-complexity dataset to 5 and 10 nodes (S2 Fig).
The computational time required for calculation of k-mer and NW distances was then com-
pared to determine the optimal number of sequence pairs and nodes required for maximum
performance. The experiment revealed that distance calculation for 2 K sequence pairs
required minimum processing time in either 5 (~5,500 seconds) or 10 nodes (3,300 seconds).
In turn, calculation time increased considerably when the number of sequence pairs was
reduced below 2 K (~7,300 and 5,900 seconds for 5 nodes and ~3,500 and 3,400 seconds for 10
nodes), likely caused by communication overhead. Similar patterns were observed when the
number of sequence pairs was increased to either 2.5 K (6,160 seconds in 5 nodes and 3,660 for
10) or 3 K (5,700 and 4,350), resulting in extra running time likely caused by low computation-
to-communication ratio. In other words, merging the processed results for a larger number of
sequence pairs after the completion of each task required more communication time than
merging results from smaller datasets. Therefore, we selected 2 K sequence pairs as the optimal
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granularity in the distributed task of CLUSTOM-CLOUD, which is set as the default option
but can be customized by users.

k-mer transformation utilized less memory and enabled faster execution
We assessed the running time (minutes) and memory usage (MB) by processing 100 K
sequences in consideration of both cases of with- and without the k-mer transformation method
(Fig 5). The 100 K datasets of high-, intermediate- and low-complexity were prepared from the
454-HMP data. This sampling was repeated twice independently. Each of the six datasets was
analyzed three times. For this exercise, sequence dereplication was not conducted because it
significantly influenced the k-mer distance calculation time. The exercise revealed that using
the k-mer transformation required approximately 42.8 (42.6 in the second sampling), 42.4
(41.9), and 43.5 (45.1) minutes of running time (Fig 5B) and approximately 385 (387), 413
(409), and 465 (454) MB of memory in decreasing order of dataset complexity (Fig 5A). In
turn, the running time without implementing the k-mer transformation was approximately
113.7 (113.2), 120.9 (120.7), and 131.3 (131.1) minutes respectively (Fig 5B), and memory
usage was approximately 531.2 (530.8), 544.2 (544.9), and 555.2 (555.7) MB, respectively (Fig
5A). Therefore, k-mer transformation significantly decreased both running time (by at least
two-fold) and memory usage (down by 16–27%). Importantly, k-mer transformation was
largely neutral to dataset complexity, as relatively similar time and memory storage were
required for processing data from each of the three complexity datasets. Strictly, the result
revealed that decreasing data complexity required slightly more memory and running time

Fig 5. Running time andmemory usage evaluation of the k-mer transformationmethod.Comparison of
the memory usage (A) and running time (B) were performed with and without k-mer transformation method
only at the k-mer distance calculation step. Two of 100K 16S sequences were independently and randomly
extracted from the sequence datasets of high-, intermediate- and low-complexity. For each of the six different
sequence datasets, the running time and memory usage were measured three times independently.

doi:10.1371/journal.pone.0151064.g005
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(Fig 5A and 5B). In fact, this is not a surprising trend in both CLUSTOM and CLUSTOM-
CLOUD. The sequence datasets of the low complexity include larger number of nearly identical
16S sequences than the datasets of either intermediate or high complexities. Consequently,
increasing the number of highly similar sequences results in increasing the number of sequence
pairs that satisfy the k-mer distance threshold (e.g., conventionally 3% dissimilarity of 16S
sequences). Since the selected sequence pairs should be loaded to the RAM, the low complexity
data requires more memory and running time than the other datasets. In short, k-mer transfor-
mation feature is a useful add-on in CLUSTOM-CLOUD that enables at least two-fold decrease
in processing time while utilizing significantly less memory.

Clustering speed performance is indifferent to the nature of dataset
We compared the performance of CLUSTOM-CLOUD in processing 50 K, 100 K, 150 K, and
200 K reads randomly extracted from the high-, intermediate-, and low-complexity datasets.
The analysis revealed that running time was primarily determined by the size of the input data-
set (as expected) and was secondary to sample’s complexity (Fig 6). For example, processing
time for smaller datasets (e.g., 50 K and 100 K) from each of the three complexity classes did
not differ significantly. However, running time gap widened significantly when the number of
input reads was increased to either 150 K or 200 K (Fig 6B). Because high-complexity datasets
possess fewer duplicates, additional time is required to calculate k-mer and NW distances,
resulting in extra processing time (Table 1). In turn, memory usage was largely indifferent to
the complexity of microbial diversity and was only dependent on the number of input sequence
reads (Fig 6A). Because CLUSTOM-CLOUD allocates a certain amount of total memory in

Fig 6. Running time of the whole process according to the complexity of the microbial diversity.
Running time (A) and memory usage (B) of CLUSTOM-CLOUD were measured by analyzing 50 K, 100 K,
150 K, and 200 K sequences in high-, intermediate-, and low-complexity datasets (3% distance threshold).
The measures were repeated three times per dataset and the average values are plotted.

doi:10.1371/journal.pone.0151064.g006
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advance to improve performance, memory usage was nearly consistent at ~10 GB per node for
100 K, 150 K, and 200 K samples (Fig 6A).

Cloud-computing performance in Amazon EC2
To evaluate the performance and scalability of CLUSTOM-CLOUD, we performed separate
experiments using 20, 30, and 40 EC2 High-Memory Extra Large Instance Cluster Nodes (plus
one High-CPU Extra Large Instance node of Application) for one million sequences. Table 2
shows the wall-clock running time for each experiment. Remarkably, CLUSTOM-CLOUD is
capable of clustering one million reads in less than 12 hours of wall-clock time using 40 Cluster
Nodes despite the polynomial complexity O(N2) of the k-mer distance calculation step. The run-
ning time of CLUSTOM-CLOUD on 160 cores of the EC2 cluster was approximately two-fold
faster than 80 cores of the EC2 cluster, indicating high scalability with the increasing number of
cores. Typically, distributed and parallel computing systems exhibit sub-linear growth in speed
with increasing numbers of cores. Although CLUSTOM-CLOUD shows a similar sub-linear per-
formance growth, the deviation is very slight. It implies that CLUSTOM-CLOUD is relatively
more effective for distributed and parallel processing. To summarize, CLUSTOM-CLOUD can
rapidly and stably cluster a large number of sequences under the cloud-computing environment.

CLUSTOM-CLOUD can be up to five times faster than CLUSTOM
We compared the running time (minutes) difference between CLUSTOM and CLUSTOM-J
for analyzing 100 K sequences extracted from high-, intermediate-, and low-complexity data-
sets in a single node. CLUSTOM-J using 20 CPU cores required ~207, 120, and 79 minutes for
high, intermediate, and low datasets respectively. In turn, CLUSTOM under similar conditions
required ~ 237, 378, and 407 minutes respectively. For all experiments, CLUSTOM-J was
much faster than CLUSTOM despite the difference in programming language (Java versus C).
Remarkably, CLUSTOM-J was about five times faster than CLUSTOM in processing the low
complexity dataset. The experiment indicated that implementation of IMDG and its additional
enhancements in CLUSTOM-CLOUD significantly improved the overall clustering perfor-
mance of CLUSTOM.

Comparative exercise on the clustering accuracy
Comparative analysis using HMP-Mock-community was performed to evaluate the clustering
accuracy of CLUSTOM-CLOUDwith other programs. We ran CLUSTOM, CLUSTOM-CLOUD,

Table 2. Time and cost of running onemillion reads on CLUSTOM-CLOUD.

EC2 nodes 1 appa, 20 clustersb 1 appa, 30 clustersb 1 appa, 40 clustersb

Processor cores 80 120 160

Wall clock time 20 h:38 m 14 h:05 m 11 h:34 m

Cluster setup time 5 m 5 m 5 m

Reads uploading time 36 m 36 m 36 m

k-mer distance calculation time 16 h:34 m 11 h:03 m 8 h:50 m

Initial cluster determination time 55 m 27 m 25 m

NW distance calculation time 2 h:11 m 1 h:38 m 1 h:22 m

Final cluster determination time 17 m 16 m 16 m

a specification of an application node in Amazon EC2 is c3.8xlarge.
b specification of a cluster node in Amazon EC2 is c4.2xlarge.

doi:10.1371/journal.pone.0151064.t002
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DOTUR-AL-PSA, ESPRIT-Tree, mothur-AL-PSA, mothur-AL-MSA and UCLUST using 3% and
5% conventional distance thresholds that likely correspond to the taxonomic levels of species and
genus, respectively. As mentioned in Methods, we used distance value (d) of 1 and 3 to cluster
sequences using Swarm. The clustering results revealed that the number of OTUs determined by
individual programs varied. For example, CLUSTOM-CLOUD produced 97 and 49 OTUs at 3%
and 5%, respectively. Other programs produces OTUs as follows: CLUSTOM (65 and 30 at 3%
and 5%, respectively), DOTUR-AL-PSA (125 and 52 at 3% and 5%), ESPRIT-Tree (300 and 145 at
3% and 5%), mothur-AL-MSA (356 and 217 at 3% and 5%), mothur-AL-PSA (150 and 60 at 3%
and 5%) and UCLUST (454 and 226 at 3% and 5%). The number of OTUs determined by Swarm
with d = 1 (3,579) was larger than 2,473 OTUs with d = 3. Consequently, the average-linkage-
based clustering algorithms (CLUSTOM, CLUSTOM-CLOUD, DOTUR-AL-PSA, mothur-
AL-PSA andmothur-AL-MSA) produced smaller number of OTUs than UCLUST (greedy-heu-
ristic) and Swarm (single-linkage hierarchical clustering). The accuracy test revealed that the preci-
sion values of all the programs reached 100% nearly or completely (Fig 7). On the other hand, the
recall accuracy of the programs largely varied. For example, the recall values of Swarm (36% at
d = 1 and 52% at d = 3, respectively) and UCLUST (42% and 53% at 3% and 5%, respectively)
were significant lower than those of other programs. The recall values in details are as follows:
CLUSTOM-CLOUD (95% and 99% at 3% and 5%), CLUSTOM (96% and 98% at 3% and 5%,
respectively), DOTUR-AL-PSA (90% and 96% at 3% and 5%), ESPRIT-Tree (83% and 85% at 3%
and 5%), mothur-AL-MSA (86% and 88% at 3% and 5%) and mothur-AL-PSA (89% and 96% at
3% and 5%). Consequently, the harmonic means, F2 values, show that both CLUSTOM-CLOUD
and CLUSTOM are accurate relative to the other average-linkage based hierarchical clustering
programs and significantly more accurate than greedy-heuristic clustering (UCLUST) and single-
linkage hierarchical clustering (Swarm) programs.

Fig 7. Comparative accuracy test of existing clustering programs. The clustering accuracy of
CLUSTOM, CLUSTOM-CLOUD, DOTUR-AL-PSA, ESPRIT-Tree, mothur-AL-PSA, mothur-AL-MSA,
UCLUST and Swarm was performed based on 16S rRNA pyrosequences of a mock community that was
constructed by pooled DNA of 21 human-associated prokaryotic strains with even concentration (HMP-Mock-
community). The precision and recall metrics as well as their F2 values were used to compare the clustering
accuracy of the eight programs at the species (A) and genus (B) levels.

doi:10.1371/journal.pone.0151064.g007
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Discussion
We present CLUSTOM-CLOUD, a distributed clustering program that can efficiently and
accurately cluster 16S sequences under distributed and cloud-computing environments. CLUS-
TOM-CLOUD is a significant upgrade to its predecessor, CLUSTOM. The enhancements
include: (i) implementation of k-mer transformation, (ii) removal of duplicate sequences (dere-
plication), and importantly (iii) the implementation of IMDG technology to store data directly
into RAM rather than hard disks of individual nodes. Importantly, CLUSTOM-CLOUD inher-
its the high accuracy of its ancestor CLUSTOM, as also confirmed by the comparative exercise
(Fig 7). The k-mer transformation helps to reduce the k-mer distance calculation time during
initial clustering. Since all k-mer strings are transformed into small-byte numerical values
using hash map, this implementation significantly reduced both the running time (twice as
fast) and memory utilization (down by 16–27%) relative to implementation without k-mer
transformation (Fig 5). Consequently, k-mer transformation method is a useful add-on to cal-
culate k-mer distances for datasets. In turn, duplicates are important to determine the initial
and final clusters but are not required during other steps of processing. Therefore, CLUS-
TOM-CLOUD removes duplicates before loading data into Cluster Nodes and recovers them
later for cluster determination. In contrast, duplicates were part of the entire clustering process
in CLUSTOM, costing more computational time and resources. Both features confer ~5 times
faster execution in CLUSTOM-CLOUD relative to CLUSTOM. Finally, compared to other
commonly used existing distributed computing technologies such as MPI and MapReduce of
Hadoop, IMDG provides parallel and distributed computing using in-memory storage to allow
rapid processing of sequence datasets and relatively convenient execution. By using IMDG
technology, CLUSTOM-CLOUD supports various computing environments including cloud
computing with relatively easier installation and configuration steps than the other distributed
and cloud-computing programs. These considerations identify the IMDG-based distributed
computing architecture of CLUSTOM-CLOUD as a better alternative to either MPI or MapRe-
duce of Hadoop.

To assess the running time of CLUSTOM-CLOUD, we analyzed randomly sampled
454-HMP datasets of various sizes exhibiting high, intermediate, and lowmicrobial complexity.
Processing 200 K reads from each dataset required only between 100 and 178 minutes when
ran on a small laboratory computer cluster with 10 nodes (Table 1). This indicates that CLUS-
TOM-CLOUD is still useful to cluster hundreds of thousands of 16S sequences without the
need for expensive high-performance machines, although greedy-heuristic or single-linkage
based programs such as UCLUST and Swarm require significantly less computing resources.
To demonstrate the scalability of CLUSTOM-CLOUD, we analyzed one million sequences
using 20, 30, and 40 nodes on Amazon EC2 that required ~20, 14, and 11 hours, respectively
(Table 2). This represents how CLUSTOM-CLOUD shows substantial improvement in run-
ning time by the addition of computing nodes indicating high scalability. Moreover, millions
of sequences can be analyzed under the cloud-computing environment (e.g., Amazon EC2)
supported by CLUSTOM-CLOUD.

Different factors influence the speed performance of CLUSTOM-CLOUD. As expected, the
amount of input data is directly related to running time (Fig 6B). Running time also increases
for datasets exhibiting high complexity, especially for large datasets (Fig 6). This is largely due
to the presence of fewer duplicates in high-complexity datasets [21] that require additional
computation time in calculating k-mer and NW distances. For example, running time for small
datasets (below 100 K) was not significantly different. However, for larger datasets (e.g., 150 K
and 200 K), processing time for the low-complexity dataset was ~1.3–1.8 times faster than for
the intermediate and high datasets. Since IMDG allows us to rapidly access and process data in
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the shared memory pool, overall performance is greatly affected by the network environment.
A network with high stability and over 1 Gigabit speed is therefore recommended for superior
performance. Finally, parallel processing in the Application node is used as default to determine
the initial and final clusters. Therefore, equipping the Application node with extra cores will
directly increase performance.

The relationship between accuracy and computational complexity is a trade-off in all algo-
rithms and CLUSTOM-CLOUD is no different. Although CUSTOM-CLOUD significantly
reduces memory usage and running time of CLUSTOM through dereplication and k-mer trans-
formation methods, it is slower than greedy heuristic based clustering algorithms (actual needs of
computing resources and speed) because its computational complexity is quadratic. However, as
shown in Fig 7, the average-linkage based hierarchical clustering methods show accurate results
compared to the greedy heuristic clustering algorithm such as UCLUST. Among clustering meth-
ods, CLUSTOM and CLUSTOM-CLOUD exhibited the highest accuracy rate than any other
program. Swarm that is based on single-linkage hierarchical clustering achieves clustering accu-
racy similar to UCLUST. In fact, the previous study of Swarm showed that it performed robustly
regardless of the value d [12]. Therefore, it is hard to expect that the accuracy of Swarm increases
by adjusting the d values. Although applying a breaking phase helps Swarm delimit the natural
limit of OTUs, it still seems to suffer from the chain reaction problem of the single-linkage hierar-
chical clustering methods. However, the result of the comparative accuracy test may differ
depending on alignment quality, distance calculation method, sequencing filtering, the selected
region of 16S sequence, sequencing platforms, clustering distance thresholds and metrics for
measuring the accuracy. Therefore, it is further necessary to conduct more comprehensive and
precise experiments on the evaluation of the clustering algorithms.

In conclusion, CLUSTOM-CLOUD is limited to relatively smaller datasets and is slower
than ultrafast sequence clustering programs such as UCLUST and Swarm. However, it outper-
forms several other accurate clustering alternatives such as CLUSTOM, DOTUR-AL-PSA,
mothur-AL-PSA and mothur-AL-MSA in terms of computational speed and handling of rela-
tively larger datasets. Therefore, CLUSTOM-CLOUD is a good alternative to rapidly and accu-
rately cluster large 16 rRNA sequences that cannot be handled by several other accurate
clustering programs. It also becomes the ideal algorithm to implement when the laboratory has
the infrastructure of many small computers that can be better utilized as distributed computing
system. Although RAM is more expensive than hard disk, its cost is consistently declining.
Therefore, in-memory computing technology such as IMDG provides a promising and reliable
solution for the rapid analysis of biological data. To our knowledge, the present study is the
first application of IMDG in bioinformatics. Its successful integration into CLUSTOM resulted
in significant performance improvement and speedier execution. Evolution of CLUSTOM into
CLUSTOM-CLOUD potentially serves as a starting point to consider the broader use of
IMDG-based technologies in life sciences.

Supporting Information
S1 Fig. Classification of human microbiome datasets according to microbial complexity.
16S rRNA sequence data from 18 human body sites was analyzed for richness and evenness.
Sampling sites were pooled into high (rectangle), intermediate (circle), and low (triangle) com-
plexity datasets.
(TIF)

S2 Fig. Determination of optimal granularity. Running time analysis for distributing differ-
ent number of sequence pairs to 5 and 10 cluster nodes.
(TIF)
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S1 Text. XML configuration file example and description. The properties of CLUSTOM-
CLOUD application are defined into “clustom.xml” file.
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S2 Text. The CLUSTOM-CLOUDmanual. The introduction, system requirements, configu-
ration and usage are described.
(PDF)

Acknowledgments
We would like to thank two anonymous reviewers for their invaluable comments, which helped
to improve this paper significantly.

Author Contributions
Conceived and designed the experiments: SGH BKK KMK. Performed the experiments: JO CC
KH. Analyzed the data: CC MP KH SL. Contributed reagents/materials/analysis tools: KMK
WC. Wrote the paper: JO CC AN KMK.

References
1. Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, et al. The NIH human microbiome

project. Genome research. 2009; 19(12):2317–23. doi: 10.1101/gr.096651.109 PMID: 19819907

2. Oh J, Kim BK, ChoWS, Hong SG, Kim KM. PyroTrimmer: a software with GUI for pre-processing 454
amplicon sequences. J Microbiol. 2012; 50(5):766–9. doi: 10.1007/s12275-012-2494-6 PMID:
23124743.

3. Hill MO. Diversity and evenness: a unifying notation and its consequences. Ecology. 1973; 54(2):427–
32.

4. Tuomisto H. A consistent terminology for quantifying species diversity? Yes, it does exist. Oecologia.
2010; 164(4):853–60. doi: 10.1007/s00442-010-1812-0 PMID: 20978798

5. ChenW, Zhang CK, Cheng Y, Zhang S, Zhao H. A comparison of methods for clustering 16S rRNA
sequences into OTUs. PloS one. 2013; 8(8):e70837. doi: 10.1371/journal.pone.0070837 PMID:
23967117; PubMed Central PMCID: PMC3742672.

6. Schloss PD, Handelsman J. Introducing DOTUR, a computer program for defining operational taxo-
nomic units and estimating species richness. Applied and environmental microbiology. 2005; 71
(3):1501–6. PMID: 15746353

7. Sun Y, Cai Y, Liu L, Yu F, Farrell ML, McKendreeW, et al. ESPRIT: estimating species richness using
large collections of 16S rRNA pyrosequences. Nucleic acids research. 2009; 37(10):e76. doi: 10.1093/
nar/gkp285 PMID: 19417062; PubMed Central PMCID: PMC2691849.

8. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide
sequences. Bioinformatics. 2006; 22(13):1658–9. doi: 10.1093/bioinformatics/btl158 PMID: 16731699.

9. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010; 26
(19):2460–1. doi: 10.1093/bioinformatics/btq461 PMID: 20709691.

10. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-
source, platform-independent, community-supported software for describing and comparing microbial
communities. Appl Environ Microbiol. 2009; 75(23):7537–41. doi: 10.1128/AEM.01541-09 PMID:
19801464; PubMed Central PMCID: PMC2786419.

11. Hwang K, Oh J, Kim TK, Kim BK, Yu DS, Hou BK, et al. CLUSTOM: a novel method for clustering 16S
rRNA next generation sequences by overlap minimization. PloS one. 2013; 8(5):e62623. doi: 10.1371/
journal.pone.0062623 PMID: 23650520; PubMed Central PMCID: PMC3641076.

12. Mahe F, Rognes T, Quince C, de Vargas C, Dunthorn M. Swarm: robust and fast clustering method for
amplicon-based studies. PeerJ. 2014; 2:e593. doi: 10.7717/peerj.593 PMID: 25276506; PubMed Cen-
tral PMCID: PMCPMC4178461.

13. Barney B. Message Passing Interface (MPI): Lawrence Livermore National Laboratory; 2012. [cited
2015 Feb 04]. Available: https://computing.llnl.gov/tutorials/mpi/.

14. Ekanayake J, Pallickara S, Fox G, editors. Mapreduce for data intensive scientific analyses. eScience,
2008 eScience'08 IEEE Fourth International Conference on; 2008: IEEE.

CLUSTOM-CLOUD: Sequence Clustering Based on In-Memory Data Grid

PLOS ONE | DOI:10.1371/journal.pone.0151064 March 8, 2016 19 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0151064.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0151064.s004
http://dx.doi.org/10.1101/gr.096651.109
http://www.ncbi.nlm.nih.gov/pubmed/19819907
http://dx.doi.org/10.1007/s12275-012-2494-6
http://www.ncbi.nlm.nih.gov/pubmed/23124743
http://dx.doi.org/10.1007/s00442-010-1812-0
http://www.ncbi.nlm.nih.gov/pubmed/20978798
http://dx.doi.org/10.1371/journal.pone.0070837
http://www.ncbi.nlm.nih.gov/pubmed/23967117
http://www.ncbi.nlm.nih.gov/pubmed/15746353
http://dx.doi.org/10.1093/nar/gkp285
http://dx.doi.org/10.1093/nar/gkp285
http://www.ncbi.nlm.nih.gov/pubmed/19417062
http://dx.doi.org/10.1093/bioinformatics/btl158
http://www.ncbi.nlm.nih.gov/pubmed/16731699
http://dx.doi.org/10.1093/bioinformatics/btq461
http://www.ncbi.nlm.nih.gov/pubmed/20709691
http://dx.doi.org/10.1128/AEM.01541-09
http://www.ncbi.nlm.nih.gov/pubmed/19801464
http://dx.doi.org/10.1371/journal.pone.0062623
http://dx.doi.org/10.1371/journal.pone.0062623
http://www.ncbi.nlm.nih.gov/pubmed/23650520
http://dx.doi.org/10.7717/peerj.593
http://www.ncbi.nlm.nih.gov/pubmed/25276506
https://computing.llnl.gov/tutorials/mpi/


15. Lee K-H, Lee Y-J, Choi H, Chung YD, Moon B. Parallel data processing with MapReduce: a survey.
AcM sIGMoD Record. 2012; 40(4):11–20.

16. Taylor RC. An overview of the Hadoop/MapReduce/HBase framework and its current applications in
bioinformatics. BMC bioinformatics. 2010; 11(Suppl 12):S1.

17. Kang S-H, Koo D-H, KangW-H, Lee S-W. A case for flash memory ssd in hadoop applications. Interna-
tional Journal of Control and Automation. 2013; 6:201–10.

18. Li B, Mazur E, Diao Y, McGregor A, Shenoy P, editors. A platform for scalable one-pass analytics using
MapReduce. Proceedings of the 2011 ACM SIGMOD International Conference on Management of
data; 2011: ACM.

19. Mann S. Look out, Big Data: In-memory data grids start to go mainstream. [cited 2016 Feb 4]. Available:
http://searchsoa.techtarget.com/feature/Look-out-Big-Data-In-memory-data-grids-start-to-go-
mainstream.

20. Johns M. Getting Started with Hazelcast. 1st ed. Packt Publishing Ltd; 2013.

21. Niu B, Fu L, Sun S, Li W. Artificial and natural duplicates in pyrosequencing reads of metagenomic
data. BMC bioinformatics. 2010; 11(1):187.

22. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Communications of
the ACM. 2008; 51(1):107–13.

23. Winkler MH, Kleerebezem R, De Bruin L, Verheijen P, Abbas B, Habermacher J, et al. Microbial diver-
sity differences within aerobic granular sludge and activated sludge flocs. Applied microbiology and bio-
technology. 2013; 97(16):7447–58. doi: 10.1007/s00253-012-4472-7 PMID: 23064482

24. Laganà A, Crocchianti S, Bolloni A, Piermarini V, Baraglia R, Ferrini R, et al. Computational granularity
and parallel models to scale up reactive scattering calculations. Computer physics communications.
2000; 128(1):295–314.

25. Barney B. Introduction to parallel computing: Lawrence Livermore National Laboratory; 2010. [cited
2016 Feb 4]. Available: https://computing.llnl.gov/tutorials/parallel_comp/?ref=driverlayer.com/web.

26. Stackebrandt E, Goebel B. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA
sequence analysis in the present species definition in bacteriology. International Journal of Systematic
Bacteriology. 1994; 44(4):846–9.

27. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, et al. Chimeric 16S rRNA
sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome
research. 2011; 21(3):494–504. doi: 10.1101/gr.112730.110 PMID: 21212162

28. Edgar RC. UPARSE: highly accurate OTU sequences frommicrobial amplicon reads. Nature methods.
2013; 10(10):996–8. doi: 10.1038/nmeth.2604 PMID: 23955772

29. Zhan A, XiongW, He S, MacIsaac HJ. Influence of artifact removal on rare species recovery in natural
complex communities using high-throughput sequencing. PloS one. 2014; 9(5):e96928. doi: 10.1371/
journal.pone.0096928 PMID: 24800821

30. Wittkop T, Emig D, Lange S, Rahmann S, Albrecht M, Morris JH, et al. Partitioning biological data with
transitivity clustering. Nature methods. 2010; 7(6):419–20. doi: 10.1038/nmeth0610-419 PMID:
20508635

CLUSTOM-CLOUD: Sequence Clustering Based on In-Memory Data Grid

PLOS ONE | DOI:10.1371/journal.pone.0151064 March 8, 2016 20 / 20

http://searchsoa.techtarget.com/feature/Look-out-Big-Data-In-memory-data-grids-start-to-go-mainstream
http://searchsoa.techtarget.com/feature/Look-out-Big-Data-In-memory-data-grids-start-to-go-mainstream
http://dx.doi.org/10.1007/s00253-012-4472-7
http://www.ncbi.nlm.nih.gov/pubmed/23064482
https://computing.llnl.gov/tutorials/parallel_comp/?ref=driverlayer.com/web
http://dx.doi.org/10.1101/gr.112730.110
http://www.ncbi.nlm.nih.gov/pubmed/21212162
http://dx.doi.org/10.1038/nmeth.2604
http://www.ncbi.nlm.nih.gov/pubmed/23955772
http://dx.doi.org/10.1371/journal.pone.0096928
http://dx.doi.org/10.1371/journal.pone.0096928
http://www.ncbi.nlm.nih.gov/pubmed/24800821
http://dx.doi.org/10.1038/nmeth0610-419
http://www.ncbi.nlm.nih.gov/pubmed/20508635

