
Temporal Mixture Analysis of Hypertemporal Antarctic Sea Ice Data  
in the Sense of Machine Learning 

Abstract
Hypertemporal image (HTI) is often used to exploit the seasonal characteristics of environmental 
phenomena such as sea ice concentration (SIC). However, it is difficult to analyse the long-term time series 
acquired at high temporal frequencies and over extensive areas. This study performed temporal mixture 
analysis (TMA), which is algebraically similar to spectral mixture analysis (SMA), but occurs in the time 
domain instead of the spectral domain. TMA was used to investigate the temporal characteristics of 
Antarctic sea ice. Because endmember (EM) selection is critical to the success of both SMA and TMA, it is 
important to select proper EMs from large quantities of HTI. In this study, a machine learning (ML) 
technique is incorporated in identifying EMs without prior information to address the limitations of 
previous research. A fully linear mixing model was then implemented in an attempt to produce more robust 
and physically meaningful abundance estimates. Experiments that quantitatively and qualitatively evaluated 
the proposed approaches were conducted. A TMA of high-temporal-dimensional data provides a unique 
summary of long-term Antarctic sea ice and noise-whitened reconstruction images via inverse processing. 
Furthermore, comparisons of regional sea ice fractions from experimental results enhance the understanding 
of the overall Antarctic sea ice changes.  
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1. Introduction
•  Although Piwowar, Peddle, and Ledrew (1988) first investigated TMA by analysing long-term temporal 

remote sensing (RS) data that were generated using 9 years of monthly Arctic SIC data, simple statistics 
(e.g. mean, median, maximum and minimum) are used to derive pure temporal EM spectra from a 
sample set of image spectra. However this method may not properly capture the seasonal characteristics 
of sea ice because monthly data provide insufficient temporal information, and the temporal EMs 
generated by the purification process are not always collected on the same scale as the image data. 

•  In this study, ML techniques are used for TMA of Antarctic SIC to provide unique and summarized 
information of long-term time series in three steps. 
1)  Use daily SIC data, which are similar to hyperspectral image data but are in different domain, to 

better seasonally characterize the Antarctic sea ice. 
2)  Apply an ML-based endmember extraction (EE) algorithm to generate a collection of pure temporal 

signatures due to a lack of prior information on sea ice seasonality. 
3)  Conduct quantitative/qualitative experiments, and discussed results to evaluate the proposed 

approaches. 

2. Methodology
2.1 Datasets
•  36 years of daily SIC data from 1979 to 2014 provided by NSIDC (National Snow and Ice Data 

Center). 
•  25-km spatial resolution in the polar stereographic projection. 
•  Linear interpolation was applied to SIC data from 1978 to 1987 to generate consistent daily time series 

throughout the time period. 

2.2 Temporal mixture analysis (TMA)
•  SMA assumes that the surface is dominated by a small number of such substances and can be modelled 

by representing the substance at sub-pixel levels. 
•  The main idea underlying TMA of HTIs is rooted in SMA. TMA assumes that the time series consist of 

several temporal components that represent the seasonal characteristics of the substances. 
•  Two general steps were employed to address the mixing problems: 

1)  Identifying temporally unique signatures of pure components (temporal endmembers). 
2)  Unmixing each pixel in the time series as a linear combination of EM fractional abundances. 

2.3 Linear mixing models for TMA
•  Assumptions:  

1)  The temporal trajectories of seasonal sea ice are linearly independent. 
2)  The pixels in the image line in linear spaces. 

•  Fully constrained linear unmixing (Heinz and Chang 2001): 
To find the fractional abundances (α) that minimize the pixel reconstruction error                  , where x is 
a daily trajectory of HTI, E is a temporal EM matrix. The least squares solution is                            . 
Two constraints for each HTI pixel to estimate physically meaningful abundances: 
1)  Non-negative:                    where q is the number of temporal EMs. 
2)  Sum-to-one:  
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•  Mixing effects on the multi-temporal SIC using 
three temporal EMs (Figure 1): 

1) Open sea: Sea ice free in both March and 
September. 

2) Non-seasonal sea ice: 100% sea ice cover in 
both March and September. 

3) Seasonal sea ice: 100% SIC in March and 0% 
in September. 

2.4 Endmember extraction
•  The most crucial task in both SMA and TMA is identifying an appropriate set of EMs to use in the 

modelling of at-sensor pixel spectra or temporal trajectories through a linear combination of the EMs. 
•  Because image-derived EMs have the advantage of being collected under the same conditions as the RS 

data, an ML-based EE algorithm was typically used. 
•  Assuming that pure ore extreme signatures are EMs, the notion of geometric convexity is natural and 

logical. Thus, this approach is the most popular and is used to develop a wide range of algorithms. 
•  N-FINDR (Winter 1999): 

1)  Main idea: Use the simplex of maximum volume spanned by the EMs as a major criterion. 
2)  Assumption: The volume defined by a simplex spanned by the purest pixels is grater than any other 

volume defined by any other combinations of pixels. 
3)  Algorithm description: 

Step 1. Arbitrarily select initial seed points (EM candidates)                     . 
Step 2. Compute the volume (V) of the resulting simplex spanned by the seed points as follows: 
 
 
 
 
 
Step 3. Evaluate the volume for each pixel to replace each EM position as a new simplex vertex until 

no larger simplex is found, as follows: 
 
 
 
* N-FINDR requires dimensionality reduction because the matrix                                     must be a 

 
square matrix for its determinant to exist. In this study, the maximum noise fraction (MNF) 
transform was used. 
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Figure 2. Graphical interpretation of the N-FINDR algorithm in a 3-dimensional 
space. (Left) N-FINDR initialized randomly (q=4) and (Right) final volume estim
ation by N-FINDR (Remón et al. 2013).

Figure 3. Extracted temporal EMs showing the 
variation in sea ice concentration throughout 
the year.

Figure 4. Fractional abundance maps of 
temporal EMs (E1-E9).

Figure 1. Basic definition of the temporal EMs 
(Piwowar, Peddle, and Ledrew 1998).

3.1 Reconstruction image comparison
•  The HTI can be reconstructed via the inverse 

process of pixel unmixing. 
•  Although a combination of the temporal 

EMs and the corresponding fractions does 
not always ensure perfect reconstruction, it 
can be used, to a certain, to create reference 
images that do not contain anomalies from 
other unexpected environmental factors and 
that mitigates the impact of processing error 
noise. 

•  The reconstructed images did not capture the 
detailed variability in the local areas as 
shown in Figure 5; however, they generally 
exhibited better visual consistency with the 
original images. 

  

Figure 5. Comparison of the original SIC with the 
reconstructed data. (Left) Best fit (RMSE 3.6%), 
(Middle) worst fit (RMSE 9.2%) and (Right) mean 
fit (RMSE 6.9%)

3.2 Regional comparison
•  While the Arctic SIC exhibits a long-term negative trend, the overall Antarctic sea ice has been 

expanding for decades. However, SICs exhibit great spatial variability in the Antarctic. The sea ice has 
significantly increase in the Ross Sea, while the Amundsen Sea sector exhibits a negative trend. 

  

3. Experimental results
•  The N-FINDR algorithm identified the representative nine temporal EMs and the corresponding 

fractional abundances associated with the temporal EMs, as shown in Figure 3 and Figure 4, 
respectively. 

•  The fractional abundance maps of the extracted temporal EMs represent the spatial distribution of sea ice 
during a particular season and provide a quick summary of the temporal characteristics of hypertemporal 
SIC data for each year. 

•  The slopes of three trend lines over the 
extent of the whole of the Antarctic sea 
ice were less steep than those for the 
Ross and the Amundsen Seas, which 
indicates that none of the three 
temporal signatures was significantly 
affected by the overall sea ice increase 
in the Antarctic (Figure 6(Left)). 

•  Sea ice in the Ross Sea has exhibited a 
more significant change in annual 
average than the southern hemisphere 
average has. Year-round SIC in the 
Ross Sea exhibits a positive trend; 
however, the area of open water has not 
changed significantly, and seasonal SIC 
exhibits a negative trend. These data 
indicate that sea ice growing in the 
Ross Sea sector is attributable to non-
seasonal sea ice rather than open water 
or seasonal sea ice (Figure 6(Right)). 

•  Unlike the Ross Sea,  the Amundsen 
Sea sector has exhibited statistically 
temp 

Figure 6. Regional comparison of non-seasonal sea ice, 
open water and seasonal sea ice in (Left) the entire 
Antarctic, (Right) the Ross Sea and (Middle) the 
Amundsen Sea.

4. Conclusions and future work
•  Three conclusions were derived from this study: 

1)  TMA efficiently provides a unique summary of long-term time series. 
2)  The reconstructed images did not frequently contain or minimize the impact of anomalies. 
3)  The changes in fractional abundances for each temporal EM in each region explained the overall 

impact of seasonal sea ice on the sea ice changes in each region. 
•  Several challenges remain to motivate future research: 

1)  NSIDC’s SIC data and retrieval algorithms should be evaluated for more scientific purposes. 
2)  Spatial information, which is distinguishing characteristics of image data, should be exploited to 

yield more accurate EM signatures. 
3)  An ensemble of the TMA results and other environmental factors might be used to better interpret 

sea ice dynamics in the Antarctic. 
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significant decreases in SIC. The TMA results show negative trends in both non-seasonal sea ice and 
open water in the Amundsen Sea. However, the trend for multi-year ice shows a significant negative 
trend compared with the southern hemisphere and Ross Sea, while the extent of seasonal sea ice exhibits 
a positive trend. Overall, these results indicate that a decrease in the non-seasonal sea ice fraction in the 
Amundsen directly affects the declining levels of sea ice, and considerable areas of multi-year ice and 
sea ice-free regions in the Amundsen have transitioned to areas of seasonal sea ice (Figure 6(Middle)). 
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