A20150531-9341

Detection of Plutonium-239 as an Alternative Age Constraint in the Antarctic Plateau Shallow Snowpack

Heejin Hwang*

Polar Climate Change Research Division, Korea Polar Research Institute(KOPRI), Korea

To determine Pu records related to nuclear weapons tests carried out since the 1950s in snow pit samples, we used an Inductively Coupled Plasma-Sector Field Mass Spectrometry (ICP-SFMS), coupled with an Apex high efficiency sample introduction system (Apex HF). A snow pit was dug at a site (77°18'S, 39°47'E, 3785 m a.s.l.) near Dome Fuji in East Antarctica, dating from 1957 to 2007. To avoid contamination during sample preparation, sample handling was carried out under ultraclean conditions; class 10 clean benches in class 1000 clean laboratories at the Korea Polar Research Institute (KOPRI) (Hong et al., 2012). The main advantages of ICP-SFMS technique are rapidity of analysis and simple sample preparation method for ²³⁹Pu at femtogram levels in small-volume samples from snow/ice. However, this technique is prone to spectral interferences. The existence of high content of uranium in sample could lead to significant interferences with ²³⁹Pu owing to uranium hydride (²³⁸UH⁺) formation. We found that the interference effect of $^{238}UH^+$ was negligible when the ^{238}U concentrations were lower than 10 pg g^{-1} . It was checked in various concentrations of multi-standard solutions such as 0.1, 0.2, 0.5, 1, 2, 5, 10, 25, 50, and 100 pg g⁻¹. When the 238 U concentrations were higher than 10 pg g⁻¹, significant counts for ²³⁸UH⁺ were measured. In the snow pit samples, the ²³⁸U concentrations were lower than 0.5 pg g⁻¹. Accordingly, ²³⁹Pu signals were detected without ²³⁸UH⁺ interference. For the calculation of ²³⁹Pu concentration, semi-quantitative method was used. It is based on assumption that the first ionization energy for Pu and U are very close (6.06 eV and 6.19 eV, respectively) and therefore they should have a similar behavior when ionized in the plasma (Gabrieli et al., 2011). An external calibration method was applied for the semi-guantification of ²³⁹Pu with ²³⁸U in the samples. The concentrations of the standard solution used for the calibration curve were 0.1, 0.2, 0.5, 1, 2, and 10 pg q^{-1} . Detection limits obtained for U and Pu are 0.005 pg q^{-1} and 0.042 fg q^{-1} , respectively. The results from the dilute solutions of riverine water certified reference materials (CRM) (SLRS-5) showed good agreement with the compiled value (Heimburger et al., 2012) (in pg g^{-1}): 101±6 (n=10) versus $93\pm6(n=25)$ for U. Consequently, the ²³⁹Pu records were reconstructed at femtogram levels in the Antarctic snow pit sample by the application of a semi-quantitative method. These suggest that this method can be widely used for the reconstruction of the fallout history of ²³⁹Pu and for the age constraint in other Antarctic Plateau sites.

S. Hong, T.-O. Soyol-Erdene, H. J. Hwang, S. B. Hong, S. D. Hur, and H. Motoyama, Environ. Sci. Technol. 46, 11550–11557 (2012).

J. Gabrieli, G. Cozzi, P. Vallelonga, M. Schwikowski, M. Sigl, J. Eickenberg, L. Wacker, C. Boutron, H. Gäggeler, P. Cescon, and C. Barbante, Atmos. Environ. 45, 587-593 (2011).

A. Heimburger, M. Tharaud, F. Monna, R. Losno, K. Desboeufs, and E.B. Nguyen, Geostand. Geoanal. Res. 37, 77-85 (2012).

*Corresponding author 1	Heejin Hwang
Affiliation	Korea Polar Research Institute(KOPRI)
Department	
E-mail address	heejin@kopri.re.kr

• Registrant's Information.

 Title 	Dr.			
 First (Middle) Name 	Heejin			
 Last Name 	Hwang			
E-mail	heejin@kopri.re.kr			
 Affiliation 	Korea Polar Research Institute(KOPRI)			
 Department 				
Country	Korea			
■ Tel	+82327605463			

Author(s)

		Presenter	Yes	Corresponding	g Author	Yes
		 Title 	Dr.			
	Author 1	 First (Middle) Name 	Heejin	 Last Name 	Hwang	
		Email	heejin@kopri.re.kr			
		 Affiliation 	Korea Polar Research Institute(KOPRI)			
		 Department 	Polar Climate Change Research Division			
	•	 Country 	Korea			

Presentation Preference

Poster

Conference Topics

Analytical Chemistry & Environment

CLOSE