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Triclosan (TCS) and Triclocarban (TCC) are used as antimicrobial agents and have beenwidely dispersed and de-
tected in the marine environment. However, the toxicities of TCS and TCC have been poorly investigated in ma-
rine invertebrates. In this study, the effects of TCS and TCC on mortality, population growth, lifespan, and
fecundity were examined in the monogonont rotifer (Brachionus koreanus) using cellular ROS levels, GST enzy-
matic activity, and gene expression of defensomes. The median lethal concentration (LC50) of TCS (393.1 μg/L)
and TCC (388.1 μg/L) was also determined in the same species. In TCS- and TCC-exposed B. koreanus, growth re-
tardation and reduced fecundity were observed and were shown to have a potentially deleterious effect on the
life cycle of B. koreanus. In addition, time-dependent increases in ROS content (%) and GST enzymatic activity
were shown in response to TCS and TCC exposure. Additionally, transcript levels of detoxification proteins
(e.g., CYPs), antioxidant proteins (e.g.,GST-sigma, Cu/ZnSOD, CAT), and heat shock proteins (Hsps)weremodulat-
ed in response to TCS and TCC exposure over a 24 h period. Our results indicate that TCS and TCC induce oxidative
stress and transcriptional regulation of detoxification, antioxidant, and heat shock proteins, resulting in changes
in lifespan and fecundity.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Over the last decade, Triclosan (TCS) and Triclocarban (TCC) have
been widely used as antimicrobial agents in a variety of personal care
products (PCPs) and are extensively used as detergents for sanitation.
However, these chemicals have recently been identified as emerging
pollutants in human and environment health, and both are frequently
detected in high concentrations in human tissues aswell as inwastewa-
ter, sediments, and aquatic environments (Table 1). Both chemicals
pose environmental risks and can induce adverse effects in diverse
aquatic organisms. For example, in freshwater bivalve zebra mussel
(Dreissena polymorpha) hemocytes, genotoxic and cytotoxic effects
were observed in response to TCS (Binelli et al., 2008, 2009). Also, in
the aquatic insect Chironomus riparius, genotoxic activity of TCS was
shown by comet assay (Martínez-Paz et al., 2013), while impaired
swimming behavior with changes in the mRNA of excitation–contrac-
tion coupling proteins was observed in the fatheadminnow Pimephales
promelas (Fritsch et al., 2013).
In the marine environment, toxic effects of TCC are not reported as
often as those of TCS. For example, in the adult male fathead minnow
P. promelas, decreased aggression was observed in response to TCC ex-
posure (Schultz et al., 2012). TCC has also been shown to induce DNA
damage in the freshwater ciliate Tetrahymena thermophila (Gao et al.,
2015). However, the main focus of TCS and TCC research has been on
their distribution in contaminated sites and in freshwater organisms;
TCS and TCC have toxic effects in marine ecosystems (Delorenzo et al.,
2008; Farré et al., 2008). Therefore, it is important to understand the
in vivo and in vitro molecular mechanisms of TCS and TCC exposure in
marine organisms.

Rotifers are widely distributed along coastal areas and play an im-
portant role as primary consumers for energy transfer in the aquatic
food chain (Isidori et al., 2005; Wallace and Snell, 2010; Dahms et al.,
2011). The monogonont rotifer (Brachionus koreanus) is considered a
suitable model species to studymarine ecotoxicology and environmen-
tal genomics as it is small (≈150 μm) and has high fecundity, a short
cycle period (≈24 h), genetic homozygosity, and is easily maintained
in the laboratory (Dahms et al., 2011; Han et al., 2013, 2014a, 2014b).
Also, whole transcriptome data of B. koreanus were obtained using
next generation sequencing (NGS) technology (Lee et al., 2015) to an-
notate B. koreanus genes from the first assembly of the B. koreanus
whole genome (total length 110,483,901 bp, scaffold nos. 1087, and
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Table 1
Triclosan (TCS) and Triclocarban (TCC) are used in many applications and have been detected in diverse aquatic environments.

Chemical Applications Place Concentration References

TCS Household cleaners, antibacterial mouthwash,
toothpaste, shampoos, skin lotion, hand soaps,
and children's toys (Reiss et al., 2009)

Tamiraparani River in India 5.16 μg/L Ramaswamy et al. (2011)
Lakes and river in Switzerland 74 ng/L, 2 ng/L Lindstrom et al. (2002)
Germany 30–90 ng/L Wind et al. (2004)
West Prong Little Pigeon River in east
Tennessee, United States

608 ng/L Yu and Chu (2009)

TCC Antimicrobial soaps and body washes
(Chalew and Halden, 2009)

Pearl River system of China 478 ng/L Zhao et al. (2010)
Urban stream in USA 6.75 μg/L Halden and Paull (2005)
Pearl River system of China 338 ng/L Zhao et al. (2010)
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N50 = 1,090,771 bp; unpublished data). Previously, the effects of di-
verse environmental stressors (e.g., B[a]P, copper, triphenyltin, and
gamma radiation) were successfully measured in B. koreanus at a tran-
scriptome level (e.g., glutathione S-transferases, cytochrome P450s,
DNA repair, heat shock proteins) based on reproductive and physiolog-
ical indices (e.g., survival rate, population growth, and reproduction
rate) (Kim et al., 2013; Han et al., 2013; Yi et al., 2014).

In this study, the effects of TCS and TCCweremeasured on themortal-
ity, growth, and reproduction rates and on the generation of ROS levels as
well as gene expression patterns of defensomes in B. koreanus. This study
provides a better understanding of the molecular response and toxic ef-
fects of TCS and TCC in the rotifer B. koreanus.
2. Materials and methods

2.1. Culture and maintenance of B. koreanus

The monogonont rotifer B. koreanus was collected at Uljin (36°58′
43.01″N, 129°24′28.40″E) in South Korea. For monoculture, a single indi-
vidual was isolated under a stereomicroscope, reared, and maintained.
The stock for successive culture was maintained in our lab at least for
7 years and the individuals were reared by the batch culture to reduce
contamination. B. koreanus were incubated in 15 practical salinity units
(psu) of filtered artificial seawater (TetraMarine Salt Pro, Tetra™, Blacks-
burg, VA, USA) at 25 °C with a photoperiod of 12:12 h light:dark. The
green algae Tetraselmis suecica was used as a live diet. The rotifer
B. koreanus reproduces only through parthenogenesis and does not dem-
onstrate a sexual cycle. Species identification was confirmed bymorpho-
logical characteristics and mitochondrial genome analysis (cytochrome
oxidase I; CO1) (Hwang et al., 2013; Mills et al., 2016).
2.2. Effects of TCS and TCC on mortality, lifespan, fecundity, and population
growth

To examine the effects of TCS and TCC onmortality, life span, and fe-
cundity, 10 B. koreanus (b12 h after hatching) were collected and were
exposed to different concentrations (0, 50, 100, and 200 μg/L; equiva-
lent to 0, 0.1725, 0.345 and 0.69 μΜ for TCS and 0, 0.1575, 0.315 and
0.63 μΜ for TCC) of TCS and TCC. Mortality was measured by counting
the number of dead rotifers under stereomicroscopy (SZX-ILLK200,
Olympus, Tokyo, Japan) at 24 h after exposure. The average lifespan
and number of cumulated offspring were determined by counting
deaths in response to TCS and TCC exposure.

To examine population growth in response to TCS and TCC exposure,
10 neonates were transferred into each well of a 12-well culture plate
(working volume, 4 mL) as shown in previous studies (Rhee et al.,
2012; Han et al., 2013, 2014a, 2014b). Then, B. koreanus were exposed
to different concentrations of TCS or TCC. The 50% test solution was
renewed every 24 h. The number of rotifers was counted over a 10-
day period. During the experiment, 50% of the test solution
was renewed, and the green algae T. suecica (approximately,
5 × 104 cells/mL) were supplied as a live diet once every 24 h.
2.3. Measurement of ROS levels and GST activity

To examine the levels of TCS- and TCC-induced oxidative stress,
B. koreanus (about 7000 individuals) were exposed to TCS (100 μg/L)
or TCC (100 μg/L) over a specified time period (0, 3, 6, 12, and 24 h). In-
tracellular ROS were measured as described by Kim et al. (2011). Three
replicates were carried out for each treatment group. Samples were ho-
mogenized with Teflon pestle in a buffer (0.32 mM sucrose, 20 mM
HEPES, 1 mM MgCl2, and 0.4 mM PMSF at pH 7.4). The homogenized
samples were centrifuged at 10,000 g for 20 min (4 °C), and the super-
natants were reacted with H2DCFDA. Wavelengths were measured at
485 nm for excitation and 520 nm for emission (Thermo Scientific Co.,
Varioscan Flash, Vantaa, Finland). The GST enzymatic activity (EC
2.5.1. 18) was measured as described by Regoli et al. (1997). Total pro-
tein content of the supernatant was determined to normalize ROS con-
tents and GST activities using the Bradford method (Bradford, 1976).

2.4. Gene expression in B. koreanus exposed to TCS and TCC

To obtain the gene sequences for this study, we searched the rotifer
B. koreanus RNA-seq information (Lee et al., 2015). To examine expres-
sion patterns of target defensomegenes (CYP3042A1, CYP3043A1,GST-a,
GST-o, GST-s, GST-z, CuZn-SOD,MnSOD, Cat, GPx, and 12 isoforms of heat
shock proteins), mRNA expression levels weremeasured for detoxifica-
tion, antioxidant, and stress-related genes in response to TCS (0 (con-
trol), 25, 50, 100, and 200 μg/L) and TCC (0 (control), 25, 50, 100, and
200 μg/L) for 24 h. Total RNA was isolated from the TCS- and TCC-
exposed B. koreanus (about 6000 individuals for each sample) using
TRIZOL® reagent (Invitrogen, Paisley, Scotland, UK) according to the
manufacturer's instructions. Total RNA quantity and quality were mea-
sured at 230, 260, and 280 nm using a spectrophotometer (Ultrospec
2100pro, Amersham Bioscience, Freiburg, Germany). To synthesize
cDNA for real-time RT-PCR), 2 μg each of total RNA and oligo(dT)20
primer were used for reverse transcription (SuperScript™ III RT kit,
Invitrogen, Carlsbad, CA, USA). Real-time RT-PCR was conducted for
the following conditions: 95 °C for 4 min; 35 cycles of 95 °C for 30 s,
58 °C for 30 s, 72 °C for 30 s; and 72 °C for 10min using SYBRGreen fluo-
rescence as a probe (Molecular Probes Inc., Eugene, OR, USA)withMyIQ
cycle (Bio-Rad, CA, USA). To confirm the amplification of specific prod-
ucts, melting curve cycles were performed at the following conditions:
95 °C for 1 min; 55 °C for 1 min; and 80 cycles of 55 °C for 10 s with
0.5 °C increase per cycle using real-time RT-PCR F or R primers (Suppl.
Table 1). The 18S rRNA gene from B. koreanuswas used as housekeeping
gene to normalize, and expressed as relative gene expressions between
samples. All analyses were done in triplicate. The relative fold change of
gene expressions was calculated as suggested by Livak and Schmittgen
(2001).

2.5. Statistical analysis

All results are expressed as mean value with standard error. The ho-
mogeneity of variances of data was verified by Levene's test. The signif-
icant differences in growth, antioxidant enzymes, andmRNA expression



Fig. 1. Effects of different concentrations of (A) TCS and (B) TCC on population growth and
fecundity after exposure for 10 days. Error bars indicate mean ± SE.
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between control and test groups were analyzed by one-way ANOVA
followed by Tukey's honestly significant difference test (P b 0.05, differ-
ent letters indicate significant differences according to exposure group).
All statistical analyseswere performed using SPSS® version 21 software
(SPSS Inc., Chicago, IL, USA).

3. Results

3.1. Effects of TCS and TCC on mortality, lifespan, cumulative offspring, and
population growth

The LC50-24h of TCS and LC50-24h of TCC in B. koreanuswere deter-
mined as approximately 393 and 388 μg/L, respectively (Table 2).

The population growth of B. koreanus was significantly retarded
(P b 0.05) after exposure to either 200 μg/L TCS or TCC (Fig. 1). Also, cu-
mulative offspring and lifespan were reduced in the highest concentra-
tions of TCS and TCC compared to the control group (Figs. 2 and 3).

3.2. Measurement of ROS level and GST activity

To confirm whether oxidative stress was induced by TCS and TCC in
B. koreanus, the intracellular ROS level and GST activities were mea-
sured. The ROS level in B. koreanus increased after 6 and 12h in response
to TCS (100 μg/L) and TCC (100 μg/L) exposure, respectively. Also, anti-
oxidant GST enzymatic activity was induced after exposure to TCS and
TCC (Figs. 4 and 5).

3.3. Defensome gene expression in TCS- and TCC-exposed B. koreanus

To examine toxic effects of TCS and TCC at themolecular level, expres-
sion levels of defensome genes were measured in TCS- and TCC-exposed
B. koreanus. TCS and TCC induced expression of detoxification-related
(CYP3024A2, CYP3027C2)-, antioxidant (GST-sigma, catalase), and chaper-
one (Heat shock proteins) genes (Figs. 6 and 7).

4. Discussion

The significant differences in lethal concentrations of TCS and TCC
between species (e.g. ciliate and brine shrimp) demonstrated variable
susceptibility to these chemicals over species (Gao et al., 2015; Xu
et al., 2015). The difference in LC50-24h values of TCS and TCC was
not statistically significant (P N 0.05), indicating that the toxicity of
TCC was not greater than that of TCS in B. koreanus (Table 2). Mortality
is a simple method to assess toxicity of chemicals (Amiard and Amiard-
Triquet, 2015). Similar toxicity values in response to TCS and TCC indi-
cate that those chemicals induce similar lethal effects in the rotifer
B. koreanus; however, other aquatic organisms have shown different
values. For example, in the brine shrimp Artemia salina, the LC50-24h
value of TCS (171.1 μg/L) was much higher than that of TCC
(17.8 μg/L) (Xu et al., 2015). Also, in the ciliated protist T. thermophila,
the LC50-24h value of TCS (1063 μg/L) was higher than that of TCC
(295 μg/L) (Gao et al., 2015). The differences in toxicity in other organ-
isms can be expressed by the amount of excess toxicity in aquatic organ-
isms using Kow (Schultz, 1987).

Kow ¼ Co=Cw
Table 2
Acute toxicity tests following exposure to TCS or TCC for 24 h.

Chemical NOEC (μg/L) LC50 (95% CI; μg/L)

Triclosan (TCS) 100 393.051 (317.87–473.70)
Triclocarban (TCC) 100 388.09 (346.20–435.04)
where the subscripts o and w refer to the octanol and water phases, re-
spectively, and Co and Cw are the molar solute concentrations in the
two phases.

The differences in Kow values of TCS and TCC indicated that TCC (log
Kow of 4.9) had relatively high solubility in the aquatic environment
compared to TCS (log Kow of 5.4). The similar susceptibility of
B. koreanus in response to TCC and TCS suggests that B. koreanus may
have a specific mechanism to regulate the toxicity of TCC that is not
found in other species. However, more extensive studies in other aquat-
ic organisms are needed to compare the generalized risks of these two
chemicals.

In B. koreanus, life parameters (population growth, lifespan, and cu-
mulative offspring) were negatively affected by exposure to TCS and
TCC. In particular, the population growth of B. koreanus in response to
TCS and TCC was retarded but only at the highest concentrations of
TCS and TCC. These levels exceeded no observed effect concentration
(NOEC) values, although a similar saturation density was reached after
8 days in both the control and experimental groups (Fig. 1). The sub-
lethal toxicity test has been considered an alternative approach to eval-
uate the biological effects of acute toxicity (van Leeuwen and Vermeire,
2007). For example, over the past several decades, growth and repro-
ductive success have been used as indicators of physiological health
(Chandini, 1989) and population structure in ecosystems in response
to environmental pollutants (Dahlhoff, 2004). In the monogonont

Image of Fig. 1


Fig. 2.Effects of different concentrations of (A) TCS and (B) TCC on the fecunditymeasured
using cumulative number of offspring from female B. koreanus. Significant differences
were analyzed by ANOVA (Tukey's post hoc test; P b 0.05) and are expressed as
different letters.

Fig. 3. Effects of different concentrations of (A) TCS and (B) TCC on the lifespan of
B. koreanus. Significant differences were analyzed by ANOVA (Tukey's post hoc test;
P b 0.05) and are expressed as different letters.
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rotifer B. koreanus, there have been many studies monitoring the sub-
lethal responses to diverse marine pollutants (e.g., UV-B, pharmaceuti-
cals, and Cu) that affected changes in population growth (Kim et al.,
2011; Rhee et al., 2012; Han et al., 2013). Also, reductions in lifespan
and fecundity and growth retardation were observed in gamma-
irradiated B. koreanus (Han et al., 2014a, 2014b), suggesting that these
in vivo parameters have great potential for evaluating effects of envi-
ronmental stressors in ecotoxicological studies.

A reduced cumulative number of offspring was measured in rotifers
exposed to high concentrations of TCS and TCC (Fig. 2), suggesting an ef-
fect on population growth. TCS and TCC may have potential as endo-
crine disrupting chemicals that affect endocrine systems such as
androgen metabolism and thyroid-mediated processes (Foran et al.,
2000; Matsumura et al., 2005; Veldhoen et al., 2006; Chen et al., 2007,
2008; Hinther et al., 2011). In Japanese medaka (Oryzias latipes) fry
(Foran et al., 2000) and North American bullfrogs (Rana catesbeiana)
(Veldhoen et al., 2006), TCS induces abnormal traits in endocrine-
associated systems including sexual development and postembryonic
development. Also, the enhanced bioactivity of endogenous hormones
in an in vitro assay has been observed in response to TCC exposure
(Chen et al., 2008). Taken together, these studies suggest that TCS and
TCC disturb the internal secretion and biosynthesis of endocrine hor-
mones that result in physiological alterations. Thus, TCS and TCC may
lead to harmful effects on the endocrine system of B. koreanus, although
this theory requires further studies.

In B. koreanus, the lifespanwas significantly decreased in response to
200 μg/L of either TCS or TCC (Fig. 3). In gamma-irradiated B. koreanus, a
similar finding was observed due to the generation of ROS, oxidative
stress, and DNA damage in response to gamma radiation (Han et al.,
2014b). The shortening of lifespan is closely associated with regulation
of normal physiology to increase cellular resources for molecular de-
fense and DNA damage repair capacities (Larsen, 1993; Tosato et al.,
2007). Thus, in oxidative stress conditions, the impairment of life cycle
parameters supports thefinding that the energy capacity for cellular de-
fense and DNA repair reduces the growth, reproduction, andmovement
of the cells.

In TCS- and TCC-exposed B. koreanus, the intracellular ROS content in-
creased (Fig. 4). ROS have important roles in initiating and catalyzing di-
verse radical reactions in living systems (Valko et al., 2007) and can attack
variousmacromolecules such as DNA, proteins, and lipids, leading tomu-
tagenesis, cellular aging, and carcinogenesis (Gniadecki et al., 2000). Ox-
idative stress is induced when the balance between production of ROS

Image of Fig. 2
Image of Fig. 3


Fig. 4. Effects of different concentrations of (A) TCS and (B) TCC on the generation of
intracellular reactive oxygen species (ROS) in B. koreanus. Significant differences were
analyzed by ANOVA (Tukey's post hoc test; P b 0.05) and are expressed as different letters.

Fig. 5. Effects of different concentrations of (A) TCS and (B) TCC on the enzyme activity of
glutathione S-transferase (GST). Significant differenceswere analyzed by ANOVA (Tukey's
post hoc test; P b 0.05) and are expressed as different letters.
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and antioxidant defense is disrupted. Several previous reports have
suggested that ROS, generated by diverse environment stressors
(e.g., gamma radiation, metals, and UV-B), induce harmful effects on
the life cycle and reproduction in B. koreanus (Kim et al., 2011; Han
et al., 2013, 2014a, 2014b). In another rotifer Asplanchna brighwelli, de-
generative aging was induced by free radical reactions (Bozovic and
Enesco, 1986). Similarly, in B. koreanus, a reduced lifespan was observed
in accordance with increases in gamma radiation and generation of ROS,
while the non-irradiated counterparts showed a relatively long lifespan
with a high fecundity rate (Han et al., 2014a, 2014b). Together, these re-
sults suggest that ROS are directly related to retarded population growth
in TCC- and TCS-exposed B. koreanus.

In TCS- and TCC-exposed B. koreanus, a significant increase in GST
activity was observed (Fig. 5) with a simultaneous increase in
antioxidant-related genes and heat shock protein genes (Fig. 6). After
exposure to environmental stressors, adaptation and regulation of oxi-
dative stress-induced damage occurred, as was previously shown
(Kim et al., 2011; Han et al., 2013, 2014a, 2014b). GST enzymatic activ-
ity has been used as a biomarker of environmental stress as the key
member of the detoxifying mechanisms through Phase II reactions
(Singh et al., 2001). For example, in the zebra mussel (D. polymorpha),
GST was activated with activation of other antioxidant enzymes
(e.g., CAT and GPx) in response to TCS exposure (Binelli et al., 2010).
The mRNA expressions of two cytochrome P450 (CYP) genes, oxidative
stress-related genes (GST-a, GST-o, GST-s, GST-z, CuZn-SOD,MnSOD, Cat,
and GPx), and 12 isoforms of heat shock proteins were significantly al-
tered in B. koreanus in response to TCS and TCC (Figs. 6 and 7). CYP en-
zymes are one of the multigene superfamilies participating in phase I
metabolic activation of diverse xenobiotics in organisms (Guengerich,
2008). In rotifer, two CYP genes (CYP3042A1 and CYP3043A1) previously
showed themost sensitive reactions in response to B[a]P exposure (Kim
et al., 2014) and were chosen as candidate molecular biomarkers to as-
sess the effects of TCS and TCC. Conversely, in this study, we found that
B. koreanus CYP3042A1 and CYP3043A1 geneswere only slightly induced
in response to TCS and TCC exposure. After triphenyltin (TPT) exposure,
B. koreanus showed significantly induced expression of the CYP3045C1
gene but not of either the CYP3042A1 or CYP3043A1 gene (Yi et al.,
2014), suggesting that TCS and TCC have different modes of action
and metabolize TPT in a phase I reaction (e.g., CYP gene expression).

B. koreanus GST gene expression was also increased in response to
TCS and TCC exposure. Similarly, in the yellow catfish (Pelteobagrus
fulvidraco), several isoforms of CYP and GST genes were significantly el-
evated in response to TCS exposure (Ku et al., 2014). In B. koreanus, di-
verse antioxidant genes (e.g., GSTs, CAT, SOD) were previously shown to
respond to environmental stressors such as Cu, B[a]P gamma radiation,

Image of Fig. 4
Image of Fig. 5


Fig. 6. Expression patterns of the detoxification and antioxidant-related genes in
B. koreanus after exposure to (A) TCS (0, 25, 50, 100, or 200 μg/L) or (B) TCC (0, 25, 50,
100, or 200 μg/L) for 24 h.
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and biocides (Han et al., 2013; Kim et al., 2013; Han et al., 2014a, 2014b;
Kim et al., 2015). As expected, TCS- and TCC-exposed B. koreanus expe-
rienced similar cellular events in metabolism of detoxification and acti-
vation of antioxidant defense system.

The mRNA expression of the 12 heat shock proteins (hsps) in
B. koreanuswas differently modulated in response to TCC and TCS expo-
sure (Fig. 7). Hsps are chaperoneproteins associatedwith cellular defense
Fig. 7. Expression patterns of heat shock proteins (hsps) in B. koreanus after exposure to
(A) TCS (0, 25, 50, 100, or 200 μg/L) or (B) TCC (0, 25, 50, 100, or 200 μg/L) for 24 h.
mechanisms in response to various environmental stressors (e.g., heat,
xenobiotics, UV radiation) (Sarkar, 2006). Of the various hsps, hsp70 is
considered the major cellular protection protein that maintains cellular
functions and is a useful biomarker of response to environmental
stressors in diverse organisms including invertebrates (Lewis et al.,
1999; Nadeau et al., 2001; Ivanina et al., 2008). In the rotifer
B. koreanus, most hsps including small hspswere upregulated in response
to TCS and TCC exposure. Particularly, the highest concentrations of TCC
significantly upregulated the expression of hsp10 and hsp21 (P b 0.05),
while reduced expression of hsp10 and hsp21 was observed at the
NOEC level. In the TCS-exposed earthworm Eisenia fetida, expression of
heat shock protein 70 (Hsp70) was examined as amolecular bioindicator
(Lin et al., 2014). In frog tail fin biopsies and rat pituitary GH cells, mRNA
expression of Hsp30 and Hsp70 genes was changed in response to TCS
and TCC exposure (Hinther et al., 2011). In B. koreanus, transcriptional
modulation of all Bk-hsps was observed in response to environmental
stresses (e.g., UV-B, gamma radiation, and triphenyltin chloride) (Kim
et al., 2011; Han et al., 2014a, 2014b; Yi et al., 2014), suggesting that
Bk-hsps would be a reliable biomarker of defense mechanisms in re-
sponse to environmental stressors. TCS and TCC induced cellular stress
to produce DNA damage, triggering the cellular defense system in
B. koreanus.

In summary, TCC and TCS affect lifespan and reproductive rate in
B. koreanus after ROS generation and regulate defensomes associated
with detoxification, antioxidant, and stress defense systems. Our study
provides a better understanding of how these emerging chemicals affect
sub-individual to population-levels through reduced lifespan and re-
productive impairment with mechanistic aspects in the rotifer
B. koreanus. The generation of ROS in response to TCS and TCC has ad-
verse effects on normal physiological functions and processes
(e.g., growth and reproduction) in B. koreanus. In particular, the poten-
tial bioavailability of TCC highlights the specificmechanisms of detoxifi-
cation of TCC by B. koreanus.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.cbpc.2016.04.002.
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