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Machine learning-based temporal mixture analysis of
hypertemporal Antarctic sea ice data
Junhwa Chi, Hyun-Cheol Kim and Sung-Ho Kang

Division of Polar Ocean Environment, Korea Polar Research Institute, Incheon, Korea

ABSTRACT
Hypertemporal image (HTI) is often used to exploit the seasonal char-
acteristics of environmental phenomena such as sea ice concentration
(SIC). However, it is difficult to analyse the long-term time series
acquired at high temporal frequencies and over extensive areas. This
study performed temporal mixture analysis (TMA), which is algebrai-
cally similar to spectral mixture analysis (SMA), but occurs in the time
domain instead of the spectral domain. TMA was used to investigate
the temporal characteristics of Antarctic sea ice. Because endmember
(EM) selection is critical to the success of both SMA and TMA, it is
important to select proper EMs from large quantities of HTI. In this
study, amachine learning (ML) technique is incorporated in identifying
EMs without prior information to address the limitations of previous
research. A fully linear mixing model was then implemented in an
attempt to produce more robust and physically meaningful abun-
dance estimates. Experiments that quantitatively and qualitatively
evaluated the proposed approaches were conducted. A TMA of high-
temporal-dimensional data provides a unique summary of long-term
Antarctic sea ice and noise-whitened reconstruction images via inverse
processing. Furthermore, comparisons of regional sea ice fractions
from experimental results enhance the understanding of the overall
Antarctic sea ice changes.
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1. Introduction

Changes in human behaviour and increases in greenhouse gases have been the main drivers
of the observed global warming. An increasing amount of attention worldwide has thus been
given to various studies of climate change. Researchers expect that climate change will be
more rapid and severe in the polar regions than it will be at temperate latitudes. Thus, the
sensitivity of sea ice to temperature is a barometer for general trends in global climate (Parry
2007). Compared with in situ measurements, remotely sensed data from various platforms
better enable the efficient and regular assessment of large, inaccessible areas. Remote sensing
(RS) data thus allow important ecosystem functions to be efficiently mapped and monitored.

Optical RS sensors typically record radiation reflected from a ground target over a contin-
uous range of contiguous bands. Hyperspectral sensors, which often acquire data in hundreds
of narrow bands, provide better data for identifying materials than do multispectral sensors.
However, hyperspectral imaging (HSI) is limited in its capacity to effectively monitor the Arctic
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and the Antarctic due to narrow swaths, long revisit cycles and severe weather conditions.
From a different perspective, a set of long-term RS data might capture seasonal profiles and
track changes that can be used to monitor and map the temporal dynamics of land cover
(DeFries, Hansen, and Townshend 2000; Lobell and Asner 2004; Yang et al. 2012). Throughout
this paper, the term ‘hypertemporal image’ (HTI) refers to time series-basedRSdata acquired at
high frequencies.

Many analysis techniques for multispectral and hyperspectral data have been investigated
in the spectral domain (Plaza et al. 2004; Bioucas-Dias et al. 2012). The most popular analysis
technique in theRS community is classification,wherein eachpixel of the image is assigned to a
discrete class. Another popular technique, called spectral unmixing or spectralmixture analysis
(SMA), decomposes the pixels into a collection of individual pure spectral signatures, which are
referred to as ‘endmembers’ (EMs), at sub-pixel levels (Keshava and Mustard 2002). Temporal
mixture analysis (TMA) is an extension of SMA of HSI to the temporal domain that provides a
unique summary of HTIs and describes the seasonal characteristics, rather than radiometric
characteristics, of ground cover (Piwowar, Peddle, and Ledrew 1998; Piwowar 2008; Haibo and
Ziwei 2011; Yang et al. 2012). Although SMA has been extensively investigated using HSI, few
studies have examined TMA because this approach is still in its infancy (Piwowar, Peddle, and
Ledrew 1998). Piwowar, Peddle, and Ledrew (1998) first investigated TMA by analysing long-
term temporal RS data that were generated using 9 years of Arctic sea ice concentration (SIC)
data. The authors defined temporal EMs using simple statistics, computed fractional abun-
dances using a linearmixingmodel, and then derived the temporal characteristics of the Arctic
SIC. This approachwas demonstrated inmonitoring the variability of the Antarctic SIC in Haibo
and Ziwei (2011). Following this research, several studies have applied TMA to other various
applications. DeFries, Hansen, and Townshend (2000) applied a linear mixture model to derive
globally continuous fields for vegetation characteristics using multiple years of AVHRR
(Advanced Very High Resolution Radiometer) data. In Lobell and Asner (2004), a perpendicular
vegetation index ofModerate Resolution Imaging Spectroradiometer (MODIS) time series data
and linear unmixing were used to estimate sub-pixel fractions of land-cover types. Next, Yang
et al. (2012) proposed a TMA method to compute impervious surface area fractions in Japan
using multi-year MODIS normalized difference vegetation index (NDVI) data.

Identifying an appropriate set of EMs is themost critical part of both SMAandTMA (Keshava
and Mustard 2002; Plaza et al. 2004). Piwowar, Peddle, and Ledrew (1998) identified temporal
EMs using monthly Arctic SIC data derived from a scanning multi-channel microwave radio-
meter (SMMR)performedusing aNimbusplatformandapurification formula. In this approach,
mean,median,maximumandminimumstatistics are used to derive pure temporal EM spectra
from a sample set of image spectra. However, this method may not properly capture the
seasonal characteristics of sea ice because monthly data provide insufficient temporal infor-
mation, and the temporal EMs generated by the purification process are not always collected
on the same scale as the image data. Inaccurate temporal EMs might introduce many
reconstruction errors. In this paper, machine learning (ML) techniques were used for TMA of
Antarctic SIC to provide unique and summarized information of long-term time series. First,
daily SIC data, which are similar to HSI but are in a different domain, were used to better
seasonally characterize the Antarctic sea ice. Second, due to a lack of prior information on sea
ice seasonality, an ML-based endmember extraction (EE) algorithm was applied to generate a
collection of pure temporal signatures. Next, quantitative and qualitative experiments were
performed and discussed to evaluate the proposed approaches.
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2. Methodology

2.1. Hypertemporal sea ice concentration data

Based on the assumption that SIC data1 provided by NSIDC (National Snow and Ice Data
Center) guarantee the data quality at a global scale, 36 years of SIC data from 1979 to 2014
over the Antarctic were used in this study. The data were generated from the SMMR on
Nimbus 7 satellite, Special Sensor Microwave/Imagers (SSM/Is) on the DefenseMeteorological
Satellite Program (DMSP) -F8, -F11 and -F13 satellites and the Special Sensor Microwave
Imager/Sounder (SSMIS) on DMSP-F17 satellites, at 25-km spatial resolution in the polar
stereographic projection. The NASA Team algorithmwas applied to these data sets to analyse
the time series data acquired from different sensors (Cavalieri et al. 1996). SIC data from 1978
to 1987 were collected every other day; these data gaps were filled using linear interpolation
to generate consistent daily time series data throughout the time period.

2.2. Temporal mixture analysis

Most pixels from RS data comprise several distinct materials due to resolution trade-off,
intimate mixtures andmultiple interferences, among other concerns. SMA assumes that the
surface is dominated by a small number of such substances and can be modelled by
representing the substances at sub-pixel levels (Keshava and Mustard 2002). The main
idea underlying TMA of HTIs is rooted in SMA. TMA also assumes that the time series consist
of several temporal components that represent the seasonal characteristics of the sub-
stances. Two general steps were employed to address the mixing problems: 1) identifying
temporally unique signatures of pure components, which are referred to as temporal EMs
and 2) unmixing each pixel in the time series images as a linear or non-linear combination of
EM fractional abundances. Because temporal EMs in the SIC time series typically correspond
to seasonal sea ice signatures, TMA can quantitatively estimate the SIC each season as a
unique and informative summary of the long-term time series.

Because of its robustness and ease of implementation, linear unmixing is often used
to resolve mixing phenomena. Linear mixing models for TMA assume that the temporal
trajectories of seasonal sea ice are linearly independent and that the pixels in the images
lie in linear spaces. The set of HTI matrices is denoted as follows:

X : xi; i ¼ 1; 2; � � � ;N½ � 2 RD, with temporal dimension D and number of samples N. Let
xi be the i-th daily trajectory of HTI. The temporal spectrum x can be modelled as a linear
combination of several temporal EM vectors E : ej; j ¼ 1; 2; � � � ; q� �

, where q is the
number of temporal EMs. Each temporal spectrum at pixel xi can be expressed by
Pq
j¼1

ai;jej þ ω, where ai;j is a scalar value that represents the fractional abundance of

the temporal EM vector ej at pixel xi, and ω denotes additive variability (e.g., noise,
measurement or model errors). In practice, fully constrained least squares unmixing is
typically used to estimate physically meaningful abundances with two constraints for

each HTI pixel xi: 1) non-negative: ai;j � 0;"ai;j : 1 � j � q and 2) sum-to-one:
Pq
j¼1

ai;j ¼ 1,

which are defined as later (Heinz and Chang 2001).
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For example, Figure 1 illustrates the effects of mixing on the multi-temporal SIC using
three temporal EMs: 1) the open sea (sea ice free in both March and September), 2) non-
seasonal sea ice (100% sea ice cover in both March and September) and 3) seasonal sea
ice (100% SIC in March and 0% in September) signatures (Piwowar, Peddle, and Ledrew
1998). Because the mixture points in the two temporal bands shown in Figure 1 are
spread along the lines between the EMs, the corresponding fractional abundances,
which are related to ‘physical’ quantities of the EMs, can be computed.

2.3. Endmember extraction

Themost crucial task in both SMA and TMA is identifying an appropriate set of EMs to use in
the modelling of at-sensor pixel spectra or temporal trajectories through a linear combina-
tion of the EMs. In this study, a Neyman–Pearson detection-theory-based eigenthreshold
method, referred to as the Harsanyi–Farrand–Chnag (HFC) method, was used to determine
the number of EMs in hypertemporal data without prior information. This method first
computes the sample correlation and covariance matrices, and then determines the differ-
ence between the corresponding eigenvalues (Harsanyi, Farrand, and Chang 1993). Because
image-derived EMs have the advantage of being collected under the same conditions as the
RS data, an ML-based EE algorithm was used for the HTI of the SIC. Over the past decade,
many ML algorithms have been proposed by the hyperspectral RS community to identify
image EMs. Assuming that pure or extreme signatures are EMs, the notion of geometric
convexity is natural and logical. Thus, this approach is the most popular and is used to
develop a wide range of algorithms.

The N-FINDR algorithm developed by Winter (1999) was used in this study because
studies show that it is promising for many HSI unmixing applications (Winter 1999; Plaza
et al. 2004; Chi and Crawford 2014). This automated technique attempts to identify a set of

Figure 1. Basic definition of the temporal endmembers (Piwowar, Peddle, and Ledrew 1998).
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vertices that can be specified by EMs. It uses the simplex of maximum volume spanned by
the EMs as a major criterion and is based on the assumption that the volume defined by a
simplex spanned by the purest pixels is greater than any other volume defined by any
other combination of pixels. If HSI or HTI data are distributed over a convex space, this
operation can be performed quickly and in a relatively straightforward manner. N-FINDR
arbitrarily selects initial seed points (EM candidates), and the volume of the resulting
simplex spanned by the seed points is computed as follows:

V e1; e2; � � � ; eq
� � ¼ det

1 1 � � � 1
e1 e2 � � � eq

� �� 	








= q� 1ð Þ!. The volume is evaluated for

each pixel to replace each EM position as a new simplex vertex until no larger simplex
is found, as follows: arg max

e1;e2;���;eqð Þ
V e1; e2; � � � ; eq
� �

. N-FINDR requires dimensionality

reduction because the matrix
1 1 � � � 1
e1 e2 � � � eq

� �
must be a square matrix for its deter-

minant to exist (Winter 1999). In this study, the maximum noise fraction (MNF) transform
proposed by Green et al. (1988) was used. The MNF was first developed as an alternative
to principal component analysis (PCA) to address data variance issues that are not always
related to image quality, because principal components are not necessarily ordered by
image quality. The MNF transformation was derived as a PCA analogue and includes all of
the PCA properties, but it utilizes a signal-to-noise ratio to measure image quality, which
produces the equivalent of a noise-whitened PCA (Cheriyadat and Bruce 2003).

3. Experimental results

Using the HFC virtual dimensionality algorithm for hypertemporal SIC data acquired from
1979 to 2014 with various false alarm probabilities PF ¼ 10�1; 10�2; 10�3; 10�4; 10�5

� �
produced the same virtual dimensionality estimates (Harsanyi, Farrand, and Chang 1993).
Therefore, the number of potential temporal EMs was determined to be 9. The N-FINDR
algorithm identified the representative nine temporal EMs, which include open ocean (E1),
year-round sea ice (E2) and seven seasonal sea ice signatures (E3–E9) and are shown in
Figure 2. Next, the corresponding fractional abundances associated with the temporal EMs
were created using a fully constrained linear mixing model (see Figure 3). The fractional
abundance maps of the extracted temporal EMs represent the spatial distribution of sea ice
during a particular season and provide a quick summary of the temporal characteristics of
hypertemporal SIC data for each year. These data also indicate that the HTI can be recon-
structed via the inverse process of pixel unmixing. Although a combination of the temporal
EMs and the corresponding fractions does not always ensure perfect reconstruction, it can be
used, to a certain extent, to create reference images that do not contain anomalies from other
unexpected environmental factors and that mitigates the impact of processing error noise.

3.1. Reconstruction image comparison

In SMA, unmixing results are typically tested in two ways: 1) using the spectral angle
distance between the extracted EMs and reference spectra acquired from a spectral
library or field data and 2) using pixel reconstruction error. It is relatively easy to obtain
ground reflectance information for SMA (Keshava and Mustard 2002; Plaza et al. 2004;
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Figure 2. Extracted temporal endmembers (E1: open sea; E2: year-round sea ice; and E3–E9:
seasonal sea ice signatures) showing the variation in sea ice concentration throughout the year.

Figure 3. Fractional abundance maps of temporal endmembers E1–E9.
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Bioucas-Dias et al. 2012); however, it is challenging to do so for TMA because seasonality
reference data for time series do not exist. Therefore, it is not possible to use distance-
based similarity comparison with reference spectra to evaluate TMA results. Instead, root
mean square error (RMSE) was used to provide an overall ‘pixel-by-pixel’ difference
between the original and reconstructed SIC images.

Figure 4 shows reconstructions of 2014 HTI using three RMSE values: 1) the best fit
(Figure 4(a)), 2) the worst fit (Figure 4(b)) and 3) the case most statistically similar to the
mean (Figure 4(c)). The reconstructed images did not capture the detailed variability in
the local areas as shown in Figure 4; however, they generally exhibited better visual
consistency with the original images. Because Figure 4(a) shows a good RMSE, the
reconstructed image appears to have been adequately reconstructed both visually and
statistically. However, Figure 4(b) especially shows low accuracy and low fidelity with the
original image. This is because the representative EMs might not adequately model the
areas where sea ice might be melting. Notably, little success was achieved using
representative seasonal sea ice data from the previous 36 years to inform the modelling
of areas that might be associated with other environmental (climatological) factors.

3.2. Regional comparison

The Arctic SIC exhibits a long-term negative trend; however, the overall Antarctic sea ice has
been expanding for decades (Screen 2011; Parkinson and Cavalieri 2012). Antarctic sea ice
set record highs from 2012 to 2014, even though average Antarctic surface temperatures
were close to the highest temperatures observed. Interestingly, however, SICs exhibit great

Figure 4. Comparison of the original sea ice concentration data with the reconstructed data. (a) Best
fit (RMSE 3.6031%), (b) worst fit (RMSE 9.2356%) and (c) mean fit (RMSE 6.9464%).
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spatial variability in the Antarctic. The sea ice has significantly increased in the Ross Sea,
while the Amundsen Sea sector exhibits a negative trend (Parkinson and Cavalieri 2012).
Due to these phenomena, the trend is noisy, and it is difficult to predict future trends.

The fractional abundances of the temporal EMs in this study also provide a unique
capacity for summarizing Antarctic sea ice changes over multiple decades. To simplify
investigating source components of the overall sea ice decrease/increase in the Antarctic,
fractions of seven seasonal sea ice EMs are combined into a single component. Figure 5
illustrates yearly proportional changes using three seasonal Antarctic sea ice character-
istics, 1) non-seasonal sea ice, 2) the open sea and 3) the sum of seven seasonal sea ice
types, over three regions: 1) the entire Antarctic, 2) the Ross Sea and 3) the Amundsen Sea.

As shown in Figure 5(a), the slopes of three trend lines over the extent of sea ice in
the whole of the Antarctic were less steep than those for the Ross and the Amundsen
Seas, which indicates that none of the three temporal signatures was significantly
affected by the overall sea ice increase in the Antarctic.

Sea ice in the Ross Sea has exhibited a more significant change in annual average than the
southern hemisphere average has. As shown in Figure 5(b), year-round SIC in the Ross Sea
exhibits a positive trend; however, the area of open water has not changed significantly, and
seasonal SIC exhibits a negative trend. These data indicate that sea ice growing in the Ross Sea
sector is attributable to non-seasonal sea ice rather than open water or seasonal sea ice.

Unlike the Ross Sea, the Amundsen Sea sector has exhibited statistically significant
decreases in SIC. The TMA results show negative trends in both non-seasonal sea ice and

Figure 5. Regional comparison of non-seasonal sea ice, open water and seasonal sea ice in (a) the
entire Antarctic, (b) the Ross Sea and (c) the Amundsen Sea.
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open water in the Amundsen Sea. However, the trend for year-round sea ice shows a
significant negative trend compared with the southern hemisphere and Ross Sea, while
the extent of seasonal sea ice exhibits a positive trend (see Figure 5(c)). Overall, these results
indicate that a decrease in the non-seasonal sea ice fraction in the Amundsen Sea directly
affects the declining levels of sea ice, and considerable areas of year-round sea ice and sea
ice-free regions in the Amundsen Sea have transitioned to areas of seasonal sea ice.

4. Conclusions

In this paper, TMA was applied in a combination of ML-based EE algorithm and fully con-
strained linear mixing model to decompose hypertemporal SIC data without incorporating
prior knowledge. The representative temporal EMs were identified from 36 years of daily SIC
data and then used to compute the fractional abundances of each temporal signal. Three
conclusions were derived from this study. First, the 365 daily scenes were able to be recon-
structed using a combination of several temporal EM signals and the corresponding abun-
dancemaps suggest that TMA efficiently provides a unique summary of long-term time series.
Second, the reconstructed images did not frequently contain or minimize the impact of
anomalies, which indicates that they can be used to detect changes. Lastly, the changes in
fractional abundances for each temporal component in each region explained the overall
impact of seasonal sea ice on the sea ice changes in each region. However, several challenges
remain to motivate future research: 1) although we did not discuss problems associated with
the quality of NSIDC’s SIC data, the data should be calibrated with other sensors such as high-
resolution optical data, or SIC retrieval algorithms should be compared andevaluated formore
scientific purposes (Ivanova et al. 2015). 2) We applied only temporal information fromHTIs to
extract temporal EMs, discarding spatial information. Spatial information, however, provides
distinguishing characteristics of image data; thus, using it should yield more accurate EM
signatures. 3) An ensemble of the TMA results and other environmental factors might be used
to better interpret sea ice dynamics in the Antarctic.
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