Changes in carbonate preservation in southern Drake Passage during the mid-Pleistocene transition

Jae Il Lee, Kyu-Cheul Yoo, Heung Soo Moon, Ho Il Yoon Korea Polar Research Institute

Yong Hee Park Kangwon National University

Study Area/Samples

Study Area/Samples

modified from Lee et al., 2012, QR

Study Area/Samples

 Deep Sea drift sediments around the peninsula western Weddell Sea
→ northern Weddell Sea
→ 1) central Scotia Sea
→ 2) drifts near the Shackleton Fracture Zone
→ DP (?) → drifts on continental rise of the western AP

Maldonado et al., 2003, PPP

- Previous provenance study (0502 core; Lee et al., 2012)
 - Glacial: from SSI and AP
 - Interglacial: additional supply from Weddell Sea region
- Drift sediment affected by WSDW

Correlation and Age Control

The Mid-Pleistocene Transition (MPT)

Lisiecki and Raymo, 2005, PO

- 41-ka obliquity cycles → ~100-ka cycles
- Increased-amplitude of climatic oscillations: low → high
- 1.2 Ma ~ 500 ka (Head and Gibbard, 2005)
 - cf. Matuyama-Brunhes boundary ~780 ka (MIS19)
- Cause?
 - Astronomical?
 - CO₂ levels / global T decline / Non-linear climate response to Milankovitch forcing / SST cooling and increased sea ice / Changes in THC vigor / Ice sheet stability, etc.

MPT and carbonate variability

G/IG carbonate variability:

- high IG carbonate ('Atlantic' type)
- high G carbonate ('Indo-Pacific' or 'Pacific' type)

 onset of 'Pacific-style' carbonate cycle at the MPT (Sexton and Barker, 2012, EPSL)

Carbonate content variability

- Carbonate content of deep-sea sediments = function of
 - productivity in overlying surface waters
 - dilution by non-carbonate phases
 - dissolution in the water column, at the sea floor, and in sediment pore waters
 - surface water chemistry
 - vertical shifts of the lysocline
 - postdepositional dissolution
 - distribution of deep-water masses
- Carbonate variations \rightarrow Implications for changes in
 - the ocean's carbonate system
 - deep-water circulation
 - atmospheric pCO2

Carbonate content variability of southern DP cores

Carbonate content variability of southern DP cores

Interpretation of the 0605 carbonate variability

- (A) no dissolution, carbonate preserved: carbonate content of IG > G (productivity and dilution factors)
- (B) carbonate dissolved in IG times: carbonate content of IG < G
- (C) condition change from (A) to (B)

Summary: changes in carbonate variability

- pre-MPT carbonate variability (core 0605)
 - carbonate preserved
 - higher carbonate in interglacial sediments than in glacial sediments ('Atlantic' type)
 - ← higher productivity during interglacials
 - ← not affected by corrosive deep water
- post-MPT (since MIS 19) carbonate variability
 - carbonate (partially) preserved only in some glacial sediments ('Pacific' type)
 - no carbonate in interglacial sediments
 - carbonate preserved in 0002 site (water depth 2710m) (Bae et al., 2003, GML)
 - ← affected by corrosive deep water, esp. during interglacials

post-MPT interglacial dissolution of carbonate

- Corrosive deep water from the Weddell Sea during Intergalcials
 - sedimentary provenance data (Lee et al., 2012, QR), suggesting an increased sediment from Weddell Sea during interglacials.
 - contourites around the Antarctic Peninsula
 - → Influence of WSDW during interglacials
- post-MPT Glacials vs. Interglacials
 - Interglacial: Dense shelf water → (brine rejection and ocean/ice-shelf interaction) → AABW and deep waters (at present: the Weddell Sea, the Ross Sea and off the Adelie Coast)
 - Glacial: Ice sheet to the edge of the continental shelf. G deep water ≠ IG deep water

Implication: 'Atlantic' vs 'Indo-Pacific' type

- Geographic distribution of 'Atlantic' vs 'Indo-Pacific' types
- 'Pacific' type in regions other than Pacific/Indian Ocean
 - deep South Atlantic Cape Basin (site 1089; Hodell et al., 2001, EPSL)
 - southern Drake Passage (this study)
- Working hypothesis: corrosive deep water from Antarctica dissolved carbonate in the Pacific and Indian oceans during post-MPT interglacials.
- the role of AA-sourced deep water: Deep waters from AA vs. North Atlantic → 'Indo-Pacific' vs. 'Atlantic' type
- Timing of the development of the ice shelves during interglacials

Simmon, NASA Earth Observatory / wikipedia

Implication: MPT climate change

more C in deep ocean during glacials less C in deep ocean during interglacials

Increased amplitude of climatic oscillations

Thank You