Antarctic marine invertebrates face extremely cold temperatures and many of dead copepod crustacean and fish groups became extinct because of extreme climate for over the last 30 million years. In that matter, species which have survived in Antarctic region may have evolutionary strategies and understanding their adaptation mechanisms in response to the extreme environment has received considerable attention. Here we present the first draft genome sequence and annotation for Antarctic copepoda Tigriopus kingsejongensis, the first Antarctic Crustacean to be sequenced using Illumina MiSeq platform. The final assembly consists of 48,368 contigs with an N50 contig length of 138.2 kb and a total of 39,717 coding genes were inferred using the MAKER annotation pipeline approach. The comparative genome analysis among 3,254 orthologs in 4 arthropod species (T. kingsejongensis, Tigriopus japonicus, Daphnia pulex and Drosophila melanogaster) revealed the T. kingsejongensis specific signals of molecular adaptation in genes associated with mitochondrial electron transport, deacetylase activity, proteasomal ubiquitin-dependent protein catabolic process, endoplasmic reticulum, and trypsinogen metabolism. This suggest that T. kingsejongensis have changed adaptation mechanisms such as energy production and metabolism, proteolytic complex, and sterol biosynthesis. The results have important implications for understanding of Crustacean evolution and their adaptations to the Antarctic environment.
Antarctic marine invertebrates face extremely cold temperatures and many of decapod crustacean and fish groups became extinct because of extreme climate for over the last 30 million years. In that matter, species which have survived in Antarctic region may have evolutionary strategies and understanding their adaptation mechanisms in response to the extreme environment has received considerable attention. Here we present the first draft genome sequence and annotation for Antarctic copepod Tigripes kingsejongensis, the first Antarctic Crustacean to be sequenced using Illumina MiSeq platform The final assembly consists of 48,368 coding sequences with an N50 contiguous length of 138.2 kb and a total of 39,717 coding genes were inferred using the MAKER annotation pipeline approach. The comparative genome analysis among 3,254 orthologs in 4 arthropod species (T. kingsejongensis, Tigropus japonicus, Daphnia pulex and Drosophila melanogaster) revealed the T. kingsejongensis specific signals of molecular adaptation in genes associated with mitochondrial electron transport, deacetylase activity, proteasomal ubiquitin-dependent protein catabolic process, endoplasmic reticulum, and tryptophan metabolism. This suggest that T. kingsejongensis have changed adaptation mechanisms such as energy production and metabolism, proteolytic complex, and sterol biosynthesis. The results have important implications for understanding of Crustacean evolution and their adaptations to the Antarctic environment.