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A fully data-driven method for predicting Antarctic sea ice
concentrations using temporal mixture analysis and an
autoregressive model
Junhwa Chi and Hyun-Cheol Kim

Korea Polar Research Institute, Unit of Arctic Sea-Ice Prediction, Incheon, Korea

ABSTRACT
While sea ice dynamics have been gaining increased attention in
climate change and global warming studies, remote sensing (RS)
sensors, capable of detecting and characterizing detailed information
on targets of interest, have come to play a critical role in acquiring
image data over extended and inaccessible areas. Passive microwave
sensors have been the most effective and consistent tool for char-
acterizing daily sea ice cover at global scale. However, it is typically
challenging to study temporally successive data acquired at high
time frequencies, referred to as hypertemporal data. To address this
issue, among various RS analysis techniques, temporal mixture ana-
lysis (TMA) approaches are often investigated for characterizing sea-
sonal characteristics of environmental factors including sea ice
concentration (SIC) in this study. The goal of the present study is to
predict daily Antarctic SICs for 1 year through a combination of TMA
results and time series analysis (TSA) without incorporation of envir-
onmental factors. First, temporally most significant sea ice signals,
referred to as temporal endmembers (EMs), were found using signal
processing algorithms, and then corresponding fractional abun-
dances (FAs) associated with each EM were calculated using least
squares solution. Using these FAs, subsequently, a single autoregres-
sive (AR) model that typically fits all Antarctic SIC data for the period
1979–2013 was applied to predict SIC values for 2014. Daily SIC data
reconstructed using the proposed method were qualitatively and
quantitatively compared to those of using real FAs derived from a
spectral unmixingmethod. It was found that ARmodel trained by the
proposedmethod successfully predicts new FAs for 2014 and the FAs
should be used to reconstruct resulting 2014 daily SIC images.
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1. Introduction

Revealing high latitude temperature trends has been receiving more and more attention
in climate change and global warming research community. Sea ice in the Northern
Hemisphere has exhibited a long-term diminishing trend, and the maximum sea ice
extent in 2015 was the lowest on record, whereas sea ice in the Southern Hemisphere
has been expanding for decades, even though average Antarctic surface temperatures
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were close to the highest temperatures observed (Screen 2011). Unlike the Arctic, the
Antarctic is a large continent surrounded by an ocean. Due to this geological condition,
sea ice has more room to expand in the winter and exhibits great spatial variability.
Specifically, sea ice of the Ross Sea has significantly increased, while in the Amundsen
Sea it has exhibited a negative trend (Screen 2011).

Recent advances in remote sensing (RS), motivated by a desire to detect and characterize
detailed information on targets of interest over extended areas, have led to the develop-
ment of advanced sensors and have facilitated investigations of various research topics.
While most RS applications are designed to obtain meaningful information from images
acquired at specific time, in some applications that are related to time, univariate informa-
tion (e.g., the normalized difference vegetation index (NDVI), sea ice concentration (SIC),
etc.) acquired atmultiple temporal instances has revealed temporal characteristics of targets
(Piwowar, Peddle, and Ledrew 1998; Chi, Kim, and Kang 2016). SIC is typically estimated
using passive microwave data because of the daily revisit cycle, the relatively low sensitivity
to atmospheric water content and clouds, and the large contrast in emissivity between open
water and sea ice (Comiso et al. 1997; Ivanova et al. 2014). Temporal mixture analysis (TMA)
is an extension of the spectral mixture analysis (SMA), also known as spectral unmixing, of
optical RS data. Increasing attention and discussions about TMA among the various analysis
techniques designed to exploit time series (TS) data has recently been raised for use in
characterizing long-term TS. Unlike SMA,which is used to estimate physical amounts of pure
spectral components in a single RS image, TMA provides seasonal characteristics of uni-
variate information, such as SIC, and a unique summary of long-term TS (Piwowar, Peddle,
and Ledrew 1998; Chi, Kim, and Kang 2016). In addition to sea ice studies, TMA has been
applied to various applications. Li and Wu (2014) developed phenology-based TMA meth-
ods to quantify fractional abundances (FAs) of impervious surface area usingmulti-temporal
moderate resolution imaging spectroradiometer NDVI. Li and Wu (2015) proposed an
automatic endmember (EM) selection method for TMA that incorporates land use and
land cover probability information derived from socio-economic and environmental drivers.
All of the studies reviewed here support TMA as a promising method for characterizing the
seasonality of ground targets.

A recent study conducted by Chi, Kim, and Kang (2016) characterized Antarctic daily
SICs on a long-term basis using machine-learning-based TMA method without incorpor-
ating prior knowledge of seasonal sea. Temporally representative EMs were identified
from 36 years of daily SIC data and were then used to estimate corresponding FAs of each
temporal EM. In this article, a newmeans of predicting daily SIC for the present year (2014)
using TMA results (i.e., FAs) derived from previous years (1979–2013) reported in Chi, Kim,
and Kang (2016) and using TSA is proposed. Since the proposed approach is a fully data-
driven method without incorporating any environmental factors to predict SICs, the
predicted SICs do not contain or minimize the impact of anomalous SIC values.

2. Methodology

TMA can be applied to temporal RS data generated by any univariate information
according to time order. In the present study, we examine 36 years of daily Antarctic
SIC data acquired from 1979 to 2014, provided by the National Snow and Ice Data
Center (NSIDC), based on the assumption that the data quality is promised at a global
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scale. The National Aeronautics and Space Administration team algorithm to generate
consistent SICs from different sensors was applied to passive microwave sensors at a
25 km spatial resolution in the polar stereographic projection (Cavalieri et al. 1996).

2.1. TMA

Unlike SMA, very limited research has been conducted on TMA, as it is difficult to acquire
high time frequency RS data. TMA stemming from SMA is generally built with two stages
to handle the temporal mixing problems based on the ‘linearity assumption’ of mixing
models: (1) finding temporally unique signatures of pure or extreme signatures, referred
to as temporal EMs, using a machine-learning approach as a quantitative and automated
identification and (2) decomposing each temporally mixed pixel in the TS images into a
collection of temporal EMs at subpixel levels, using linear mixing models (Keshava and
Mustard 2002).

Instead of the spectral domain of optical RS data, most TS pixels are a mixture of
more than one temporal EM in the time domain. In the last decades, various algorithms
have been proposed to accomplish the task of finding appropriate image derived EMs
for SMA. Because the concept of convexity of geometry is natural and logical, N-finder
(N-FINDR) (Winter 1999) is a popular and widely used technique for automatic EM
identification. Therefore, this method is used to automatically extract temporal EMs in
the present study. N-FINDR searches through a set of pixels with the largest possible
volume by inflating a simplex. Mathematically expressed, the volume of a simplex
spanned by a set of q temporal EM candidates E ¼ e1; e2; . . . ; eq

� �
is proportional to

the determinant of the set augmented by a row of ones. This is given by

V e1; e2; . . . ; eq
� � ¼

det
1 1 . . . 1
e1 e2 . . . eq

� �� 	










q� 1ð Þ! (1)

For each pixel location in the input data, the volume is recalculated by testing the
pixel at all q EM positions until no larger simplex volume is found. However, the
determinant can only be defined when the number of features is q� 1 due to matrix
properties. We assume that the temporal vectors lie within or very close to a low-
dimensional linear subspace, and the number of temporal EMs is typically much
smaller than the number of temporal bands. In this study, the minimum noise fraction
(Green et al. 1988), which ranks the obtained components according to their signal-
to-noise ratios, is used to map high-temporal-dimensional data to a lower dimen-
sional space.

Assuming the values for the individual pure EM component are linearly independent and
the pixels in the TS image lie in linear spaces, linear unmixing is the simplest and the most
practical approach to solve mixed pixel decomposition (Keshava and Mustard 2002). Let ri
be the i-th daily SIC trajectory of SIC TS R. Each temporal pixel vector in the original image

can bemodelled using ri ¼
Pq
j¼1

ai;jej þ ωi, where ai;j denotes a FA of the temporal EM vector

ej at pixel ri and ωi is a noise vector. The least squares solution to computing FAs of ai;j ¼
ðETEÞ�1ETri is derived by minimizing the pixel reconstruction error k ri � ai;jEk2.
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2.2. TSA

Over the last few decades, there is an increased interest in how we can predict future
values from past observations. The time series model (TSM) is a powerful tool for
developing an appropriate model that describes the inherent structures of data by
examining past observations. The model is then used to predict future values of TS
based on those of the past. Therefore, TS forecasting has been widely applied in
numerous practical fields of study (Hipel and McLeod 1994). For successful TS forecast-
ing, it is critical to develop an adequate model for underlying TS data. In recent years,
numerous researchers have attempted to improve the accuracy of TS forecasting.

Those appealing features motivated the study of developing various types of TSMs,
both at the theoretical level and in practical applications. Autoregressive (AR) models
that relate current series values to past values and prediction errors were considered in
this study on daily Antarctic SIC prediction using FAs derived from TMA as inputs of TSM.
The AR model, which is a special case of the more general AutoRegressive Moving
Average (ARMA) models that promise outcomes in forecasting environmental TS relative
to competing models, specifies that the output variable depends linearly on its previous
values and takes the form of a stochastic difference equation (Hipel and McLeod 1994;
Piwowar and Ledrew 2010).

For example, if an AR model for an observation xt at time t is expressed by a function
ϕ of the previous value xt�1 plus white noise at , this relationship can be written as
xt ¼ ϕxt�1 þ at . This is the simplest AR model, referred to as AR(1). If we wish to predict
the present value xt using two previous measurements xt�1 and xt�2, then the AR model
would be as xt ¼ ϕ1xt�1 þ ϕ2xt�2 þ at . This model is a second-order autoregression,
denoted AR(2). More generally, the AR model of order p can be defined as AR(p) and
mathematically written as xt ¼ ϕ1xt�1 þ ϕ2xt�2 þ � � � þ ϕpxt�p þ at , where ϕ1;ϕ2; . . . ;ϕp

are parameters of the AR model. The AR model is simply a linear regression of the
current value of the series against one or more prior values of the series. This is a
multiple linear regression in which the value of the series at any time t is a linear
function of values at times t � 1; t � 2; . . . ; t � p.

3. Experimental results

The experiments in this study were conducted in two stages: (1) TMA and (2) TSA. The
first stage involved computing TS FAs of the representative temporal EMs for 36 years. In
the second stage, the resulting FAs of the first stage were used to train TSMs and to
predict new FAs. Each stage employed several parts, and more detailed information are
provided in the following subsections.

3.1. Stage 1: TMA

The TMA stage to compute the corresponding FAs associated with the temporal EMs was
identical to the experimental part of the previous study (Chi, Kim, and Kang 2016) and is
comprised of three parts. First, we used the Harsanyi–Farrand–Chang virtual dimension-
ality algorithm (Harsanyi, Farrand, and Chang 1993) to determine the number of temporal
EMs from 36 years of daily SIC data without prior knowledge. As there are numerous
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anomalous SIC pixels in daily SIC data acquired from 1979 to 2013 due to sensor/proces-
sing errors or abnormal weather conditions, and data gaps from 1979 to 1987 due to
acquisitions on alternating days, the data were reprocessed to generate consistent daily
TS throughout the time period by smoothing method using neighbouring pixels and by
gap-filling using linear interpolation, respectively. As a result, the number of potential
temporal EMs was determined to be 9. Secondly, the N-FINDR algorithm was used to
identify the representative temporal EMs showing the maximum variation in SIC through-
out the year, as shown in Figure 1. Subsequently, the corresponding FAs associated with
each temporal EM, which will be used as input variables for TSMs, were computed using a
least square unmixing algorithm. For detailed information on this TMA stage and experi-
mental results, refer to the paper by Chi, Kim, and Kang (2016).

3.2. Stage 2: TSA

3.2.1. Single model determination
The order of the models should be set for each TS to fit AR models appropriately to
image data. Since our temporal image data acquired at a single temporal sequence
include 82,907 valid pixels, 82,907 individual AR models are required to adequately
apply all of the Antarctic SIC data. One of the objectives of this study was to auto-
matically predict future SIC using TSA approaches. In practice, due to inefficiency of
individually and manually fitting models to the 82,907 pixels, we assume that most of
the Antarctic SIC for 36 years could be fitted with AR models of the same degree and
that the single AR model is generally advisable for overall use.

To determine the order of the AR model for all of the SIC data, we first examined
certain factors such as trends, seasonality and outliers. There may be notable seasonal
trends in daily or monthly SIC, while there are no consistent trends or seasonality
patterns and no obvious outliers appear over the entire period in terms of the FAs of
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Figure 1. Temporal endmembers extracted using N-FINDR showing sea ice types (EM1: multi-year or
fast ice; EM2: open sea; EM3-EM9: seasonal sea ice signatures).
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temporal EMs. The AR(1) is the simplest AR-type model for which we use a linear model
to predict values for the present time by using the value of the previous time and thus
may support our goal with respect to year-to-year forecasting.

The TSM of FAs of corresponding temporal EMs is produced by AR models and is
inherently multivariate. One of the temporal EMs used to predict employs past and
present values of every other temporal EM. For our data set, which includes 9 FA
variables f1; f2; . . . ; f9½ � with lag 1, the multivariate AR(1) model can be written as follows:

f1;t ¼ ϕ11;1f1;t�1 þ ϕ12;1f2;t�1 þ . . .þ ϕ19;1f9;t�1 þ a1;t

f2;t ¼ ϕ21;1f1;t�1 þ ϕ22;1f2;t�1 þ . . .þ ϕ29;1f9;t�1 þ a2;t

. . .

f9;t ¼ ϕ91;1f1;t�1 þ ϕ92;1f2;t�1 þ . . .þ ϕ99;1f9;t�1 þ a9;t

(2)

However, before the single AR model can be applied to all of the data sets, the AR(1)
model must be statistically evaluated to determine whether all pixels accept the single
AR(1) model. The accuracy of the AR model can be quantitatively determined based on
the significance of the model parameter estimates. The significance, also referred to as
the t-statistic, is determined by the ratio of each AR parameter estimate to its standard
error (Piwowar and Ledrew 2010). A confidence interval gives an estimated range of
values. All t-statistics greater than 2 are significant at the 95% confidence level. We
applied the AR(1) model to all 82,907 valid FA TS for 35 years (1979–2013) and calculated
t-statistics for each pixel location, and Figure 2 shows their spatial distribution. The white
pixels are pixel locations that accepted the AR(1) model at a higher than 95% confidence
level, and darker pixels are associated with lower confidence level regions that did not
pass the test. As shown in Figure 2, the AR(1) model adequately fitted for most of the TS,
indicating that the AR(1) model can be applied to all Antarctic regions as a single model
assumption.

t-statistic

2

0

> 7

Reject
AR(1)

Accept
AR(1)

Figure 2. Spatial distribution of t-statistics.
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3.2.2. Experimental results
Based on the assumption presented earlier, the entire TS of 35-year FAs for 1979–2013
derived by the TMA as inputs are used to train single AR(1) models, and to predict FAs
for 2014. Combining resulting FAs associated with each temporal EMs and the repre-
sentative temporal EM trajectories derived from the EM identification step of the TMA
stage could reconstruct daily 365 SIC images for 2014 via the inverse process of spectral
unmixing. To judge the quantitative accuracy of the predicted FAs for 2014 using the
proposed method, the root-mean-square error (RMSE), which provides an overall ‘pixel-
by-pixel’ difference between the original and reconstructed images, was advisable as it is
straightforward to explain and does not show relative values.

Figure 3 illustrates the comparison of the original NSIDC SIC data SICNSIDCð Þ for the
selected days (day of year (DOY): 30, 120, 210) in 2014 with two reconstruction SIC

images using (1) FAs ‘computed’ via the spectral unmixing approach SICcompute
� �

Figure 3. Daily SIC comparisons with errors. The figures in different columns show SIC patterns on
DOY of 30, 120 and 210, and the figures in different rows show SIC patterns obtained from the
original NSDIC (left), computed via the pixel unmixing approach proposed in Chi, Kim, and Kang
(2016) (middle), and predicted via the single AR model proposed in this study (right).
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proposed in Chi, Kim, and Kang (2016) and (2) FAs ‘predicted’ via the single AR(1) model
SICforecastð Þ proposed in the present study. Red borders in each image denote sea ice
extents (SIEs), where the regions of interest present SIC values of at least 15%. The both
reconstructed SIC images (SICcompute, SICforecast) did not generally capture detailed SIC
variability in local regions and resulted in smoother SIC estimates than the original data
as discussed in Chi, Kim, and Kang (2016). As shown in Figure 3, however, both
concentrations and extents typically exhibited good visual agreement with the original
images. As a quantitative validation, RMSE values between SICNSIDC and SICcompute had a
range of 4.42–11.76% and the mean accuracy was 8.46% with corresponding standard
deviation 1.54%. For comparisons with SICforecast, RMSE ranged from 7.25% to 26.64%
and its mean was 12.89% with standard deviation of 4.68%. Overall, the results indicate
that SICcompute are statistically reconstructed better than SICforecast. SICforecast visually
appears to capture better local variability than SICcompute in some regions, but produces
relatively low statistical fidelity with SICNSIDC for some areas. These regions may be
associated with the AR(1) model rejected areas and it results in low statistical accuracy.
For interpreting the SIEs shown in Figure 3, the proposed prediction method showed
better visual agreement and statistical accuracy. Overall extents (red borders) generated
by predicted FAs SIEforecastð Þ exhibited higher visual agreement with the original extents
SIENSDICð Þ than those produced by real FAs SIEcompute

� �
: Besides, daily averages of

summed areas for all grid cells in SIEforecast estimated approximately 2.5% more SIEs
(standard deviation: 3.46%), while SIEcompute was overestimated by approximately 15%
with larger standard deviation. Therefore, it should be noted that the proposed fore-
casting method helped to reconstruct SICs and to define SIEs compared to reconstruc-
tion images using computed fractions.

Figure 4 illustrates the original SIC trajectories (SICTNSIDC, solid line), reconstructed SIC
trajectories based on computed FAs of the previous study (Chi, Kim, and Kang 2016)

Figure 4. Comparisons of the original, computed, and forecasted SIC trajectories at the selected
locations.
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(SICTcompute, dashed line), and reconstructed SIC trajectories at the selected locations
based on forecasted FAs used in this study (SICTforecast, dash-dot line). The DOY and SIC
are plotted on the x-axis and y-axis, respectively. As shown in Figure 4, SICTNSIDC presents
very noisy curves, potentially due to the presence of processing errors in SIC retrieval
algorithms, sensor errors or meteorological conditions. Overall, however, both
SICTcompute and SICTforecast generally showed similar shapes as those of SICTNSIDC, and
they minimized and mitigated noise effects, as they were reconstructed using represen-
tative temporal EMs. As discussed in the previous study (Chi, Kim, and Kang 2016), the
reconstructed images did not frequently contain or minimize the impacts of anomalies.
As shown in Figure 4, both SICTcompute and SICTforecast in the selected regions were
visually similar, but the temporal angle distance (TAD), which is mathematically identical
to spectral angle distance, between the SICTNSIDC and SICTcompute was slightly better than
the TADs between the SICTNSIDC and SICTforecast. Overall, the average pixel-per-pixel TADs
are 0.4007 and 0.4458 for SICTcompute and SICTforecast of the valid 82,907 pixels, respec-
tively. As discussed in these experimental results, the single AR(1) model generally fitted
to our SIC data and adequately forecasted FAs, and our proposed method thus effec-
tively forecasted SICs.

4. Conclusions

In this study, FAs for the past 35 years computed using the TMA approach were
incorporated with AR(1) models in an effort to forecast new FAs for the present year.
The proposed approach was fully data-driven without considering physical processes.
The forecasted FAs were used to compute reconstructed images using representative
temporal EMs identified through TMA. Several contributions of this study can be
summarized as follows. First, as most TS of FA values of Antarctic SICs could be fitted
to AR(1) models, the single model proved to be appropriate for overall use. Second,
although the proposed method did not produce quantitatively accurate total amount of
SIC compared to the spectral unmixing approach proposed in Chi, Kim, and Kang (2016),
it is better to reproduce total area of SIC. The proposed results were found to be
comparable with real values in terms of overall RMSE, visual agreement, and TAD. The
proposed method might be more useful to create SIE maps than SIC calculation. Third,
both reconstructed SICTs resulted in smoother curves than the original trajectories as
the representative temporal EMs extracted from 35-year SIC data did not frequently
include anomalies.

Furthermore, the findings and our assessment of the current work may lead to the
following extensions. First, although most TS were fitted to the single AR(1) model,
approximately 10% of the pixel locations within the total pixels did not accept the AR
(1) model. As there may be appropriate AR models for these rejected TS, we will
develop an adaptive model selection algorithm to find the best fit. Second, the most
critical aspect of TMA relates to the identification of temporal EMs. As TS forecasting
based on TMA results uses FAs computed from temporal EMs and the linear mixture
model, improvements to the EM selection algorithm, such as by exploiting spatial
context, which is a distinguishing characteristic of image data, are worth further
study.

114 J. CHI AND H.-C. KIM



Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Korea Polar Research Institute [PE16040].

References

Cavalieri, D. J., Parkinson, C. L., P. Gloersen, and H. J. Zwally. 1996. “Sea Ice Concentrations from
Nimbus-7 SSMR and DMSP SSM/I-SSMIS Passive Microwave Data, Natl.” Snow and Ice Data Cent.,
Boulder, Colo.[Updated yearly.]. doi:10.5067/8GQ8LZQVL0VL.

Chi, J., H.-C. Kim, and S.-H. Kang. 2016. “Machine Learning-Based Temporal Mixture Analysis of
Hypertemporal Antarctic Sea Ice Data.” Remote Sensing Letters 7 (2): 190–199. doi:10.1080/
2150704X.2015.1121300.

Comiso, J. C., D. J. Cavalieri, C. L. Parkinson, and P. Gloersen. 1997. “Passive Microwave Algorithms
for Sea Ice Concentration: A Comparison of Two Techniques.” Remote Sensing of Environment 60
(3): 357–384. doi:10.1016/S0034-4257(96)00220-9.

Green, A. A., M. Berman, P. Switzer, and M. D. Craig. 1988. “A Transformation for Ordering
Multispectral Data in Terms of Image Quality with Implications for Noise Removal.” IEEE
Transactions on Geoscience and Remote Sensing 26 (1): 65–74. doi:10.1109/36.3001.

Harsanyi, J. C., W. H. Farrand, and C.-I. Chang. 1993. “Determining the Number and Identity of
Spectral Endmembers: An Integrated Approach Using Neyman-Pearson Eigen-Thresholding and
Iterative Constrained RMS Error Minimization.” The Thematic Conference on Geologic Remote
Sensing, San Antonio, TX, February, 395.

Hipel, K. W., and A. I. McLeod. 1994. Time Series Modelling of Water Resources and Environmental
Systems, Amsterdam: Elsevier, 63–86.

Ivanova, N., O. M. Johannessen, L. T. Pedersen, and R. T. Tonboe. 2014. “Retrieval of Arctic Sea Ice
Parameters by Satellite Passive Microwave Sensors: A Comparison of Eleven Sea Ice
Concentration Algorithms.” IEEE Transactions on Geoscience and Remote Sensing 52 (11): 7233–
7246. doi:10.1109/TGRS.2014.2310136.

Keshava, N., and J. F. Mustard. 2002. “Spectral Unmixing.” IEEE Signal Processing Magazine 19 (1):
44–57. doi:10.1109/79.974727.

Li, W., and C. Wu. 2014. “Phenology-Based Temporal Mixture Analysis for Estimating Large-Scale
Impervious Surface Distributions.” International Journal of Remote Sensing 35 (2): 779–795.
doi:10.1080/01431161.2013.873147.

Li, W., and C. Wu. 2015. “Incorporating Land Use Land Cover Probability Information into
Endmember Class Selections for Temporal Mixture Analysis.” ISPRS Journal of Photogrammetry
and Remote Sensing 101: 163–173. doi:10.1016/j.isprsjprs.2014.12.007.

Piwowar, J. M., and E. F. Ledrew. 2010. “ARMA Time Series Modelling of Remote Sensing Imagery: A
New Approach for Climate Change Studies.” International Journal of Remote Sensing 23 (24):
5225–5248. doi:10.1080/01431160110109552.

Piwowar, J. M., D. R. Peddle, and E. F. Ledrew. 1998. “Temporal Mixture Analysis of Arctic Sea Ice
Imagery: A New Approach for Monitoring Environmental Change.” Remote Sensing of
Environment 63 (3): 195–207. doi:10.1016/S0034-4257(97)00105-3.

Screen, J. A. 2011. “Sudden Increase in Antarctic Sea Ice: Fact or Artifact?” Geophysical Research
Letters 38: 13. doi:10.1029/2011GL047553.

Winter, M. E. 1999. “N-FINDR: An Algorithm for Fast Autonomous Spectral End-Member
Determination in Hyperspectral Data.” SPIEs International Symposium on Optical Science,
Engineering, and Instrumentation, Denver, CO, July 18, 266–275.

REMOTE SENSING LETTERS 115

http://dx.doi.org/10.5067/8GQ8LZQVL0VL
http://dx.doi.org/10.1080/2150704X.2015.1121300
http://dx.doi.org/10.1080/2150704X.2015.1121300
http://dx.doi.org/10.1016/S0034-4257(96)00220-9
http://dx.doi.org/10.1109/36.3001
http://dx.doi.org/10.1109/TGRS.2014.2310136
http://dx.doi.org/10.1109/79.974727
http://dx.doi.org/10.1080/01431161.2013.873147
http://dx.doi.org/10.1016/j.isprsjprs.2014.12.007
http://dx.doi.org/10.1080/01431160110109552
http://dx.doi.org/10.1016/S0034-4257(97)00105-3
http://dx.doi.org/10.1029/2011GL047553

	Abstract
	1.  Introduction
	2.  Methodology
	2.1.  TMA
	2.2.  TSA

	3.  Experimental results
	3.1.  Stage 1: TMA
	3.2.  Stage 2: TSA
	3.2.1.  Single model determination
	3.2.2.  Experimental results


	4.  Conclusions
	Disclosure statement
	Funding
	References



