RESEARCH ARTICLE

Transcription factor profile analysis of the Antarctic vascular plant *Deschampsia antarctica* Desv. (Poaceae)

Jungeun Lee · Eun Kyeung Noh · Hyun Park · Hyoungseok Lee

Received: 15 February 2013/Accepted: 15 March 2013/Published online: 27 March 2013 © The Genetics Society of Korea 2013

Abstract Transcription factors (TFs), which control gene expression through sequence-specific interactions with ciselements of downstream gene promoters, play an important role in developmental processes and in response to environmental stress. To explore the molecular mechanism behind stress signaling and the development of Antarctic hairgrass (Deschampsia antarctica Desv.), a terrestrial plant that has successfully adapted to the Antarctic climate, we analyzed the D. antarctica EST database and constructed a TF profile based on sequence homology searches with other plant TFs to identify 1,083 transcripts encoding TFs categorized into 53 TF families. The gene ontology distribution of TF-encoding transcripts and lineage-specific expansion/contraction of TF families were analyzed. In addition, we identified a group of putative abiotic stressinduced TFs by comparing EST libraries generated under different abiotic conditions and validated the results using quantitative real-time PCR. Since plant TFs are primary targets for genetic engineering and the development of stress-tolerant crops, these results could be a useful resource for agricultural applications.

Keywords Abiotic stress · Antarctic hairgrass · Poaceae · Transcription factor

Introduction

Transcription factors (TFs) are DNA-binding proteins that regulate gene expression by recruiting transcriptional

J. Lee · E. K. Noh · H. Park · H. Lee (⊠) Division of Life Sciences, Korea Polar Research Institute, 12 Gaetbeol-ro, Yeonsu-gu, Incheon 406-840, Korea e-mail: soulaid@kopri.re.kr machinery to gene promoters or blocking their access. The specific interaction between TF proteins and the cis-regulatory sequences in downstream genes plays a central role in developmental processes and in response to environmental changes. TF genes account for a considerable amount of eukaryotic genomes (~ 7 % in plants) and are represented by multigene families categorized according to the type of DNA-binding domain they encode (Riechmann et al. 2000; Libault et al. 2009). The TF family is highly conserved in eukaryotes, especially in the plant kingdom. However, the number of genes for a particular TF family vary in different plant species with expansion or contraction of specific TF families, which might occur during large-scale genome duplication events in their evolutionary history (Lespinet et al. 2002; Shiu et al. 2005; Libault et al. 2009; Garg et al. 2011). Hence, the identification and characterization of TF repertoire from a specific species may expand our understanding of the evolution of TF genetic networks.

As sessile organisms, higher plants have evolved stresstolerance mechanisms to endure environmental challenges such as soil salinity, drought, and cold temperatures, which influence the development of plants and threatens the productivity of crops worldwide (Thomashow 1999; Zhu 2001). Stress acclimation and the acquisition of stress tolerance require an orchestrated mechanism regulated by multiple signaling pathways that activate gene transcription and its downstream cascade. Previous studies have identified key regulators responsible for stress tolerance and have elucidated the transcriptional network between the key regulators and downstream stress-responsive genes. In plants, several families of TFs have been implicated in plant stress responses. For example, the DREB1/CBF family is a member of AP2/ERFtype TFs, which recognizes cold-responsive cis-elements and DRE/CRT. Overexpression of these genes results in enhanced tolerance to drought, salt, and freezing (Jaglo-Ottosen et al. 1998; Kasuga et al. 1999). INDUCER OF CBF EXPRES-SION 1 (ICE1), a MYC TF and the calmodulin-binding transcription activator (CAMTA) are trans-acting regulators of DREB1A/CBF3 and DREB1C/CBF2, respectively (Chinnusamy et al. 2003; Doherty et al. 2009). ZAT12, a zinc finger protein, is regulated by CAMTA and downregulates the expression of DREB/CBF genes (Vogel et al. 2005). In Arabidopsis and grasses, while the amount of DREB1 genes rapidly increases at cold temperatures, DREB2 and other AP2-type TFs that recognize DRE/CRT are involved in dehydration or salinity-stress responses (Liu et al. 1998; Nakashima et al. 2000). Osmotic stress by drought and high salinity increases abscisic acid (ABA) levels; this in turn induces ABA-responsive TFs (AREB/ABF) containing the bZIP DNA-binding motif, which binds to a conserved ABAresponsive element designated ABRE (PyACGTGG/TC), a major cis-element in ABA-responsive gene promoters (Leung and Giraudat 1998; Shinozaki and Yamaguchi-Shinozaki 2000). Osmotic stress activates several other TFs, including NAC and zinc finger homeodomain (ZFHD) proteins. Both proteins recognize two different *cis*-acting elements in the promoter region of EARLY RESPONSE TO DEHYDRA-TION 1 (ERD1) (Tran et al. 2004). Arabidopsis ANAC072 (RD26) is induced by both dehydration and ABA, and is involved in a novel ABA-dependent stress-signaling pathway. In grasses, the NAC family is also involved in abiotic stress responses. Several rice NAC genes are induced by ABA and abiotic stresses, and the overexpression of certain NAC genes enhances drought resistance (Hu et al. 2006; Nakashima et al. 2007). MYB and MYC TFs participate in ABAdependent pathways to upregulate abiotic stress-responsive genes. Overexpression of MYC2 and MYB2 in Arabidopsis induced ABA-responsive stress genes and increased osmotic stress tolerance (Abe et al. 2003).

The Antarctic hairgrass (Deschampsia antarctica Desv.) is one of two angiosperms endemic to the maritime Antarctica (Xiong et al. 1999; Alberdi et al. 2002). D. antarctica, which belongs to the subfamily Pooideae of the grass family (Poaceae), has a large and complex genome $(2n = 26, 4C \text{ DNA amount} = 19.9 \pm 0.17 \text{ pg})$, similar to other species of the Pooideae (Bennett et al. 1982; Cardone et al. 2009). Because this species has successfully adapted to extremely harsh environments with a wide ecological range, it has been studied in a wide range of biological fields and is a valuable resource for gene discovery associated with stress tolerance. We recently reported the first de novo assembly of its transcriptome using massive parallel sequencing and its expression profile using D. antarctica grown under various abiotic stress conditions consisting of 60,765 unigenes. Based on this study, we identified 2,353 differentially expressed genes under cold, dehydration, or salt stress (Lee et al. 2013).

In this study, using previously constructed EST database, we analyzed the TF families by examining transcripts that encode TFs and identified putative TFs that respond to abiotic stress in *D. antarctica*. We identified 1,083 TF transcripts using sequence homology to known TF gene families in seven plant species, including six monocotyledons and *Arabidopsis*, and categorized them into 53 TF families. In addition, by comparing EST abundance under stress and normal conditions, we identified a group of putative stress-induced TFs in *D. antarctica*. Overall, we provide the first comprehensive TF profile of *D. antarctica*, an important extremophile plant, providing a foundation for further systematic characterization at the single-gene or family level for genetic applications.

Materials and methods

Identification of TFs

TFs from Deschmpasia antarctica were identified and organized based on sequence homology with TF sequences from seven species (Triticum aestivum, Oryza sativa, Hordeum vulgare, Zea mays, Sorghum bicolor, Brachypodium distachyon, and Arabidopsis thaliana) obtained from PlantTFDB 2.0 (http://planttfdb.cbi.edu.cn/) (Zhang et al. 2011). We subjected 60,765 putative unigene sequences of D. antarctica (Lee et al. 2013) to a BLASTX homology search (cutoff: transcript length \geq 150 bp, BLAST score ≥ 200 , E value $< 10^{-10}$, and identity $\geq 60 \%$) with seven species TFs and collected the information of the top BLAST hits. To compare TF profiles from other plant species, the number of TFs that belonged to each TF family were counted and compared with the data from the Plant-TFDB Website. The significance of the TF families with the expansion/contraction was statistically calculated using Fisher's exact test between the numbers of transcripts in each TF family from D. antarctica vs. the sum of the corresponding numbers from the other species. Gene ontology (GO) terms were assigned to each unique gene based on the sequence similarity from the BLASTX search against the nr database using the Blast2go platform. GO mapping and annotation were performed with an annotation cutoff of $E < 1 \times 10^{-10}$.

Identification of stress-induced TFs

To identify stress-induced TFs, we compared the TF lists and the "DEG (differentially expressed genes) lists" from a previous study (Lee et al. 2013) and selected the TFs that were included in the DEG lists. In the previous study, to identify DEGs induced by abiotic stress in *D. antarctica*, the number of sequencing reads that supported the consensus contigs assembled from control, cold, dehydration, and high salinity libraries was counted and divided into four categories depending on the library of origin. The permutation *t* test with a multiple testing correction indicated that 2,093 transcripts were upregulated and 1,013 transcripts were downregulated under at least one abiotic stress condition compared to the control sample, with a *q* value <0.01.

Quantitative real-time reverse transcription PCR (qPCR)

To prepare RNA for expression analysis, D. antarctica plants were vegetatively propagated in $0.5 \times$ Murashige and Skoog (MS) medium containing 2 % (w/v) sucrose under a 16:8 h light:dark cycle with a light intensity of 150 μ mol m⁻² s⁻¹ at 16 °C (control condition) at the optimal temperature for D. antarctica (Salvucci and Crafts-Brandner 2004). Plants grown in either liquid or agar medium of $0.5 \times$ MS containing 2 % (w/v) sucrose were subjected to stress conditions. For dehydration and highsalinity stress treatment, the plants were grown in liquid $0.5 \times$ MS medium containing 2 % (w/v) sucrose for a week prior to the initiation of stress conditions, after which they were transferred to media containing polyethylene glycol (30 % PEG, w/v) for dehydration stress or NaCl (300 mM) for high-salinity stress, and cultured for 24 h with continuous shaking. Total RNA was extracted from leaves and purified using the RNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA) according to the manufacturer's instructions. cDNA was synthesized from 1 µg of RNA extracted from samples using Superscript II (Invitrogen, Carlsbad, CA, USA). Gene-specific primers designed according to the sequences of the contigs are listed in Table 1. QPCR was performed for triplicate samples using SYBR[®] Premix Ex TaqTM DNA polymerase (TaKaRa, Seoul, Korea) and the Mx3000P Real-Time PCR system (Stratagene, La Jolla, CA, USA). Graph was drawn using representative results from three biological replicates.

Results

Identification of transcripts coding TFs in *D. antarctica* ESTs

D. antarctica TFs were identified and organized based on sequence homology using the sequences and categories of TFs from seven species (T. aestivum, O. sativa, H. vulgare, Z. mays, S. bicolor, B. distachyon, and A. thaliana) from PlantTFDB 2.0, a comprehensive database of plant TFs (Zhang et al. 2011). We identified a total of 1,083 transcripts encoding TFs belonging to all 53 families (BLASTX cutoffs: transcript length >150 bp, score >200, E value $<10^{-10}$, and identity ≥ 60 %) (Fig. 1). While the bHLH family was the most abundant TF group for model plants with small genomes (A. thaliana 9.6 %, O. sativa 9.2 %, B. distachyon 9.5 %), the MYB-related family (87, 8.0 %) was the most abundant in D. antarctica, followed by the bHLH (78, 7.2 %), C3H (72, 6.6 %), NAC (71, 6.6 %), and bZIP (70, 6.5 %; Table 2). Our distribution analysis indicated that the overall distribution of transcripts encoding the various known TF families was very similar with that of other model species (Fig. 1). However, specific families showed expansion (e.g., ARF, C3H, CAMTA, CO-like, DBB, M-type, and MYB-related) or contraction

Table 1 The unigene IDs and primer sequences for genes used in this study

Unigene ID	Sequences (5'-3')	Amplicon size	
	Forward	Reverse	
CL871Contig2	ACATCACATCACACTGCAAT	AAGCTGACTAGCCATCCTAG	123
CL1192Contig1	CTGTCCTCGACGCAGAAGAT	TGCGACGTCGAGATCCAC	137
CL1316Contig1	TTTACAGAGCTAGTGTGGCG	AGGACTTGATCGGCAGAGAC	120
CL1670Contig1	TTGGAGCTCACTGCAGCAGC	CCATGGCCTGCCTGACTTTG	150
CL1977Contig1	CAGCTAAAGACCAATCAGTCAACC	ACCGCCAGCTGTCGTATT	134
CL2008Contig1	CTAGTTATAGCATGTCAGCG	GAATCCACAAGGACCTTTCT	135
CL2221Contig1	GCGCCGTCGCTGTGCAAACT	CGACCACCTTCTCCACGCCG	150
CL2357Contig2	GTCGCGCAGACCATCCAGAT	ACGGTGGGGCCCTTCCTGAC	170
CL2509Contig1	TGCACCATCTCTAGCTGACT	ACCACCCGGCTTCCTTTAGG	122
CL2522Contig1	GGGCATTTCCAGATTCCGT	GAAGCGTCCACGGAATCG	125
CL2573Contig1	ACCATCCAACAGGAACTTCATG	TGCTTGCATCCATTCCGA	149
CL3052Contig1	CCGGTTCAGATCCAGATCA	ATCGCACGCTGAAGATGG	146
CL3326Contig1	ACTGTGACCGAGAAAACGCT	CATATGGGCAACTCTTGGC	146
CL3554Contig1	TCAAATTTTGTCCCCGTCC	TTCCCAATGTTGGCAAGG	150

Fig. 1 Distribution of TF-encoding genes/transcripts of *D. antarctica* and other plant species in different TF families. The numbers of TF genes from *B. distachyon*, *T. aestivum*, *O. sativa*, and *A. thaliana* were obtained from PlantTFDB 2.0 (http://planttfdb.cbi.edu.cn/) (Zhang

et al. 2011). TF families that showed significantly different frequencies between *D. antarctica* and other species are shown in *red* or *dark blue color arrows (red* expansion, *dark blue* contraction, *p* value <0.01 using Fisher's exact test)

 Table 2
 The number of transcripts in each TF family identified in D. antarctica

TF family	No. unigenes	(%)	TF family	No. unigenes	(%)	TF family	No. unigenes	(%)
MYB_related	87	8.0	bHLH	78	7.2	СЗН	72	6.6
NAC	71	6.6	bZIP	70	6.5	WRKY	58	5.4
ARF	50	4.6	MYB	44	4.1	C2H2	38	3.5
HD-ZIP	34	3.1	GRAS	33	3.0	FAR1	32	3.0
SBP	32	3.0	ERF	31	2.9	TALE	25	2.3
CAMTA	23	2.1	G2-like	22	2.0	CO-like	20	1.8
Dof	17	1.6	DBB	16	1.5	B3	15	1.4
GATA	15	1.4	Trihelix	15	1.4	Nin-like	13	1.2
ARR-B	12	1.1	HB-other	12	1.1	HSF	12	1.1
MIKC	12	1.1	NF-YA	12	1.1	AP2	10	0.9
GeBP	9	0.8	EIL	8	0.7	NF-YC	8	0.7
GRF	7	0.6	YABBY	7	0.6	E2F/DP	6	0.6
NF-YB	6	0.6	ZF-HD	6	0.6	CPP	5	0.5
ТСР	5	0.5	BES1	4	0.4	HB-PHD	4	0.4
LBD	4	0.4	LSD	4	0.4	BBR/BPC	3	0.3
M-type	3	0.3	NF-X1	3	0.3	VOZ	3	0.3
RAV	2	0.2	Whirly	2	0.2	SRS	1	0.1
STAT	1	0.1	WOX	1	0.1			

(e.g., B3, ERF, LBD, MIKC, and SBP) events (Fisher's exact p value <0.01), suggesting that differences in the abundance of TF families might play a role in regulating species-specific biological processes with evolutionary significance in *D. antarctica*. The top-hit species distribution of BLASTX matches to TF protein sequences is shown in Fig. 2. A significant proportion of *D. antarctica* ESTs showed best-matches with TF proteins of *B. distachyon* (474/1,083, 43.8 %), followed by *T. aestivum* (203/1083,

18.7 %), suggesting that overall sequences of TF genes of *D. antarctica* may be more similar to *B. distachyon* than to *T. aestivum*.

GO distribution of identified TFs of D. antarctica

To investigate putative regulatory functions of the identified TFs, we mapped GO terms for the 1,083 transcripts based on sequence similarity from the BLASTX search

Fig. 2 Species distribution represented by the top BLAST hits of *D. antarctica* TF homologs

against the nr database using the Blast2go platform. Among 923 GO-annotated TFs, several analyzed TFs were related to various biological processes such as abiotic stimulus response, defense response, hormone response, and organ development, indicating that they may control various biological processes (Table 3). Considering the response to environmental stimuli, cold stress signaling proteins such as CAMTA (CL10091Contig1, CL13908Contig1) and ICE1 (CL20383Contig1), and disease resistance proteins such as ERF (CL699Contig1, CL5844Contig1), TGA/OBF proteins (CL5402Contig2, CL8974Contig1) and WRKY33 (CL16951Contig1) were included in the GO categories of "response to abiotic stress" and "response to biotic stress", respectively. A number of TFs encoding light signaling proteins and hormone signaling proteins were also included in our GO functional categorization. For example, TFs such as HY5 (CL2857Contig2), FAR1-related (CL22976Contig1), and HD1 (CL12566Contig1) were included in the "response to light stimuli". TFs such as ABI5 (CL1754Contig2) and OCP3 (CL1477Contig1), several auxin response factors (e.g., CL19544Contig1, CL795Contig1, CL2018Contig2, CL5007Contig1, CL10534Contig1), and GAI (CL2576 Contig1), were included in the GO categories of "response to ABA," "response to auxin," and "response to gibberellins," respectively. In addition, many TF proteins related "developmental processes" were also identified. to Floral homeotic proteins AP2 (CL3100Contig1) and Ta-VRT2-like (CL19603Contig1) were included in the GO category of "flower development." TFs such as DLlike (DLOOPING LEAF) protein (CL18256Contig1), YABBY-like protein (CL4511Contig1), and GL2-like

Table 3 D	Distribution	of '	TFs	for	the	representative	GO	terms
-----------	--------------	------	-----	-----	-----	----------------	----	-------

GO terms	GO ID	No. unigenes
Terms for response to stimulus		
Response to hormone stimulus	GO:0009725	70
Response to stress	GO:0006950	57
Response to abiotic stimulus	GO:0009628	54
Response to auxin stimulus	GO:0009733	41
Response to light stimulus	GO:0009416	30
Response to radiation	GO:0009314	30
Response to biotic stimulus	GO:0009607	24
Response to other organism	GO:0051707	23
Response to bacterium	GO:0009617	16
Response to jasmonic acid stimulus	GO:0009753	14
Response to salt stress	GO:0009651	14
Response to osmotic stress	GO:0006970	14
Response to inorganic substance	GO:0010035	13
Response to abscisic acid stimulus	GO:0009737	13
Response to salicylic acid stimulus	GO:0009751	11
Response to gibberellin stimulus	GO:0009739	10
Response to carbohydrate stimulus	GO:0009743	10
Response to red or far red light	GO:0009639	10
Response to metal ion	GO:0010038	9
Response to temperature stimulus	GO:0009266	9
Response to ethylene stimulus	GO:0009723	9
Response to water deprivation	GO:0009414	8
Response to DNA damage stimulus	GO:0006974	7
Immune response	GO:0006955	7
Response to cadmium ion	GO:0046686	6
Response to UV	GO:0009411	5
Response to light intensity	GO:0009642	5
Terms for developmental processes		
Reproduction	GO:000003	32
Organ development	GO:0048513	24
Flower development	GO:0009908	15
Shoot development	GO:0048367	9
Embryonic development	GO:0009790	7
Fruit development	GO:0010154	7
Leaf development	GO:0048366	5
Seed development	GO:0048316	6
Senescence	GO:0010149	8

protein (FGW8HAD01DBHP0), known to play roles in leaf development, were included in the GO category of "leaf development."

Expression analysis of the stress-induced TFs

EST abundance based on next-generation sequencing results has been widely used for the identification and quantification of mRNA species under different conditions or in different cell types. For ESTs that mapped to the TFs,

Fig. 3 Distribution of stress-responsive TF-encoding transcripts of D. antarctica in different TF families

we compared the expression index of the each transcript under control versus abiotic stress conditions. We found that 136 TFs were upregulated and 58 TFs were downregulated by low temperature, dehydration, or high salinity (q value <0.05; Fig. 3). Stress-induced TF proteins included the well-known stress-responsive genes such as DREB homologs (CL10747Contig1, CL6273Contig1), ERF4 homolog (CL3052Contig1), ABI5 (a member of bZIP TF) homologs (CL2221Contig1, CL2357Contig2), and NAC1/ NAC2 homologs (CL835Contig1/CL193Contig1). Other known genes in this group are LHY (CL64Contigs), ARFs (CL2018Contig2, CL7485Contig, CL795Contig1, CL5007 Contig1, CL5536Contig1, CL2133Contig1), and BZR1 (CL3575Contig1), regulated by circadian clock, auxin, and brassinosteroid, respectively. In addition, many genes encoding putative zinc finger proteins (10 C3H, 5 C2H2, 5 DBB, 3 DOF), MYB-related, WRKY, bZIPs, AP2/ERF, NAC, and GRAS TF families were also identified. While the majority of TFs were upregulated by specific stress (cold: 40, dehydration: 37, salt: 42), some were commonly induced in response to cold-salt, cold-dehydration, dehydration-salt, or cold-dehydration-salt combinations. Among those, the transcripts level of ERF4 (CL3052Contig1), a NAC domain protein (CL871Contig2), and a putative WRKY family gene (CL2522 Contig1), were upregulated by all three stresses (Table 4).

Validation of stress-induced TFs by qPCR analysis

To validate the induction of transcripts by abiotic stresses, more than five genes per each specific abiotic stress were chosen and tested by qPCR analysis. Figure 4 shows the gene expression levels of TF-encoding transcripts in *D. antarctica* when exposed to cold, drought, or high salinity for 24 h as compared to the control samples with no treatment. Of the transcripts, CL1670Contig1 encoding a NAC showed a strong increase by both salt and dehydration (>8-fold), and the CL3052Contig1 encoding a ERF4 was increased by all stresses, as predicted. Since many of the TFs involved in stress acclimation showed an acute response upon stress treatment (Kreps et al. 2002), examination of the expression kinetics with different durations of stress treatments, different stress levels, or different developmental stages is required.

Discussion

Wild plant species, which have evolved a high level of tolerance toward environmental stresses, represent important genetic resources that can be used to improve crop resistance against global warming. D. antarctica is an important flora extremophile that survives on marginal land and has been studied extensively for several decades (Lewis Smith 1994). Although physiological characteristics have improved our understanding of the D. antarctica stress-tolerance mechanism, little gene-based information is available. At this time, 38 cDNAs have been cloned and three genes (DaGrx, DaRub1, and DaPyk1) were characterized using a combination of proteomics and mRNA differential display from D. antarctica (Gidekel et al. 2003). A total of 1,199 unigene clusters were identified from two cDNA libraries originated from greenhouses and Antarctica exhibiting different expression patterns of several stress-responsive genes depending on environmental conditions (Lee et al. 2008). A Cu/Zn SOD gene was

Table 4 The list of stress-induced TFs in D. antarctica

AP2 CL719Contig1 330 AP2D23-like protein Bdi015502 2.7×10^{-22} C ARF CL2133Contig1 790 Axxin response factor Bdi028017 1.1×10^{-79} S ARF CL2097Contig1 1.377 Axxin response factor Bdi007575 6.4×10^{-146} C ARF CL2018Contig2 455 Axxin response factor 1 Bdi0026948 4.0×10^{-69} C ARF CL506Contig1 360 Axxin response factor 1 Bdi002699 1.7×10^{-54} C ARF CL506Contig1 360 Response regulator 10 Hout00800 7.4×10^{-56} C ARF CL160Contig1 514 Protein Bdi002663 1.0×10^{-73} D B3 CL1951Contig1 514 Protein Bdi002464 4.8×10^{-77} C B4111 CL10492Contig1 234 bHLH protein Bdi002402 1.4×10^{-23} D B4114 CL1045Contig1 515 BHZ Protein Bdi002340 1.0×1	TF family	EST ID	Length (bp)	Description	Best Match ^a	E value	Stress ^b
ARF CL2133Contig1 790 Auxin response factor Bd020172 1.4×10^{-79} S ARF CL2007Contig1 1.377 Auxin response factor Bd01752 1.6×10^{-70} C ARF CL2018Contig1 1.377 Auxin response factor 1 Bd000039 8.7×10^{-70} C ARF CL2018Contig1 378 Auxin response factor 1 Bd008680 7.4×10^{-70} S ARR B CL6160Contig1 360 Response regulator 10 Bd008660 7.4×10^{-70} S B3 CL797Contig1 668 Response regulator 10 Bd001263 1.0×10^{-73} S B4 CL300Contig1 713 Protein Bd001263 1.0×10^{-73} S B51 CL392Contig1 245 bHLH protein Bd000462 1.4×10^{-41} S bHLH CL392Contig1 573 bHLH protein Bd007420 1.4×10^{-23} S bHLH CL392Contig1 574 ABIS Bd009462 1.8×10^{-73} S <td>AP2</td> <td>CL7719Contig1</td> <td>330</td> <td>AP2D23-like protein</td> <td>Bdi015502</td> <td>2.7×10^{-22}</td> <td>С</td>	AP2	CL7719Contig1	330	AP2D23-like protein	Bdi015502	2.7×10^{-22}	С
AFF CL5007Contig1 677 Auxin response factor Bdi017582 1.6×10^{-56} C ARF CL2018Contig2 455 Auxin response factor 1 Bd00093 8.7×10^{-56} C.S ARF CL2638Contig1 378 Auxin response factor 1 Bd0026494 40×10^{-56} C.S ARF CL5538Contig1 480 Auxin response factor Bd002660 7.4×10^{-56} C ARR-B CL6160Contig1 660 Response regulator 10 Hv0026699 1.7×10^{-54} C ARR-B CL7077Contig1 668 Response regulator 10 Bd002666 1.0×10^{-71} D,8 B3 CL709Contig1 713 Drotein Bd002666 1.0×10^{-72} C BES1 CL357SContig1 234 bHLH protein Bd002420 1.4×10^{-44} S bHLH CL3741Contig1 517 bHLH protein Bd002420 1.4×10^{-44} S bHLH CL237Contig1 517 bHLH protein Bd0017510 3.6×10^{-57} C bL7P CL222Contig1 517 bHLH protein	ARF	CL2133Contig1	790	Auxin response factor	Bdi028017	1.1×10^{-79}	S
ARF Cl.795Contig1 1.377 Auxin response factor Bdi01757 6.4 x 10 ⁻¹⁴⁰ C. ARF CL2018Contig1 455 Auxin response factor 1 Bdi008039 8.7 x 10 ⁻⁵⁰ C. ARF CL533Contig1 430 Auxin response factor 1 Bdi008609 1.7 x 10 ⁻⁵⁰ C ARF CL563Contig1 378 Response regulator 10 Bdi026669 1.7 x 10 ⁻⁵⁴ C B3 CL760Contig1 715 RZN protein Bdi010203 1.0 x 10 ⁻⁷³ D. S B4H CL1045Contig1 715 BZR1 protein Bdi004186 4.8×10^{-73} S B1H CL1372Contig1 715 BZR1 protein Bdi004205 1.0 x 10 ⁻²⁹ S B1H CL374Contig1 575 BKH protein Bdi002450 1.0 x 10 ⁻²⁹ S B1H CL472Contig1 574 ABIS Taeo00681 9.0 x 10 ⁻²⁰ S B4H CL374Contig1 593 F-bax family protein Bdi002420 1.4 x 10 ⁻⁴⁴ S B1H CL473Contig1 594 ABIS Taeo00681 3.1 x 10 ⁻⁴⁵	ARF	CL5007Contig1	677	Auxin response factor	Bdi017582	1.6×10^{-60}	С
ARF CL2018Contig1 351 Auxin response factor 1 Bdi000600 7.8×10^{-90} C, S ARF CL5336Contig1 370 Auxin response factor Bdi006600 7.4×10^{-90} C ARR CL5160Contig1 300 Response regulator 10 Hvu002690 1.7×10^{-50} C ARR-B CL1707Contig1 668 Response regulator 10 Bdi01223 1.0×10^{-73} C, S B3 CL305Contig1 731 Protein Bdi00462 4.8×10^{-77} C, S bHLH CL10445Contig1 234 bHLH protein Bdi002400 1.4×10^{-77} C bHLH CL375Contig1 351 BLILI protein Bdi002400 1.4×10^{-20} D bHLH CL3741Contig1 517 bHLH protein Bdi002400 1.4×10^{-20} D bHLH CL3741Contig1 517 bHLH protein Bdi002400 1.4×10^{-20} D bHLH CL3741Contig1 517 bHLH protein Bdi0017510 3.6×10^{-51}	ARF	CL795Contig1	1,377	Auxin response factor	Bdi017757	6.4×10^{-146}	С
ARFCl.7485Contig1378Auxia response factorBdi026494 4.0×10^{-99} CARF aCL5536Contig1480Auxia response factorBdi026600 7.4×10^{-50} SARR-BCL7777Contig1668Response regulator 10Bdi02660 1.7×10^{-51} CB3CL790Contig1714ProteinTac012357 1.1×10^{-51} CB5CL700Contig1715BZRI proteinBdi00466 4.8×10^{-57} C, SBHLHCL1045Contig1234BHLH proteinBdi004186 1.2×10^{-53} SBHLHCL13922Contig1245BHLH proteinBdi00265 1.0×10^{-22} DBHLHCL371Contig1573FhotpriniBdi002463 4.0×10^{-50} CBHLHCL301Contig1573FhotpriniBdi002460 1.4×10^{-42} SBHLHCL302Contig1574ABISTac000681 9.0×10^{-50} CEZPCL2235Contig1660EZP proteinTac000587 4.0×10^{-50} CEZPCL235Contig1460EZP proteinTac000587 5.0×10^{-57} CEZPCL4951Contig1312V10EZP transcription factorBdi017510 3.6×10^{-57} SEZPCL2957Contig1385EZP transcription factorBdi00240 3.2×10^{-57} CEZPCL4951Contig1227C2H2 zinc finger proteinHvu003231 2.9×10^{-57} SEZPCL697Contig1385 </td <td>ARF</td> <td>CL2018Contig2</td> <td>455</td> <td>Auxin response factor 1</td> <td>Bdi000039</td> <td>8.7×10^{-60}</td> <td>C, S</td>	ARF	CL2018Contig2	455	Auxin response factor 1	Bdi000039	8.7×10^{-60}	C, S
ARFCL5336Contig.1490Axxin response factorBd1008680 7.4×10^{-56} SARR-BCL6160Contig.1360Response regulator 10Hvu002699 1.7×10^{-56} CB3CL797Contig.1514ProteinBd1012023 1.0×10^{-73} D, SB3CL760Contig.1733ProteinBd1004224.8 \times 10^{-87}C, SB51CL357SContig.1715BZR1 proteinBd1004464.8 \times 10^{-87}C, SB41LHCL13922Contig.1245BHLH proteinBd1004601.4 \times 10^{-44}SB41LHCL374Contig.1456HLH proteinBd1004404.8 \times 10^{-87}CB41LHCL374Contig.1574HLH proteinBd1005401.4 \times 10^{-44}SB41LHCL374Contig.1574ABI5Tac006813.1 \times 10^{-79}DB41LHCL374Contig.1574ABI5Tac006813.1 × 10^{-79}SB52PCL235Contig.2599ABI5 likeBd1075104.3 × 10^{-81}SB52PCL357Contig.1600E2IP proteinHvu001174.3 × 10^{-97}CB52PCL35Contig.1419bZIP transcription factorHz0032412.5 × 10^{-29}CB52PCL395Contig.1355bZIP transcription factorHz0032447.5 × 10^{-29}CB52PCL395Contig.1475bZIP transcription factorHz0032447.5 × 10^{-20}SB52PCL395Contig.1355bZIP transcription factor <td>ARF</td> <td>CL7485Contig1</td> <td>378</td> <td>Auxin response factor 1</td> <td>Bdi026948</td> <td>4.0×10^{-69}</td> <td>С</td>	ARF	CL7485Contig1	378	Auxin response factor 1	Bdi026948	4.0×10^{-69}	С
ARR-B CL6160Contig1 360 Response regulator 10 Hu0026866 1.7×10^{-54} C ARR-B CL7777Contig1 668 Response regulator 10 Bdi00263 1.0×10^{-73} D, S B3 CL705Contig1 733 Protein Tac012377 1.1×10^{-90} C, S BES1 CL3575Contig1 715 BZR1 protein Bdi004065 1.0×10^{-73} S bHLH CL1445Contig1 245 HILH protein Bdi026665 1.0×10^{-93} S bHLH CL4172Contig1 517 HLH protein Bdi026665 1.0×10^{-93} D bHLH CL221Contig1 574 ABI5 Tac00813 3.1×10^{-48} D, S bZIP CL221Contig1 574 ABI5 Tac00813 3.1×10^{-46} D, S bZIP CL357Contig1 660 bZIP protein Hw0001017 4.3×10^{-90} C bZIP CL257Contig1 315 bZIP transcription factor Hw00337 5.0×10^{-35} C bZIP CL4951Contig1 325 bZIP transcription factor Hw00	ARF	CL5536Contig1	480	Auxin response factor	Bdi008680	7.4×10^{-36}	S
ARR-B CL 7777 Contig1 668 Response regulator 10 Bdi028699 1.7×10^{-54} C B3 CL 1591 Contig1 514 Protein Bd00263 1.0×10^{-23} C B4 CL 760Contig1 713 BZR1 protein Bd009462 4.8×10^{-57} C, S B51 CL 3575 Contig1 715 BZR1 protein Bd009462 4.8×10^{-57} C, S bHLH CL 1492 Contig1 456 bHLH protein Bd002805 1.4×10^{-240} S bHLH CL 3741 Contig1 517 bHLH protein Bd002813 3.1×10^{-240} C bHLH CL 221 Contig1 574 ABI5 Bd001501 3.5×10^{-53} C bZIP CL 221 Contig1 574 ABI5 Bd019900 1.0×10^{-17} C bZIP CL 235 Contig2 599 ABI5 like Bd019900 1.0×10^{-17} C bZIP CL 305 Contig1 312 bZIP transcription factor Ho003214 7.5×10^{-51} C <tr< td=""><td>ARR-B</td><td>CL6160Contig1</td><td>360</td><td>Response regulator 10</td><td>Hvu002699</td><td>1.7×10^{-50}</td><td>С</td></tr<>	ARR-B	CL6160Contig1	360	Response regulator 10	Hvu002699	1.7×10^{-50}	С
B3 CL1951Contig1 514 Protein Bdi010263 1.0×10^{-73} D, S B3 CL760Contig1 733 Protein Taol2257 1.1×10^{-50} C. B51 CL357SContig1 234 BHLH protein Bdi004186 1.2×10^{-33} S bHLH CL10445Contig1 234 BHLH protein Bdi004186 1.2×10^{-34} S bHLH CL374IContig1 457 BHLH protein Bdi004186 1.2×10^{-34} S bHLH CL4172Contig1 517 BHLH protein Bdi007510 3.6×10^{-36} D bLP CL221Contig1 517 ABIS BK Bdi017510 3.6×10^{-35} S bZIP CL2357Contig2 599 ABIS like Bdi017510 3.6×10^{-35} S bZIP CL1371Contig1 312 BZIP protein Hv000371 5.0×10^{-45} C bZIP CL4951Contig1 312 BZIP protein Hv003244 7.5×10^{-25} C <th< td=""><td>ARR-B</td><td>CL7777Contig1</td><td>668</td><td>Response regulator 10</td><td>Bdi028669</td><td>1.7×10^{-54}</td><td>С</td></th<>	ARR-B	CL7777Contig1	668	Response regulator 10	Bdi028669	1.7×10^{-54}	С
B3 CL.760Contig1 733 Protein Tae012357 1.1×10^{-79} C. S BES1 CL357SContig1 715 BZR1 protein Bdi004186 1.8×10^{-77} C. S bHLH CL1044SContig1 245 bHLH protein Bdi004186 1.4×10^{-44} S bHLH CL4172Contig1 517 bHLH protein Bdi026065 1.4×10^{-44} S bHLH CL4172Contig1 574 AB15 Tae000681 3.1×10^{-48} D.S bZIP CL2357Contig2 599 AB15 like Bdi017510 3.6×10^{-73} C bZIP CL2058Contig1 610 bZIP protein Hvu001017 4.3×10^{-97} C bZIP CL4951Contig1 312 bZIP transcription factor Bdi017510 0.0×10^{-45} D bZIP CL5997Contig1 215 bZIP transcription factor Hvu003231 2.9×10^{-17} S bZIP CL4951Contig1 27 C212 C10314Contig1 27 C12 D	B3	CL1951Contig1	514	Protein	Bdi010263	1.0×10^{-73}	D, S
BES1 CL3575Contig1 715 BZR1 protein Bdi009462 4.8×10^{-87} C, S bHLH CL10442Contig1 234 bHLH protein Bdi002605 1.2×10^{-33} S bHLH CL13922Contig1 245 bHLH protein Bdi002405 1.4×10^{-44} S bHLH CL13741Contig1 517 bHLH protein Bdi002405 1.1×10^{-24} D bHLH CL221Contig1 571 BHLH protein Bdi002405 1.1×10^{-24} D bHLH CL371Contig1 593 F-box family protein Tae000681 3.1×10^{-46} D, S bZIP CL221Contig1 544 ABI5 Tae000681 1.0×10^{-37} C bZIP CL1371Contig1 410 bZIP protein Hurascription factor Bdi019980 1.0×10^{-37} C bZIP CL4951Contig1 312 bZIP transcription factor Hurascription factor Hurascription factor Hurascription factor Hurascription factor Hurascription factor L2 × 10^{-36} C C2H2 CL48974Contig1 275 C2H2 CL48974Contig1 <td>B3</td> <td>CL760Contig1</td> <td>733</td> <td>Protein</td> <td>Tae012357</td> <td>1.1×10^{-59}</td> <td>С</td>	B3	CL760Contig1	733	Protein	Tae012357	1.1×10^{-59}	С
bHLH CL1044SContig1 234 bHLH protein Bdi004186 1.2×10^{-33} S bHLH CL392Contig1 245 bHLH protein Bdi002420 1.4×10^{-49} D bHLH CL374IContig1 517 bHLH protein like Hv002587 4.1×10^{-29} D bHLH CL017Contig1 593 F-box family protein Osj060834 9.0×10^{-39} C bZIP CL2221Contig1 574 AB15 Bdi017510 3.6×10^{-55} S bZIP CL2357Contig2 590 AB15 like Bdi017510 3.6×10^{-57} S bZIP CL395Contig1 660 bZIP protein Hv001017 4.3×10^{-39} C bZIP CL4951Contig1 312 bZIP transcription factor Hv003231 2.9×10^{-17} S bZIP CL5907Contig1 385 bZIP transcription factor Hv000316 1.2×10^{-28} C C2H2 CL0394Contig1 27 C2H2 zinc finger protein Hv0006316 1.2×10^{-28} <	BES1	CL3575Contig1	715	BZR1 protein	Bdi009462	4.8×10^{-87}	C, S
bHLHCL13922Contig1245bHLH proteinBdi02400 1.0×10^{-29} DbHLHCL3741Contig1456bHLH proteinBdi002420 1.4×10^{-44} SbHLHCL4172Contig1517bHLH proteinHvu002587 4.1×10^{-28} DbEILHCL9017Contig1593F-box family proteinOg0050834 9.0×10^{-30} CbZIPCL2357Contig2599AB15 likeBdi017510 3.1×10^{-48} D, SbZIPCL205SContig1600bZIP proteinHvu00171 4.3×10^{-39} CbZIPCL1971Contig1419bZIP transcription factorBdi019980 1.0×10^{-37} CbZIPCL4951Contig1312bZIP transcription factorHvu003211 2.9×10^{-17} SbZIPCL5907Contig1385bZIP transcription factorHvu003244 7.5×10^{-36} CbZIPCL697Contig1215bZIP transcription factorHvu003244 7.5×10^{-36} CC2H2CL10316Contig1227C2H2 zinc finger proteinHvu003216 1.2×10^{-36} CC2H2CL612SContig1216C2H2 zinc finger proteinHvu003716 1.2×10^{-36} SC2H2CL4348Contig1299Stress-associated 11Hvu00374 5.5×10.50 SC3HCL612SContig1230C3H domain protein 64Hvu00374 5.5×10.50 SC3HCL1646Contig1511C3H domain protein 16Bdi007051 3.4×10^{-38} <t< td=""><td>bHLH</td><td>CL10445Contig1</td><td>234</td><td>bHLH protein</td><td>Bdi004186</td><td>1.2×10^{-33}</td><td>S</td></t<>	bHLH	CL10445Contig1	234	bHLH protein	Bdi004186	1.2×10^{-33}	S
bHLHCL 3741Contig1456bHLH proteinBdi002420 1.4×10^{-44} SbHLHCL 4172Contig1517bHLH proteinHvu002587 4.1×10^{-22} DbHLHCL 2017Contig1573F-box family protein $0,050834$ $9,0 \times 10^{-30}$ CbZIPCL 2231Contig1574AB15Tac00081 3.1×10^{-48} D, SbZIPCL 2357Contig2599AB15 likeBdi017510 3.6×10^{-55} SbZIPCL 2058Contig1660bZIP proteinHvu001017 4.3×10^{-79} CbZIPCL 4951Contig1312bZIP transcription factorTac003977 5.0×10^{-77} SbZIPCL 4951Contig1312bZIP transcription factorHvu003231 2.9×10^{-17} SbZIPCL 5907Contig1215bZIP transcription factorHu003244 7.5×10^{-25} CbZIPCL 6126Contig1227CH42 zinc finger proteinOs025467 6.1×10^{-22} SC2H2CL 6126Contig1245CH2 zinc finger proteinOs025467 6.1×10^{-22} SC2H2CL 6126Contig1245CH2 zinc finger proteinOs025467 6.1×10^{-22} SC2H2CL 61484Contig1547TRM repressor proteinHvu006316 1.2×10^{-36} CC3HCL 1638Contig1501C3H domain protein 64Hvu003027 2.1×10^{-43} SC3HCL 1646Contig1547TRM repressor proteinOs025466 2.5×10^{-60	bHLH	CL13922Contig1	245	bHLH protein	Bdi026065	1.0×10^{-29}	D
bHLHCL4172Contig1517bHLH protein likeHvu02287 4.1×10^{-22} DbHLHCL9017Contig1593F-box family proteinOsj050834 9.0×10^{-36} CbZIPCL22317Contig1574ABI5Bdi017510 3.6×10^{-55} SbZIPCL2357Contig2599ABI5 likeBdi017510 3.6×10^{-55} SbZIPCL1271Contig1419bZIP transcription factorBdi01980 1.0×10^{-37} CbZIPCL4951Contig1312bZIP transcription factorHvu003231 2.9×10^{-16} SbZIPCL5907Contig1385bZIP transcription factorHvu003244 7.5×10^{-25} CbZIPCL991Contig1475bZIP transcription factorHvu003244 7.5×10^{-25} CbZIPCL9920Contig1215bZIP transcription factorHvu003244 7.5×10^{-25} CC2H2CL10316Contig1245C2H2 zinc finger proteinOsj02547 61.1×10^{-22} SC2H2CL6126Contig1245C2H2 zinc finger proteinHvu006316 1.2×10^{-22} SC2H2CL44848Contig1547TRN repressor proteinHvu003727 2.1×10^{-36} SC3HCL6125Contig1220C3H domain protein 64Hvu003727 2.1×10^{-36} SC3HCL11836Contig1571C3H domain protein 64Hvu003727 2.1×10^{-36} SC3HCL11630Contig1518C3H ope Zar, bryoteinBdi00716 <t< td=""><td>bHLH</td><td>CL3741Contig1</td><td>456</td><td>bHLH protein</td><td>Bdi002420</td><td>1.4×10^{-44}</td><td>S</td></t<>	bHLH	CL3741Contig1	456	bHLH protein	Bdi002420	1.4×10^{-44}	S
bHLHCL9017Contig1593F-box family proteinOs j050834 9.0×10^{-30} CbZIPCL2221Contig1574AB15Tae000681 3.1×10^{-80} D, SbZIPCL235S7Contig2599AB15 likeBdi017510 3.6×10^{-55} SbZIPCL205SContig1660bZIP proteinHvu001017 4.3×10^{-59} CbZIPCL45951Contig1312bZIP transcription factorBdi019980 1.0×10^{-37} CbZIPCL4951Contig1312bZIP transcription factorTae003373 5.0×10^{-45} DbZIPCL8974Contig1475bZIP transcription factorBdi003244 7.5×10^{-25} CbZIPCL9592Contig1215bZIP transcription factorTae002104 3.2×10^{-26} CC2H2CL10316Contig1227C2H2 zinc finger proteinOsj025467 6.1×10^{-22} DC2H2CL626Contig1245C2H2 zinc finger proteinNvu003127 2.1×10^{-43} SC2H2CL14848Contig1299Stress-associated 11Hvu003014 5.5×10^{-50} CC2H2CL4646Contig1547TRM repressor proteinHvu003127 2.1×10^{-43} SC3HCL11680Contig1547TRM repressor proteinBdi007014 5.5×10^{-50} CC3HCL115321Contig1233e-x8-c-x5-c-x3-h type family proteinOsj03202 3.8×10^{-24} CC3HCL152321Contig1233ProteinBdi00705 <t< td=""><td>bHLH</td><td>CL4172Contig1</td><td>517</td><td>bHLH protein like</td><td>Hvu002587</td><td>4.1×10^{-22}</td><td>D</td></t<>	bHLH	CL4172Contig1	517	bHLH protein like	Hvu002587	4.1×10^{-22}	D
bZIPCL.2221Contig1574ABI5Tae000681 3.1×10^{-48} D, SbZIPCL.2357Contig2599ABI5 likeBdi017510 3.6×10^{-58} SbZIPCL.0058Contig1660bZIP proteinHvu001017 4.3×10^{-39} CbZIPCL.11271Contig1419bZIP transcription factorHvu003231 2.9×10^{-15} DbZIPCL4951Contig1312bZIP transcription factorTae003937 5.0×10^{-45} DbZIPCL5907Contig1385bZIP transcription factorTae003244 7.5×10^{-25} CbZIPCL5907Contig1475bZIP transcription factorTae002104 3.2×10^{-56} CC2H2CL10316Contig1227C2H2 zinc finger proteinOsj025467 6.1×10^{-22} SC2H2CL126Contig1245C2H2 zinc finger proteinHvu006316 1.2×10^{-56} CC2H2CL126Contig1245C2H2 zinc finger proteinHvu004636 1.8×10^{-26} CC2H2CL126Contig1245C2H2 zinc finger proteinHvu004631 4.5×10^{-27} SC3HCL125Contig1220C3H domain protein 16Bdi000314 5.5×10^{-6} CC3HCL14848Contig1547TRM repressor proteinHvu003800 9.6×10^{-29} CC3HCL1680Contig1511C3H domain protein 16Bdi007013 4.8×10^{-24} CC3HCL1680Contig1518C3H type Zn proteinOsj038202 <td< td=""><td>bHLH</td><td>CL9017Contig1</td><td>593</td><td>F-box family protein</td><td>Osj050834</td><td>9.0×10^{-30}</td><td>С</td></td<>	bHLH	CL9017Contig1	593	F-box family protein	Osj050834	9.0×10^{-30}	С
bZIPCL2357Contig2599ABIS likeBdi017510 3.6×10^{-55} SbZIPCL2058Contig1660bZIP proteinHvu001017 4.3×10^{-59} CbZIPCL11271Contig1419bZIP transcription factorBdi019980 1.0×10^{-37} CbZIPCL4951Contig1312bZIP transcription factorHvu003231 2.9×10^{-17} SbZIPCL5907Contig1385bZIP transcription factorHvu03231 2.9×10^{-17} SbZIPCL5907Contig1215bZIP transcription factorTae002104 3.2×10^{-25} CbZIPCL9592Contig1215bZIP transcription factorTae002104 3.2×10^{-25} CC2H2CL0136Contig1227C2H2 zinc finger proteinHvu006316 1.2×10^{-22} SC2H2CL42484Contig1245C2H2 zinc finger proteinHvu004631 1.8×10^{-56} CC2H2CL4844Contig1299Stress-associated 11Hvu004631 1.8×10^{-76} SC3HCL1625Contig1220C3H domain protein 16Bdi0003145.5 \times 10.2^{00}SC3HCL1625Contig1501C3H domain protein 64Hvu003800 9.6×10^{-29} CC3HCL1635Contig1233 $e-x8-e-x5-e-x3-h$ type family proteinBdi007705 3.4×10^{-17} DC3HCL1097Contig1717Zfn-like 1Tae00858 3.1×10^{-17} C, DC3HCL10671Contig1717Zfn-like 1Tae00858	bZIP	CL2221Contig1	574	ABI5	Tae000681	3.1×10^{-48}	D, S
bZIPCL2058Contg1660bZIP proteinHvu001017 4.3×10^{-39} CbZIPCL11271Contig1419bZIP transcription factorBdi019980 1.0×10^{-37} CbZIPCL4951Contig1312bZIP transcription factorTae003937 5.0×10^{-45} DbZIPCL5907Contig1385bZIP transcription factorHvu003231 2.9×10^{-17} SbZIPCL8974Contig1475bZIP transcription factorHvu003244 7.5×10^{-25} CbZIPCL9592Contig1215bZIP transcription factorTae002104 3.2×10^{-36} CC2H2CL10316Contig1227C2H2 zinc finger proteinOsj025467 6.1×10^{-22} SC2H2CL126Contig1245C2H2 zinc finger proteinHvu006461 1.2×10^{-27} SC2H2CL14844Contig1299Stress-associated 11Hvu004683 1.8×10^{-26} CC2H2CL4646Contig1547TRM repressor proteinHvu00330 9.6×10^{-29} SC3HCL1635Contig1220C3H domain protein 16Bdi000314 5.5×10^{-20} SC3HCL1680Contig1511C3H domain protein 64Hvu00380 9.6×10^{-29} CC3HCL1680Contig1478C3H type Znf proteinOsj038202 3.4×10^{-17} DC3HCL1680Contig1233ex8-ex5-ex3-h type family proteinBdi007075 3.4×10^{-17} DC3HCL1061Contig11,177Zinc finger f	bZIP	CL2357Contig2	599	ABI5 like	Bdi017510	3.6×10^{-55}	S
bZIPCL11271Contig1419bZIP transcription factorBdi019980 1.0×10^{-37} CbZIPCL4951Contig1312bZIP transcription factorTae003937 5.0×10^{-45} DbZIPCL5907Contig1385bZIP transcription factorHvu003231 2.9×10^{-17} SbZIPCL5907Contig1475bZIP transcription factorBdi003244 7.5×10^{-25} CbZIPCL9592Contig1215bZIP transcription factorTae002104 3.2×10^{-25} CC2H2CL10316Contig1227C2H2 zinc finger proteinOsj025467 6.1×10^{-22} SC2H2CL3239Contig1719ProteinSbi031465 9.7×10^{-72} SC2H2CL4646Contig1547TRM repressor proteinHvu006314 5.5×10^{-20} SC3HCL6125Contig1220C3H domain protein 64Hvu003714 5.5×10^{-20} SC3HCL1630Contig1511C3H type Znf proteinOsj025086 2.5×10^{-40} SC3HCL1032Contig1233e-x8-c-x3-h type family proteinOsj025086 2.5×10^{-40} SC3HCL1032Contig1233e-x8-c-x3-h type family proteinBdi00705 3.4×10^{-17} DC3HCL1012Contig1717Zfn-like 1Tae00858 3.1×10^{-17} C, DC3HCL102Contig1518Zinc fingerOsj03820 3.4×10^{-17} DC3HCL1632Contig1717Zfn-like 1Tae000858 <t< td=""><td>bZIP</td><td>CL2058Contig1</td><td>660</td><td>bZIP protein</td><td>Hvu001017</td><td>4.3×10^{-39}</td><td>С</td></t<>	bZIP	CL2058Contig1	660	bZIP protein	Hvu001017	4.3×10^{-39}	С
bZIPCL4951Contig1312bZIP transcription factorTae003937 5.0×10^{-45} DbZIPCL5907Contig1385bZIP transcription factorHvu003231 2.9×10^{-17} SbZIPCL8974Contig1475bZIP transcription factorBdi003244 7.5×10^{-25} CbZIPCL9592Contig1215bZIP transcription factorTae002104 3.2×10^{-36} CC2H2CL10316Contig1227C2H2 zinc finger proteinOsj025467 6.1×10^{-22} DC2H2CL6126Contig1245C2H2 zinc finger proteinHvu006316 1.2×10^{-22} SC2H2CL13239Contig1719ProteinSbi031465 9.7×10^{-72} SC2H2CL4646Contig1547TRM repressor proteinHvu00683 1.8×10^{-26} CC3HCL1680Contig1220C3H domain protein 16Bdi00314 5.5×10^{-60} SC3HCL11530Contig1233e-x8-e-x5-e-x3-h type family proteinOsj025086 2.5×10^{-60} CC3HCL10012Contig1233e-x8-e-x5-e-x3-h type family proteinBdi007705 3.4×10^{-17} DC3HCL10012Contig1233ProteinBdi002319 1.2×10^{-35} SC3HCL1012Contig1233ProteinBdi00705 3.4×10^{-17} DC3HCL10102Contig1233ProteinBdi002319 1.2×10^{-35} SC3HCL10102Contig1177Zfn-like 1Tae00858 $3.1 \times $	bZIP	CL11271Contig1	419	bZIP transcription factor	Bdi019980	1.0×10^{-37}	С
bZIPCL5907Contig1385bZIP transcription factorHvu003231 2.9×10^{-17} SbZIPCL8974Contig1475bZIP transcription factorBdi003244 7.5×10^{-25} CbZIPCL9592Contig1215bZIP transcription factorTae002104 3.2×10^{-36} CC2H2CL10316Contig1227C2H2 zinc finger proteinOsj025467 6.1×10^{-22} DC2H2CL6126Contig1245C2H2 zinc finger proteinHvu006316 1.2×10^{-22} SC2H2CL14448Contig1299Stress-associated 11Hvu004683 1.8×10^{-26} CC2H2CL4646Contig1547TRM repressor proteinHvu003727 2.1×10^{-43} SC3HCL6125Contig1220C3H domain protein 16Bdi000314 5.5×10^{-20} SC3HCL1648Contig1501C3H domain protein 64Hvu003800 9.6×10^{-29} CC3HCL1648Contig1478C3H type Znf proteinOsj025086 2.5×10^{-60} CC3HCL161321Contig1233e-x8-e-x5-e-x3-h type family proteinBdi00705 3.4×10^{-17} DC3HCL1977Contig1717Zfn-like 1Tae00858 3.1×10^{-17} C, DC3HCL1012Contig1233ProteinBdi002319 1.2×10^{-38} SC3HCL1012Contig1405Zinc finger proteinHvu004030 1.3×10^{-47} DC3HCL161311T17Zfn-like 1Tae000858 $3.$	bZIP	CL4951Contig1	312	bZIP transcription factor	Tae003937	5.0×10^{-45}	D
bZIPCL.8974Contig1475bZIP transcription factorBdi003244 7.5×10^{-25} CbZIPCL.9592Contig1215bZIP transcription factorTae002104 3.2×10^{-36} CC2H2CL.01316Contig1227C2H2 zinc finger proteinOsj025467 6.1×10^{-22} DC2H2CL.6126Contig1245C2H2 zinc finger proteinHvu006316 1.2×10^{-22} SC2H2CL.3239Contig1719ProteinSbi031465 9.7×10^{-72} SC2H2CL.14848Contig1299Stress-associated 11Hvu00483 1.8×10^{-26} CC2H2CL.4646Contig1547TRM repressor proteinHvu003727 2.1×10^{-43} SC3HCL6125Contig1220C3H domain protein 16Bdi000314 5.5×10^{-20} SC3HCL11680Contig1501C3H domain protein 64Hvu003800 9.6×10^{-24} CC3HCL15321Contig1233c-x8-c-x5-c-x3-h type family proteinOsj03202 3.8×10^{-24} CC3HCL10512Contig1233proteinBdi00705 3.4×10^{-17} DC3HCL107Contig1717Zfn-like 1Tae000858 3.1×10^{-17} C, DC3HCL10671Contig1405Zinc finger family proteinBdi002706 3.4×10^{-67} SC3HCL1071Contig1717Zfn-like 1Tae000858 3.1×10^{-17} C, DC3HCL10671Contig1405Zinc finger family proteinHvu004030<	bZIP	CL5907Contig1	385	bZIP transcription factor	Hvu003231	2.9×10^{-17}	S
bZIPCL.9592Contig1215bZIP transcription factorTae002104 3.2×10^{-36} CC2H2CL.10316Contig1227C2H2 zinc finger proteinOsj025467 6.1×10^{-22} DC2H2CL.6126Contig1245C2H2 zinc finger proteinHvu006316 1.2×10^{-22} SC2H2CL.3239Contig1719ProteinSbi031465 9.7×10^{-72} SC2H2CL.4446Contig1299Stress-associated 11Hvu004683 1.8×10^{-26} CC2H2CL.4646Contig1547TRM repressor proteinHvu003727 2.1×10^{-43} SC3HCL.1580Contig1220C3H domain protein 16Bdi000314 5.5×10^{-20} SC3HCL.1680Contig1501C3H domain protein 64Hvu003800 9.6×10^{-29} CC3HCL.1535Contig1233c-x8-c-x5-c-x3-h type family proteinOsj025086 2.5×10^{-60} CC3HCL.15321Contig1237c-x8-c-x5-c-x3-h type family proteinBdi007705 3.4×10^{-17} DC3HCL.1007Contig1717Zfn-like 1Tae000858 3.1×10^{-17} C, DC3HCL.10671Contig1405Zinc finger family proteinBdi005706 3.4×10^{-35} SC3HCL.10671Contig1405Zinc finger family proteinHvu014030 1.3×10^{-47} DC3HCL.10671Contig1417Zinc finger family proteinBdi005706 3.4×10^{-35} SC3HCL.10671Contig1742<	bZIP	CL8974Contig1	475	bZIP transcription factor	Bdi003244	7.5×10^{-25}	С
C2H2CL10316Contig1227C2H2 zinc finger proteinOsj025467 6.1×10^{-22} DC2H2CL6126Contig1245C2H2 zinc finger proteinHvu006316 1.2×10^{-22} SC2H2CL3239Contig1719ProteinSbi031465 9.7×10^{-72} SC2H2CL44848Contig1299Stress-associated 11Hvu004683 1.8×10^{-26} CC2H2CL4646Contig1547TRM repressor proteinHvu00377 2.1×10^{-43} SC3HCL6125Contig1220C3H domain protein 16Bdi000314 5.5×10^{-20} SC3HCL4048Contig1501C3H domain protein 64Hvu003800 9.6×10^{-29} CC3HCL1635Contig1233c-8e-cx5-cx3-th type family proteinOsj032202 3.8×10^{-24} CC3HCL10012Contig1233proteinBdi007075 3.4×10^{-17} DC3HCL10012Contig1233ProteinBdi020319 1.2×10^{-38} SC3HCL1077Contig1717Zfn-like 1Tae000858 3.1×10^{-17} C, DC3HCL10671Contig1518Zinc finger proteinHvu004030 1.3×10^{-47} DC3HCL1671Contig11,177Zinc finger proteinHvu004030 1.3×10^{-47} DC3HCL10671Contig1405Zinc finger proteinHvu004030 1.3×10^{-47} DC3HCL10671Contig11,177Zinc finger proteinHvu004030 1.3×10^{-47} D<	bZIP	CL9592Contig1	215	bZIP transcription factor	Tae002104	3.2×10^{-36}	С
C2H2CL6126Contig1245C2H2 zinc finger proteinHvu006316 1.2×10^{-22} SC2H2CL3239Contig1719ProteinSbi031465 9.7×10^{-72} SC2H2CL14848Contig1299Stress-associated 11Hvu004683 1.8×10^{-26} CC2H2CL4646Contig1547TRM repressor proteinHvu003727 2.1×10^{-43} SC3HCL6125Contig1220C3H domain protein 16Bdi000314 5.5×10^{-20} SC3HCL11680Contig1501C3H domain protein 64Hvu003800 9.6×10^{-29} CC3HCL1535Contig1233c-x8-c-x5-c-x3-h type family proteinOsj025086 2.5×10^{-60} CC3HCL1531Contig1237c-x8-c-x5-c-x3-h type family proteinBdi007705 3.4×10^{-17} DC3HCL10012Contig1717Zfn-like 1Tae000858 3.1×10^{-17} C, DC3HCL1077Contig1717Zinc fingerOsj015920 4.3×10^{-35} SC3HCL10671Contig11,177Zinc finger proteinHvu004030 1.3×10^{-47} DC3HCL1671Contig11,177Zinc finger proteinHvu010937 4.9×10^{-176} SC3HCL1671Contig11,177Zinc finger proteinHvu010937 4.9×10^{-176} SC3HCL10671Contig11,177Zinc finger proteinHvu010937 4.9×10^{-176} SC3HCL1671Contig11,177Zinc finger proteinHvu010937	C2H2	CL10316Contig1	227	C2H2 zinc finger protein	Osj025467	6.1×10^{-22}	D
C2H2CL3239Contig1719ProteinSbi031465 9.7×10^{-72} SC2H2CL14848Contig1299Stress-associated 11Hvu004683 1.8×10^{-26} CC2H2CL4646Contig1547TRM repressor proteinHvu003727 2.1×10^{-43} SC3HCL6125Contig1220C3H domain protein 16Bdi000314 5.5×10^{-20} SC3HCL11680Contig1501C3H domain protein 64Hvu003800 9.6×10^{-29} CC3HCL11580Contig1233c-x8-c-x5-c-x3-h type family proteinOsj025086 2.5×10^{-60} CC3HCL15321Contig1237c-x8-c-x5-c-x3-h type family proteinBdi00705 3.4×10^{-17} DC3HCL10012Contig1217c-x8-c-x5-c-x3-h type family proteinBdi020319 1.2×10^{-38} SC3HCL1071Contig1717Zfn-like 1Tae000858 3.1×10^{-17} C, DC3HCL1071Contig1717Zfn-like 1Tae000858 3.1×10^{-17} C, DC3HCL1071Contig1405Zinc finger family proteinHvu010937 4.9×10^{-176} SC3HCL1071Contig11,177Zinc finger proteinHvu010937 4.9×10^{-176} SC3HCL1671Contig14.5Zinc finger proteinHvu010937 4.9×10^{-176} SC3HCL10671Contig11,177Zinc finger proteinBdi005706 3.4×10^{-67} SC3HCL16761Contig14.5Constans-like protein	C2H2	CL6126Contig1	245	C2H2 zinc finger protein	Hvu006316	1.2×10^{-22}	S
C2H2CL14848Contig1299Stress-associated 11Hvu004683 1.8×10^{-26} CC2H2CL4646Contig1547TRM repressor proteinHvu003727 2.1×10^{-43} SC3HCL6125Contig1220C3H domain protein 16Bdi000314 5.5×10^{-20} SC3HCL11680Contig1501C3H domain protein 64Hvu003800 9.6×10^{-29} CC3HCL4048Contig1478C3H type Znf proteinOsj025086 2.5×10^{-60} CC3HCL1535Contig1233c-x8-c-x5-c-x3-h type family proteinOsj038202 3.8×10^{-24} CC3HCL10012Contig1237c-x8-c-x5-c-x3-h type family proteinBdi007705 3.4×10^{-17} DC3HCL10012Contig1233ProteinBdi020319 1.2×10^{-38} SC3HCL1012Contig1717Zfn-like 1Tae000858 3.1×10^{-17} C, DC3HCL10671Contig1717Zinc fingerOsj015920 4.3×10^{-35} SC3HCL10671Contig1405Zinc finger family proteinHvu004030 1.3×10^{-47} DC3HCL1616Contig11,177Zinc finger proteinHvu010937 4.9×10^{-176} SCAMTACL136Contig1742CAMTA family proteinBdi005706 3.4×10^{-67} SCAMTACL132Contig1609CAMTA family proteinSbi025191 8.3×10^{-47} DC0-likeCL132Contig1486Constans-like protein CO6Osj0	C2H2	CL3239Contig1	719	Protein	Sbi031465	9.7×10^{-72}	S
C2H2CL4646Contig1547TRM repressor protein $Hvu003727$ 2.1×10^{-43} SC3HCL6125Contig1220C3H domain protein 16Bdi000314 5.5×10^{-20} SC3HCL11680Contig1501C3H domain protein 64 $Hvu003800$ 9.6×10^{-29} CC3HCL4048Contig1478C3H type Znf protein $Osj025086$ 2.5×10^{-60} CC3HCL11535Contig1233 $c-x8-c-x5-c-x3-h$ type family protein $Osj038202$ 3.8×10^{-24} CC3HCL10012Contig1237 $c-x8-c-x5-c-x3-h$ type family protein $Bdi00705$ 3.4×10^{-17} DC3HCL10012Contig1233Protein $Bdi020319$ 1.2×10^{-38} SC3HCL1017Contig1717Zfn-like 1Tae000858 3.1×10^{-17} C, DC3HCL1761Contig1518Zinc finger $Osj015920$ 4.3×10^{-35} SC3HCL1761Contig11,177Zinc finger protein $Hvu004030$ 1.3×10^{-47} DC3HCL1761Contig11,177Zinc finger protein $Hvu01937$ 4.9×10^{-176} SCAMTACL132Contig1742CAMTA family protein $Bdi005706$ 3.4×10^{-67} SCAMTACL132Contig1742CAMTA family protein $Sbi025191$ 8.3×10^{-47} DC0-likeCL132Contig14.86Constans-like protein CO6 $Osj050357$ 6.7×10^{-32} DC0-likeCL132Contig1228Heading dat	C2H2	CL14848Contig1	299	Stress-associated 11	Hvu004683	1.8×10^{-26}	С
C3HCL6125Contig1220C3H domain protein 16Bdi000314 5.5×10^{-20} SC3HCL11680Contig1501C3H domain protein 64Hvu003800 9.6×10^{-29} CC3HCL4048Contig1478C3H type Znf proteinOsj025086 2.5×10^{-60} CC3HCL11535Contig1233 $c \cdot x8 \cdot c \cdot x5 \cdot c \cdot x3 \cdot h$ type family proteinOsj038202 3.8×10^{-24} CC3HCL15321Contig1237 $c \cdot x8 \cdot c \cdot x5 \cdot c \cdot x3 \cdot h$ type family proteinBdi007705 3.4×10^{-17} DC3HCL10912Contig1233ProteinBdi020319 1.2×10^{-38} SC3HCL1097Contig1717Zfn-like 1Tae000858 3.1×10^{-17} C, DC3HCL1071Contig1518Zinc fingerOsj015920 4.3×10^{-35} SC3HCL10671Contig1405Zinc finger family proteinHvu004030 1.3×10^{-47} DC3HCL161Contig11,177Zinc finger proteinHvu010937 4.9×10^{-176} SC3HCL10671Contig11,177Zinc finger proteinHvu010937 4.9×10^{-176} SC3HCL1061161,177Zinc finger proteinBdi005706 3.4×10^{-67} SCAMTACL132Contig14.86Constans-like protein CO6Osj050357 6.7×10^{-32} DC0-likeCL12566Contig1228Heading date1Osj046526 1.2×10^{-48} CC0-likeCL123Contig11,299Zinc finger	C2H2	CL4646Contig1	547	TRM repressor protein	Hvu003727	2.1×10^{-43}	S
C3HCL11680Contig1501C3H domain protein 64Hvu003800 9.6×10^{-29} CC3HCL4048Contig1478C3H type Znf proteinOsj025086 2.5×10^{-60} CC3HCL11535Contig1233 $c-x8-c-x5-c-x3-h$ type family proteinOsj038202 3.8×10^{-24} CC3HCL15321Contig1237 $c-x8-c-x5-c-x3-h$ type family proteinBdi007705 3.4×10^{-17} DC3HCL10012Contig1233ProteinBdi020319 1.2×10^{-38} SC3HCL1077Contig1717Zfn-like 1Tae000858 3.1×10^{-17} C, DC3HCL10671Contig1518Zinc fingerOsj015920 4.3×10^{-35} SC3HCL10671Contig1405Zinc finger proteinHvu004030 1.3×10^{-47} DC3HCL1316Contig11,177Zinc finger proteinHvu010937 4.9×10^{-176} SCAMTACL1316Contig1742CAMTA family proteinBdi005706 3.4×10^{-67} SCAMTACL132Contig1609CAMTA family proteinSbi025191 8.3×10^{-47} DC0-likeCL12566Contig1228Heading date1Osj050357 6.7×10^{-32} DC0-likeCL132Contig3871ProteinOsj046526 1.2×10^{-48} CC0-likeCL132Contig11,299Zinc finger proteinHvu003969 5.3×10^{-102} SC0-likeCL132Contig3871ProteinOsj08444 4.3×10^{-29} </td <td>СЗН</td> <td>CL6125Contig1</td> <td>220</td> <td>C3H domain protein 16</td> <td>Bdi000314</td> <td>5.5×10^{-20}</td> <td>S</td>	СЗН	CL6125Contig1	220	C3H domain protein 16	Bdi000314	5.5×10^{-20}	S
C3HCL4048Contig1478C3H type I proteinOsj025086 2.5×10^{-60} CC3HCL11535Contig1233c-x8-c-x5-c-x3-h type family proteinOsj038202 3.8×10^{-24} CC3HCL15321Contig1237c-x8-c-x5-c-x3-h type family proteinBdi007705 3.4×10^{-17} DC3HCL10012Contig1233ProteinBdi020319 1.2×10^{-38} SC3HCL1077Contig1717Zfn-like 1Tae000858 3.1×10^{-17} C, DC3HCL10671Contig1518Zinc fingerOsj015920 4.3×10^{-35} SC3HCL10671Contig1405Zinc finger family proteinHvu004030 1.3×10^{-47} DC3HCL1761Contig11,177Zinc finger proteinHvu010937 4.9×10^{-176} SCAMTACL1316Contig1742CAMTA family proteinBdi005706 3.4×10^{-67} SCAMTACL122contig1609CAMTA family proteinSbi025191 8.3×10^{-47} DC0-likeCL1226ontig1486Constans-like protein CO6Osj050357 6.7×10^{-32} DC0-likeCL1226ontig1228Heading date1Osj046526 1.2×10^{-48} CC0-likeCL132Contig3871ProteinOsj04526 1.2×10^{-48} CC0-likeCL132Contig11,299Zinc finger proteinOsj008444 4.3×10^{-29} SC0-likeCL1703Contig2387Zinc finger proteinOsj008444	СЗН	CL11680Contig1	501	C3H domain protein 64	Hvu003800	9.6×10^{-29}	С
C3HCL1030CongeAlternativeDespinationDespinationAlternativeCC3HCL11535Contig1233c-x8-c-x5-c-x3-h type family proteinOsj038202 3.8×10^{-24} CC3HCL15321Contig1237c-x8-c-x5-c-x3-h type family proteinBdi007705 3.4×10^{-17} DC3HCL10012Contig1233ProteinBdi020319 1.2×10^{-38} SC3HCL1977Contig1717Zfn-like 1Tae000858 3.1×10^{-17} C, DC3HCL10671Contig1518Zinc fingerOsj015920 4.3×10^{-35} SC3HCL10671Contig1405Zinc finger family proteinHvu004030 1.3×10^{-47} DC3HCL1761Contig11,177Zinc finger proteinHvu010937 4.9×10^{-176} SC3HCL1316Contig1742CAMTA family proteinBdi005706 3.4×10^{-67} SCAMTACL132Contig1609CAMTA family proteinSbi025191 8.3×10^{-47} DC0-likeCL12566Contig1228Heading date1Osj051756 1.1×10^{-18} DC0-likeCL132Contig11,299Zinc finger proteinHvu003969 5.3×10^{-102} SC0-likeCL12000000000000000000000000000000000000	СЗН	CL4048Contig1	478	C3H type Znf protein	Osi025086	2.5×10^{-60}	C
C3HCL15321Contig1237c-x8-c-x5-c-x3-h type family proteinBdi007705 3.4×10^{-17} DC3HCL10012Contig1233ProteinBdi020319 1.2×10^{-38} SC3HCL1977Contig1717Zfn-like 1Tae000858 3.1×10^{-17} C, DC3HCL7212Contig1518Zinc fingerOsj015920 4.3×10^{-35} SC3HCL761Contig1405Zinc finger family proteinHvu004030 1.3×10^{-47} DC3HCL16671Contig11,177Zinc finger proteinHvu010937 4.9×10^{-176} SC3HCL136Contig1742CAMTA family proteinBdi005706 3.4×10^{-67} SCAMTACL1316Contig1742CAMTA family proteinBdi005706 3.4×10^{-47} DC0-likeCL132Contig1609CAMTA family proteinSbi025191 8.3×10^{-47} DC0-likeCL12566Contig1228Heading date1Osj050357 6.7×10^{-32} DC0-likeCL132Contig3871ProteinOsj046526 1.2×10^{-48} CC0-likeCL132Contig11,299Zinc finger proteinHvu003969 5.3×10^{-102} SC0-likeCL132Contig11,299Zinc finger proteinOsj008444 4.3×10^{-29} SC0-likeCL1703Contig2387Zinc finger proteinOsj008444 4.3×10^{-29} SDBBCL575Contig1 674 ProteinDSSS <td>СЗН</td> <td>CL11535Contig1</td> <td>233</td> <td>c-x8-c-x5-c-x3-h type family protein</td> <td>Osi038202</td> <td>3.8×10^{-24}</td> <td>C</td>	СЗН	CL11535Contig1	233	c-x8-c-x5-c-x3-h type family protein	Osi038202	3.8×10^{-24}	C
C3HCL10012Contig1233ProteinBdi020319 1.2×10^{-38} SC3HCL1977Contig1717Zfn-like 1Tae000858 3.1×10^{-17} C, DC3HCL7212Contig1518Zinc fingerOsj015920 4.3×10^{-35} SC3HCL10671Contig1405Zinc finger family proteinHvu004030 1.3×10^{-47} DC3HCL10671Contig11,177Zinc finger proteinHvu010937 4.9×10^{-176} SC3HCL1761Contig11,177Zinc finger proteinHvu010937 4.9×10^{-176} SCAMTACL1316Contig1742CAMTA family proteinBdi005706 3.4×10^{-67} SCAMTACL4241Contig1609CAMTA family proteinSbi025191 8.3×10^{-47} DC0-likeCL132Contig10486Constans-like protein CO6Osj050357 6.7×10^{-32} DC0-likeCL132Contig1228Heading date1Osj04526 1.2×10^{-48} CC0-likeCL32Contig11,299Zinc finger proteinHvu003969 5.3×10^{-102} SC0-likeCL132Contig2387Zinc finger proteinOsj008444 4.3×10^{-29} SC0-likeCL1703Contig2387Zinc finger proteinOsj008444 4.3×10^{-29} SDBBCL575Contig1 674 ProteinBdi029851 5.8×10^{-55} S	СЗН	CL15321Contig1	237	c-x8-c-x5-c-x3-h type family protein	Bdi007705	3.4×10^{-17}	D
C3HCL1977Contig1717Zfn-like 1Tae000858 3.1×10^{-17} C, DC3HCL7212Contig1518Zinc fingerOsj015920 4.3×10^{-35} SC3HCL10671Contig1405Zinc finger family proteinHvu004030 1.3×10^{-47} DC3HCL1761Contig11,177Zinc finger proteinHvu010937 4.9×10^{-176} SCAMTACL1316Contig1742CAMTA family proteinBdi005706 3.4×10^{-67} SCAMTACL4241Contig1609CAMTA family proteinSbi025191 8.3×10^{-47} DCO-likeCL132Contig10486Constans-like protein CO6Osj050357 6.7×10^{-32} DCO-likeCL12566Contig1228Heading date1Osj046526 1.2×10^{-48} CCO-likeCL132Contig111,299Zinc finger proteinHvu003969 5.3×10^{-102} SCO-likeCL132Contig2387Zinc finger proteinOsj008444 4.3×10^{-29} SDBBCL575Contig1674ProteinDSS 10^{-55} S	СЗН	CL10012Contig1	233	Protein	Bdi020319	1.2×10^{-38}	S
C11CL7212Contig1518Zinc fingerOsj015920 4.3×10^{-35} SC3HCL10671Contig1405Zinc finger family proteinHvu004030 1.3×10^{-47} DC3HCL1761Contig11,177Zinc finger proteinHvu010937 4.9×10^{-176} SCAMTACL1316Contig1742CAMTA family proteinBdi005706 3.4×10^{-67} SCAMTACL4241Contig1609CAMTA family proteinSbi025191 8.3×10^{-47} DCO-likeCL132Contig10486Constans-like protein CO6Osj050357 6.7×10^{-32} DCO-likeCL12566Contig1228Heading date1Osj046526 1.2×10^{-48} CCO-likeCL132Contig111,299Zinc finger proteinHvu003969 5.3×10^{-102} SCO-likeCL132Contig111,299Zinc finger proteinHvu003969 5.3×10^{-102} SCO-likeCL132Contig11,299Zinc finger proteinHvu003969 5.3×10^{-102} SCO-likeCL132Contig11,299Zinc finger proteinOsj008444 4.3×10^{-29} SDBBCL575Contig1 674 ProteinBroteinBdi029851 5.8×10^{-55} S	СЗН	CL1977Contig1	717	Zfn-like 1	Tae000858	3.1×10^{-17}	C. D
C11CL10671Contig1405Zinc finger family proteinHvu004030 1.3×10^{-47} DC3HCL1761Contig11,177Zinc finger proteinHvu010937 4.9×10^{-176} SCAMTACL1316Contig1742CAMTA family proteinBdi005706 3.4×10^{-67} SCAMTACL4241Contig1609CAMTA family proteinSbi025191 8.3×10^{-47} DCO-likeCL132Contig10486Constans-like protein CO6Osj050357 6.7×10^{-32} DCO-likeCL12566Contig1228Heading date1Osj046526 1.2×10^{-48} CCO-likeCL132Contig111,299Zinc finger proteinHvu003969 5.3×10^{-102} SCO-likeCL132Contig111,299Zinc finger proteinHvu003969 5.3×10^{-102} SCO-likeCL1703Contig2387Zinc finger proteinOsj008444 4.3×10^{-29} SDBBCL575Contig1674ProteinBdi029851 5.8×10^{-55} S	СЗН	CL7212Contig1	518	Zinc finger	Osi015920	4.3×10^{-35}	S
C3HCL1761Contig11,177Zinc finger proteinHvu010937 4.9×10^{-176} SCAMTACL1316Contig1742CAMTA family proteinBdi005706 3.4×10^{-67} SCAMTACL4241Contig1609CAMTA family proteinSbi025191 8.3×10^{-47} DCO-likeCL132Contig10486Constans-like protein CO6Osj050357 6.7×10^{-32} DCO-likeCL12566Contig1228Heading date1Osj051756 1.1×10^{-18} DCO-likeCL743Contig3871ProteinOsj046526 1.2×10^{-48} CCO-likeCL132Contig111,299Zinc finger proteinHvu003969 5.3×10^{-102} SCO-likeCL1703Contig2387Zinc finger proteinOsj08444 4.3×10^{-29} SDBBCL575Contig1674ProteinBdi029851 5.8×10^{-55} S	СЗН	CL10671Contig1	405	Zinc finger family protein	Hvu004030	1.3×10^{-47}	D
CAMTA CL1316Contig1 742 CAMTA family protein Bdi005706 3.4×10^{-67} S CAMTA CL4241Contig1 609 CAMTA family protein Sbi025191 8.3×10^{-47} D CO-like CL132Contig10 486 Constans-like protein CO6 Osj050357 6.7×10^{-32} D CO-like CL12566Contig1 228 Heading date1 Osj051756 1.1×10^{-18} D CO-like CL743Contig3 871 Protein Osj046526 1.2×10^{-48} C CO-like CL132Contig11 1,299 Zinc finger protein Hvu003969 5.3×10^{-102} S CO-like CL1703Contig2 387 Zinc finger protein Osj008444 4.3×10^{-29} S DBB CL575Contig1 674 Protein Bdi029851 5.8×10^{-55} S	СЗН	CL1761Contig1	1.177	Zinc finger protein	Hvu010937	4.9×10^{-176}	S
CAMTA CL4241Contig1 609 CAMTA family protein Sbi025191 8.3×10^{-47} D CO-like CL132Contig10 486 Constans-like protein CO6 Osj050357 6.7×10^{-32} D CO-like CL12566Contig1 228 Heading date1 Osj051756 1.1×10^{-18} D CO-like CL743Contig3 871 Protein Osj046526 1.2×10^{-48} C CO-like CL132Contig11 1,299 Zinc finger protein Hvu003969 5.3×10^{-102} S CO-like CL1703Contig2 387 Zinc finger protein Osj008444 4.3×10^{-29} S DBB CL575Contig1 674 Protein Bdi029851 5.8×10^{-55} S	САМТА	CL1316Contig1	742	CAMTA family protein	Bdi005706	3.4×10^{-67}	S
CO-like CL12566Contig1 228 Heading date1 Osj046526 1.2×10^{-32} D CO-like CL743Contig3 871 Protein Osj046526 1.2×10^{-48} C CO-like CL132Contig1 1,299 Zinc finger protein Hvu003969 5.3×10^{-102} S CO-like CL1703Contig2 387 Zinc finger protein Osj008444 4.3×10^{-29} S DBB CL575Contig1 674 Protein Bdi029851 5.8×10^{-55} S	CAMTA	CL4241Contig1	609	CAMTA family protein	Sbi025191	8.3×10^{-47}	D
CO-like CL12566Contig1 228 Heading date1 Osj051756 1.1×10^{-18} D CO-like CL743Contig3 871 Protein Osj046526 1.2×10^{-48} C CO-like CL132Contig11 1,299 Zinc finger protein Hvu003969 5.3×10^{-102} S CO-like CL1703Contig2 387 Zinc finger protein Osj008444 4.3×10^{-29} S DBB CL575Contig1 674 Protein Bdi029851 5.8×10^{-55} S	CO-like	CL132Contig10	486	Constans-like protein CO6	Osi050357	6.7×10^{-32}	= D
CO-like CL1743Contig3 871 Protein Osj046526 1.2×10^{-48} C CO-like CL132Contig1 $1,299$ Zinc finger protein Hvu003969 5.3×10^{-102} S CO-like CL1703Contig2 387 Zinc finger protein Osj08444 4.3×10^{-29} S DBB CL575Contig1 674 Protein Bdi029851 5.8×10^{-55} S	CO-Jike	CL12566Contig1	228	Heading date1	Osi051756	1.1×10^{-18}	= D
CO-likeCL132Contig11,299Zinc finger proteinHvu003969 5.3×10^{-102} SCO-likeCL1703Contig2387Zinc finger proteinOsj008444 4.3×10^{-29} SDBBCL575Contig1674ProteinBdi029851 5.8×10^{-55} S	CO-like	CL743Contig3	871	Protein	Osi046526	1.2×10^{-48}	– C
CO-likeCL1703Contig2387Zinc finger proteinOsj008444 4.3×10^{-29} SDBBCL575Contig1674ProteinBdi029851 5.8×10^{-55} S	CO-like	CL132Contig11	1.299	Zinc finger protein	Hvu003969	5.3×10^{-102}	S
DBB CL575Contig1 674 Protein $Rdi020851 = 5.8 \times 10^{-55}$ S	CO-like	CL1703Contig?	387	Zinc finger protein	Osi008444	4.3×10^{-29}	S
$DDD = DU027071 J.0 \land 10 D$	DBB	CL575Contig1	674	Protein	Bdi029851	5.8×10^{-55}	S

Table 4 continued

TF family	EST ID	Length (bp)	Description	Best Match ^a	E value	Stress ^b
DBB	CL575Contig3	644	Protein	Tae009529	2.9×10^{-77}	C, S
DBB	CL117Contig1	761	Zinc finger protein	Hvu004367	2.8×10^{-56}	S
DBB	CL1192Contig1	363	Zinc finger protein	Hvu017563	8.2×10^{-45}	C, S
DBB	CL4356Contig1	733	Zinc finger protein	Bdi019086	6.3×10^{-58}	D
Dof	CL3326Contig1	730	Cycling dof factor-like 1	Bdi007116	4.6×10^{-45}	С
Dof	CL9282Contig1	452	Dof zinc finger protein	Hvu007246	2.5×10^{-43}	D
Dof	CL2008Contig1	304	Zinc finger protein	Sbi031102	7.3×10^{-36}	С
EIL	CL633Contig1	953	EIN3-like 1 expressed	Hvu001687	4.0×10^{-77}	С
ERF	CL10747Contig1	549	DREB	Bdi020982	1.4×10^{-39}	D
ERF	CL6273Contig1	565	DREB2	Tae000338	2.5×10^{-71}	D
ERF	CL2573Contig1	807	ERE binding protein	Bdi024722	6.5×10^{-75}	D
ERF	CL3052Contig1	751	ERF4	Bdi029072	5.0×10^{-26}	C, D, S
ERF	CL90Contig7	764	Root abundant factor	Hvu000656	6.8×10^{-42}	С
FAR1	CL14727Contig1	233	FAR protein like	Bdi023493	1.7×10^{-40}	D
FAR1	CL15098Contig1	425	FAR protein like	Bdi017686	5.1×10^{-24}	С
G2-like	CL2557Contig1	800	MYB cc transcription factor	Hvu010644	2.6×10^{-31}	S
G2-like	CL11932Contig1	240	MYB transcription factor	Bdi012196	4.0×10^{-18}	D
G2-like	CL3860Contig2	719	MYB transcription factor	Hvu005236	6.5×10^{-60}	S
GATA	CL10444Contig1	460	GATA transcription factor	Bdi016675	4.6×10^{-48}	С
GATA	CL7163Contig1	236	GATA transcription factor	Osi027368	1.1×10^{-18}	D
GATA	CL1849Contig2	385	GATA4	Bdi018495	1.2×10^{-44}	С
GATA	CL4645Contig2	335	Protein	Tae011011	2.0×10^{-41}	S
GeBP	CL9171Contig1	405	Protein	Ath010279	3.0×10^{-31}	D
GeBP	CL9748Contig1	255	Storekeeper protein	Bdi024725	2.5×10^{-20}	C
GRAS	CL2576Contig1	497	GAI	Tae002005	3.9×10^{-75}	C
GRAS	CL1967Contig1	765	GRAS transcription factor	Bdi007245	1.3×10^{-90}	S
GRAS	CL3160Contig1	782	GRAS transcription factor	Hyu001960	1.8×10^{-93}	S
GRAS	CL6782Contig1	358	GRAS transcription factor	Bdi007245	1.3×10^{-60}	C
GRAS	CL7344Contig1	554	GRAS transcription factor	Osi049006	4.8×10^{-51}	D
GRAS	CL3762Contig1	341	SCL1 protein	Bdi019888	3.2×10^{-29}	S
GRF	CL7647Contig1	330	Growth-regulating factor 8	Bdi028800	4.0×10^{-50}	S
HB-other	CL 2509Contig1	247	Homeobox-like resistance	Tae006784	3.5×10^{-30}	S
HB-other	CL11111Contig1	349	Homeodomain-like transcriptional regulator	Bdi017079	8.8×10^{-51}	D
HD-7IP	CI 4126Contig2	634	DNA-binding protein	Hvu005452	5.6×10^{-60}	S
HD-7IP	CL 2201Contig2	570	HD-zin protein	Bdi020278	3.4×10^{-19}	S
HD-7IP	CL 365Contig3	1 274	HD-zip protein cnhh-5	Bdi016785	7.2×10^{-96}	C
HD-7IP	CL 9983Contig1	243	HD-zip protein roch	Bdi015114	3.4×10^{-41}	s
HSF	CL 7019Contig1	377	Heat shock factor	Bdi006519	1.3×10^{-48}	D
I BD	CL 7060Contig1	302	Asymmetric leaves?	Tae007185	5.8×10^{-25}	C
MIKC	CL 3025Contig1	694	Short vegetative phase	Tae009496	5.6×10^{-53}	C
MVR	CL 12805Contig1	228	Hypothetical protein	Rdi011672	1.7×10^{-19}	D
MVB	CL11586Contig1	215	MVB transcription factor	Oci024318	1.7×10^{-33}	C C
MVB	CL 2003Contig2	521	MVB related protein	Hym004678	1.3×10^{-24}	
MVD	CL2995Contig2	307	P2P3 MVP protein	Trac005147	2.0×10^{-34}	D, 3 D
MVR related	CI 64Contig4	1 378	Circadian oscillator component	Hym001561	5.0×10^{-143}	ספ
MVR related	CI 64Contig	1,376		Hvn001501	1.0×10^{-118}	D, 3 S
MVR related	CL 2456Contig1	331	Initiator hinding expressed	Ath028/2/	1.9×10^{-17}	S
MVR related	CI 64Contig1	459	I HV protein	Tae001507	1.2×10^{-62}	5
In D_ICIAICU	CLOTCOILIGI	TJ)	Li piotem	10001392	2.5 ~ 10	5

Table 4 continued

TF family	EST ID	Length (bp)	Description	Best Match ^a	E value	Stress ^b
MYB_related	CL64Contig3	712	LHY protein	Hvu001561	4.6×10^{-58}	D, S
MYB_related	CL1769Contig1	660	MYB transcription expressed	Bdi003750	5.4×10^{-42}	С
MYB_related	CL1386Contig3	491	MYB transcription factor	Bdi017728	8.0×10^{-65}	S
MYB_related	CL38Contig7	745	MYB transcription factor	Osj026179	5.3×10^{-20}	S
MYB_related	CL6896Contig1	597	MYB transcription factor 3	Tae005264	1.4×10^{-67}	С
MYB_related	CL6716Contig1	233	MYB29 protein	Bdi025026	7.4×10^{-20}	S
MYB_related	CL14777Contig1	250	MYB-like	Tae000299	2.1×10^{-27}	С
MYB_related	CL1604Contig2	842	R2R3 MYB protein	Tae003202	1.9×10^{-104}	D, S
MYB_related	CL2456Contig4	376	Telomere repeat-binding protein 5	Ath028434	4.4×10^{-36}	D
NAC	CL1670Contig1	812	NAC domain ipr003441	Bdi023098	7.0×10^{-85}	D, S
NAC	CL7154Contig1	436	NAC domain ipr003441	Bdi029479	1.4×10^{-35}	S
NAC	CL835Contig1	1,068	NAC1 transcription factor	Hvu003954	1.4×10^{-94}	D
NAC	CL193Contig1	1,301	NAC2 protein	Tae001896	1.0×10^{-73}	C, S
NAC	CL14981Contig1	243	NAC5 protein	Hvu017189	2.1×10^{-43}	С
NAC	CL871Contig2	797	NAC68	Tae007889	1.9×10^{-63}	C, D, S
NAC	CL8752Contig1	532	NAM (no apical meristem) protein	Bdi010078	8.2×10^{-21}	D
NAC	CL3291Contig2	725	Protein	Bdi012610	6.3×10^{-18}	S
NF-YA	CL4574Contig1	701	Nuclear transcription factor y subunit a-10	Bdi027867	3.1×10^{-38}	С
NF-YB	CL9000Contig1	243	Nuclear transcription factor y subunit b-3	Bdi020963	4.0×10^{-26}	С
NF-YC	CL8605Contig1	282	Nuclear transcription factor y subunit c-2	Sbi016872	9.1×10^{-47}	D
Nin-like	CL5240Contig1	223	RWP-RK domain	Hvu001374	1.4×10^{-26}	D
SBP	CL3554Contig1	255	SPL protein	Hvu001410	1.5×10^{-38}	D
SBP	CL6058Contig2	244	SPL9	Bdi004027	2.8×10^{-27}	S
SBP	CL7311Contig1	496	Squamosa promoter binding 12	Bdi003965	2.1×10^{-57}	С
TALE	CL10435Contig1	237	HD protein	Tae002173	9.0×10^{-18}	S
TALE	CL11068Contig1	216	KN1 homeobox protein	Bdi013846	2.2×10^{-40}	S
TALE	CL263Contig5	1,193	KNOX family class 2	Hvu006567	1.7×10^{-112}	C, S
Trihelix	CL9054Contig1	470	6b-interacting protein 1	Bdi024147	1.1×10^{-20}	D
VOZ	CL4459Contig1	553	Vascular plant one zinc finger protein	Bdi026708	7.3×10^{-44}	D
WRKY	CL4495Contig1	860	SUSIBA2-like protein	Hvu002074	9.9×10^{-133}	D
WRKY	CL14825Contig1	359	WRKY transcription factor	Tae009827	1.1×10^{-46}	D
WRKY	CL2522Contig1	706	WRKY transcription factor	Tae002244	2.4×10^{-43}	C, D, S
WRKY	CL5364Contig1	600	WRKY transcription factor	Bdi005086	6.0×10^{-42}	D
WRKY	CL5366Contig1	412	WRKY transcription factor	Bdi024049	6.7×10^{-50}	S
WRKY	CL6467Contig1	343	WRKY transcription factor	Bdi015774	4.3×10^{-34}	D
WRKY	CL11486Contig1	384	WRKY7	Hvu000275	9.7×10^{-50}	D
WRKY	CL1847Contig3	761	WRKY74	Hvu003707	1.4×10^{-42}	D
WRKY	CL4181Contig1	457	WRKY78	Tae002039	2.9×10^{-47}	S
YABBY	CL4511Contig1	489	YABBY protein	Bdi009091	1.8×10^{-48}	С
ZF-HD	CL14100Contig1	298	ZF-HD homeobox protein	Osi003099	6.5×10^{-32}	С

^a The ID of TF collected in PlantTFDB. The TF ID consists of three characters which represent the species (e.g. Bdi, *B. distachyon*; Osj, *O. sativa japonica*; Hvu, *H. vulgare*; Tae, *T. aestivum*; Sbi S. bicolor; Ath, A.thaliana)

^b The abiotic stress which induces the transcripts level for the corresponding contig (C cold, D dehydration, S high salinity)

cloned to account for the ability of *D. antarctica* to tolerate high levels of oxidative stress (Sanchez-Venegas et al. 2009). Ice recrystallization inhibition protein homologs were cloned and the dynamic changes in their gene expression during cold acclimation were demonstrated (John et al. 2009; Chew et al. 2012). Recently, we collected EST data from stress-treated mRNA libraries of *D. antarc-tica* using GS 454-FLX pyrosequencing (Lee et al. 2013). This dataset increased our understanding regarding the genetic applications of *D. antarctica*. In this study, 1,083

Fig. 4 qPCR analysis of selected *D. antarctica* stress-induced TFs following exposure to different abiotic stressors. Statistical significance of gene induction by comparison with control was assessed using *t* test (p < 0.05). Gray and color bars represent control and treatment samples, respectively. The vertical axis indicates the relative ratio of the transcript abundance of the selected gene compared to the abundance of the transcripts of the internal *DaEF1a1* (Lee et al. 2010). Data and error bars represent means and standard deviations, respectively, of three technical replicates. Total RNA was extracted from samples of plants grown under control conditions (16 °C no treatment) or exposed to a low temperature (cold 4 °C), dehydration (PEG 30 %), or high salinity (NaCl 300 mM). Three biological replicates were performed for each experiment, with similar results

transcripts encoding TFs belonging to 53 families were identified based on sequence homology between *D. antarctica* EST and the TF database of seven plant species.

Characterizing the function of stress-inducible genes is very important to elucidate the molecular mechanisms of stress response and tolerance of higher plants and to improve the stress tolerance of crops through bioengineering. Gene regulation by TFs is an important step of the stress-responsive signal transduction cascades. Thus, stress-responsive TFs play a crucial role in turning on/off gene expression required for stress acclimation. Based on in silico analysis of the EST database of D. antarctica, we identified 127 transcripts encoding putative TFs, which were upregulated by abiotic stresses. These genes include the homolog transcripts encoding proteins such as ARF, bHLH, bZIP, zinc finger families (C2H2, C3H, CO-like, DBB, and Dof), AP2/ERF, GATA, GRAS, HD-zip, MYBrelated, NAC, and WRKY. These genes have been characterized as key factors in various stress signaling pathways.

Members of DREB from the AP2/ERF family are also stress-inducible and mediate the transcription of several genes such as rd29A, rd17, cor15a, erd10, kin1, kin2, and others in response to cold and water stress (Liu et al. 1998; Thomashow 1999). AtERF4 is induced by ABA and high salinity, and acts as a transcriptional regulator in ABA signaling, which plays an important role in adaptive stress responses to environmental stimuli in plants (Yang et al. 2005). In the stress-induced TF list, ABI5 homologs and bZIP family TFs were included, as well as ABI3 homologs and B3 family TFs, which might play a role in ABA signaling. In Arabidopsis, the ABA response is regulated by TFs such as ABI5 and ABI3 (Giraudat et al. 1992; Finkelstein and Lynch 2000). Several studies have shown that ABI5 and ABI3 interact and bind to AREB elements and co-regulate downstream ABA-responsive genes (Nakamura et al. 2001; Lopez-Molina et al. 2002; Nakashima et al. 2006). In addition, we identified 11 contigs encoding NAC family members in the stress-induced TF list. ANAC019, ANAC055, and ANAC072 in Arabidopsis and several NAC TFs in grass species were shown to be induced by ABA, high salinity, and dehydration, and transgenic plants overexpressing these genes have increased drought tolerance (Tran et al. 2004; Hu et al. 2006; Nakashima et al. 2007; Hu et al. 2008; Zheng et al. 2009). This suggests that NAC homologs may play a similar role for stress tolerance in D. antarctica.

In other plants, similar expression profiles of TFs have been reported; several families of TFs, each containing a distinct type of DNA-binding domain and several classes of zinc finger domains, have been implicated in plant stress responses because their expression is induced or repressed under different stress conditions in *Arabidopsis* (Chen et al. 2002; Jiang and Deyholos 2006). For example, MYB genes, AP2/EREBP genes, bHLH genes, HSF genes, NAC genes, and WRKY genes are affected by abiotic stresses in rice (Rabbani et al. 2003). Also, AP2/ERF, MYB, NAC, and WRKY are affected in common wheat, a Triticeae species, which possesses more tolerance for abiotic stress than rice or maize (Kawaura et al. 2008), suggestive of functional conservation of these TF families in the plant stress response. The similarities of TF expression patterns under abiotic stress in a wide range of plant lineages imply that overall molecular response to environmental change is evolutionarily conserved between model species and other extremophiles.

Many eukaryotic genomes have experienced multiple large-scale duplication events during their evolutionary history (Lespinet et al. 2002; Richardt et al. 2007). Evolutionary retention of duplicated genes encoding transcription-associated proteins may be positively correlated with increasing morphological complexity, especially within the plant kingdom (Lespinet et al. 2002; Shiu et al. 2005). Hence, the cross-species comparisons of TFs is expected to yield novel insights into the evolution of regulatory networks in plants (Lang et al. 2010). Our TF profile analysis showed that the distribution of TF families was generally similar with those of other species. However, several cases of expansion and contraction of some families were also observed in D. antarctica. For example, D. antarctica had significantly more ARF, C3H, CAMTA, and S1Fa-like TFs than other species, while it had significantly fewer ERF and MIKC TFs, suggesting that these differences in the abundance of TFs in D. antarctica might play an important role in regulating species-specific biological processes with evolutionary implications. To exclude any possible biased observation and to generate an accurate explanation for the expansion and contraction events with an evolutionary view, the homology-based search using EST databases should be combined with a motif-based search (e.g., prediction method using Hidden Markov Models from the PFAM database) using the complete genome sequences or full-length ORFeome data with sufficient coverage of the D. antarctica genome.

QPCR suggested that the selected TFs control the downstream genes in stress signal transduction pathways, providing a guideline for functional characterization of these genes. To further study and identify the molecular function of TF candidates, molecular and genetic analysis, such as cloning the full sequence of ORFs and promoter sequences, investigating the dynamics of gene expression with various stress conditions, and characterizing in vivo function using transgenic plants, should be performed.

Acknowledgments This work was supported by Functional Genomics on Polar Organisms grant (PE12020) funded by Korea

Polar Research Institute (KOPRI). J Lee was supported by National Research Foundation of Korea, Korea (NRF-2009-352-C00129).

References

- Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78
- Alberdi M, Bravo LA, Gutierrez A, Gidekel M, Corcuera LJ (2002) Ecophysiology of Antarctic vascular plants. Physiol Plant 115: 479–486
- Bennett MD, Smith JB, Smith RIL (1982) DNA amounts of angiosperms from the Antarctic and South Georgia. Environ Exp Bot 22:307–318
- Cardone S, Sawatani P, Rush P, García A, Poggio L, Schrauf G (2009) Karyological studies in *Deschampsia antarctica* Desv. (Poaceae). Polar Biol 32:427–433
- Chen W, Provart N, Glazebrook J, Katagiri F, Chang H, Eulgem T, Mauch F, Luan S, Zou G, Whitham S, Budworth P, Tao Y, Xie Z, Chen X, Lam S, Kreps J, Harper J, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl J, Wang X, Zhu T (2002) Expression profile matrix of *Arabidopsis* transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574
- Chew O, Lelean S, John UP, Spangenberg GC (2012) Cold acclimation induces rapid and dynamic changes in freeze tolerance mechanisms in the cryophile *Deschampsia antarctica* E Desv. Plant Cell Environ 35:829–837
- Chinnusamy V, Ohta M, Kanrar S, Lee B-H, Hong X, Agarwal M, Zhu J-K (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in *Arabidopsis*. Genes Dev 17:1043–1054
- Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–984
- Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–610
- Garg R, Patel RK, Jhanwar S, Priya P, Bhattacharjee A, Yadav G, Bhatia S, Chattopadhyay D, Tyagi AK, Jain M (2011) Gene discovery and tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development. Plant Physiol 156:1661–1678
- Gidekel M, Destefano-Beltran L, Garcia P, Mujica L, Leal P, Cuba M, Fuentes L, Bravo LA, Corcuera LJ, Alberdi M, Concha I, Gutierrez A (2003) Identification and characterization of three novel cold acclimation-responsive genes from the extremophile hair grass *Deschampsia antarctica* Desv. Extremophiles 7:459–469
- Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Isolation of the *Arabidopsis ABI3* gene by positional cloning. Plant Cell 4:1251–1261
- Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992
- Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169–181
- Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106
- Jiang Y, Deyholos M (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol 6:25

- John UP, Polotnianka RM, Sivakumaran KA, Chew O, Mackin L, Kuiper MJ, Talbot JP, Nugent GD, Mautord J, Schrauf GE, Spangenberg GC (2009) Ice recrystallization inhibition proteins (IRIPs) and freeze tolerance in the cryophilic Antarctic hair grass Deschampsia antarctica E Desv. Plant Cell Environ 32:336–348
- Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291
- Kawaura K, Mochida K, Ogihara Y (2008) Genome-wide analysis for identification of salt-responsive genes in common wheat. Funct Integr Genomics 8:277–286
- Kreps JA, Wu Y, Chang H-S, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for *Arabidopsis* in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141
- Lang D, Weiche B, Timmerhaus G, Richardt S, Riaño-Pachón DM, Corrêa LGG, Reski R, Mueller-Roeber B, Rensing SA (2010) Genome-wide phylogenetic comparative analysis of plant transcriptional regulation: a timeline of loss, gain, expansion, and correlation with complexity. Genome Biol Evol 2:488–503
- Lee H, Cho HH, Kim I-C, Yim JH, Lee HK, Lee YK (2008) Expressed sequence tag analysis of Antarctic hairgrass *Deschampsia antarctica* from King George Island, Antarctica. Mol Cells 25:258–264
- Lee H, Kim JH, Park M, Kim I-C, Yim JH, Lee HK (2010) Reference genes validation for qPCR normalization in *Deschampsia antarctica* during abiotic stresses. Antarct Sci 22:477–484
- Lee J, Noh EK, Choi H-S, Shin SC, Park H, Lee H (2013) Transcriptome sequencing of the Antarctic vascular plant *Deschampsia antarctica* Desv. under abiotic stress. Planta 237:823–836
- Lespinet O, Wolf YI, Koonin EV, Aravind L (2002) The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res 12:1048–1059
- Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222
- Lewis Smith RI (1994) Vascular plants as bioindicators of regional warming in Antarctica. Oecologia 99(3):322–328
- Libault M, Joshi T, Benedito VA, Xu D, Udvardi MK, Stacey G (2009) Legume transcription factor genes: what makes legumes so special? Plant Physiol 151:991–1001
- Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in *Arabidopsis*. Plant Cell 10:1391–1406
- Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua N-H (2002) ABI5 acts downstream of ABI3 to execute an ABAdependent growth arrest during germination. Plant J 32:317–328
- Nakamura S, Lynch TJ, Finkelstein RR (2001) Physical interactions between ABA response loci of *Arabidopsis*. Plant J 26:627–635
- Nakashima K, Shinwari Z, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two *Arabidopsis DREB2* genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol 42:657–665
- Nakashima K, Fujita Y, Katsura K, Maruyama K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Transcriptional regulation of ABI3- and ABA-responsive genes including *RD29B* and *RD29A* in seeds, germinating embryos, and seedlings of *Arabidopsis*. Plant Mol Biol 60:51–68
- Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki

K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51(4):617–630

- Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767
- Richardt S, Lang D, Reski R, Frank W, Rensing SA (2007) PlanTAPDB, a phylogeny-based resource of plant transcription-associated proteins. Plant Physiol 143:1452–1466
- Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110
- Salvucci ME, Crafts-Brandner SJ (2004) Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. Plant Physiol 134:1460–1470
- Sanchez-Venegas JR, Dinamarca J, Moraga AG, Gidekel M (2009) Molecular characterization of a cDNA encoding Cu/Zn superoxide dismutase from *Deschampsia antarctica* and its expression regulated by cold and UV stresses. BMC Res Notes 2:198
- Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223
- Shiu S-H, Shih M-C, Li W-H (2005) Transcription factor families have much higher expansion rates in plants than in animals. Plant Physiol 139:18–26
- Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599
- Tran L-SP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of *Arabidopsis* stress-inducible NAC transcription factors that bind to a drought-responsive *cis*-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498
- Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of *Arabidopsis*. Plant J 41:195–211
- Xiong FS, Ruhland CT, Day TA (1999) Photosynthetic temperature response of the Antarctic vascular plants *Colobanthus quitensis* and *Deschampsia antarctica*. Physiol Plant 106:276–286
- Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K (2005) Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol 58:585–596
- Zhang H, Jin J, Tang L, Zhao Y, Gu X, Gao G, Luo J (2011) PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res 39: D1114–D1117
- Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379:985–989
- Zhu J-K (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4:401–406