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Abstract Proteorhodopsin (PR), a retinal-containing seven
transmembrane helix protein, functions as a light-driven proton
pump. Using PCR, we isolated 18 PR variants originating from
the surface of the Arctic Ocean. Their absorption maxima were
between 517 and 546 nm at pH 7. One of the isolates turned out
to be identical to GPR (green light-absorbing proteorhodopsin)
from Monterey Bay. Interestingly, 10 isolates had replaced a
tyrosine in the retinal-binding site (Tyr200 in GPR) with Asn.
They showed a slower photocycle, more blue-shifted absorption
maxima at pH 10, and relatively larger DH and DS of activation
of the transition between the O intermediate and the ground state
compared to GPR.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Proteorhodopsin (PR), a type I microbial rhodopsin which

functions as a light-driven proton pump using retinal photo-

isomerization and subsequent protein conformational changes,

was first discovered in uncultivated marine c-proteobacteria of

SAR86 group [1–3]. PR families were found in Monterey Bay

(Eastern Pacific Ocean), the Hawaii Ocean Time (HOT, Cen-

tral North Pacific Ocean), the Antarctic Peninsula, the Medi-

terranean Sea, the Red Sea, and the Sargasso Sea [3–8].

Since there are only a few numbers of cultured eubacterial spe-

cies bearing with PRs such as SAR11 a-proteobacteria, SAR92

c-proteobacteria, and flavobacteria [10–12], most of the PRs

have been discovered by polymerase chain reaction (PCR)-

based gene survey using degenerated primers, or through gen-

ome sequencing of bacterial artificial chromosomes (BAC),

fosmids, and with environmental shotgun libraries [3–8].
Abbreviations: PR, proteorhodopsin; GPR, green light-absorbing
proteorhodopsin; BPR, blue light-absorbing proteorhodopsin; MBP,
Monterey Bay proteorhodopsin; PCR, polymerase chain reaction;
DM, n-dodecyl-b-DD maltopyranoside
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The absorption maxima of PR variants depend on the places

and depth of the ocean where their hosts reside [3,5]. PR vari-

ants from the surface or from the deep ocean of the same place

(e.g., Hawaiian Pacific Ocean) have different absorption max-

ima being spectrally tuned to usable light in their environment

[3]. PR from Monterey Bay and HOT_0m have green absorp-

tion maxima (525 nm), whereas PRs from the Antarctic Ocean

and HOT_75m4 have blue absorption maxima (490 nm) [3]. A

single amino acid residue at the position 105 (Leu in green

light-absorbing proteorhodopsin (GPR) and Gln in blue

light-absorbing proteorhodopsin (BPR)), whose function was

examined by structural modeling and site-directed mutagene-

sis, plays a key role in changing the absorption maximum in

PR [5].

There are three major differences between GPR (MBP) and

BPR (HOT_75m4) including the absorption maxima, photo-

chemical reactions and proton pumping activities [9]. First,

GPR absorbs green light (525 nm, pH 7), while BPR absorbs

blue light (490 nm). Second, GPR shows a fast photocycle rate

(t1/2 < 50 ms), while BPR shows a slower photocycle rate (t1/2 >

300 ms) than GPR [8]. Third, GPR exhibits higher light-induced

proton pumping activity than BPR [9].

In this work, 18 natural PR variants from the surface of Arc-

tic Ocean were isolated and characterized by several biophysi-

cal methods such as absorption spectroscopy, flash-induced

photolysis, and light-driven proton pumping assays.
2. Materials and methods

2.1. Collection of biofilms and extraction of DNA from the marine
bacteria

Biofilms were collected from the surface down to 30 cm in depth
from the region around the Korean Arctic Research Station Dasan lo-
cated at Ny-Alesund, Svalbard, Norway (79�N, 12�E). Total genomic
DNA was extracted using an AccuPrep DNA extraction kit (Bioneer,
Korea) using a modified method was used for higher plants [13,14].

2.2. PCR amplification from the bacterial genomic DNA from the Arctic
Ocean

Bacterial genomic DNA was used as a template for PCR to discover
new PR genes. Primers were designed using conserved N-terminal and
C-terminal regions of MBP. Both non-degenerate primer (forward
primer, 5 0-ATGAAATTATTACTGATATTAGG-3 0; reverse primer,
5 0-AGCATTAGAAGATTCTTTAACAGC-3 0) and degenerate pri-
mer (forward primer, 5 0-ATGAAANNATTANTGATNTT-3 0) were
used [1,6]. PCR was performed for 40 cycles at 95 �C for 1 min,
50 �C for 1 min, and 72 �C for 2.5 min. Many PR genes were amplified
with Taq polymerase (Vivagen, Korea), cloned into pGEM T-vector
(Promega, USA), and confirmed by DNA sequencing.
blished by Elsevier B.V. All rights reserved.
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2.3. Expression and purification of proteorhodopsins
To express proteorhodopsin, we used a combination of two plasmids

transformed into UT5600 Escherichia coli strain. The pKJ900 plasmid
contains a proteorhodopsin gene and a mouse dioxygenase gene, which
can convert b-carotene into all-trans retinal, while the pORANGE
plasmid contains b-carotene biosynthesis genes [6,15,16]. The trans-
formed cells were induced with 1 mM IPTG (Applichem, USA) and
0.2% (+)-LL-arabinose (Sigma, USA) for 24 h at 30 �C. The collected
cells were sonicated (Branson sonifier 250) and the membrane fraction
was treated with 1% n-dodecyl-b-DD-maltopyranoside (DM) (Anatrace,
USA). The solubilized fraction was incubated with Ni2+-NTA agarose
(Qiagen, USA) and eluted with 0.02% DM and 250 mM imidazole
(Sigma).

2.4. Absorption spectroscopy and pKa measurements
Absorption spectroscopy was used to measure absorption maxima

and to calculate pKa values of the Schiff base counterion in purified
PR. The absorption spectra were recorded with Shimadzu UV_VIS
spectrophotometer (UV-2550) at pH 4, 7, and 10. In order to calculate
the pKas of the primary proton acceptor, the spectrum at pH 4.0 was
used as a reference and pH was raised from 4.0 to 10. The corrected
ratio of protonated and deprotonated forms at different pH values
was determined as previously described [9] from the intensities of the
absorption band that appears at kmax of each new component as the
pH is elevated. The data were fitted to functions containing titration
components ðy ¼ A=ð1þ 10pH–pKa ÞÞ using Origin Pro 6.1 [9], where A
represents the maximal amplitude of relative absorbance changes
and it indicated the fraction of the red shifted form.
2.5. Proton pumping measurements
Spheroplast vesicles were isolated by centrifugation at 30000 · g for

1 h at 4 �C (Beckman XL-90 ultracentrifuge) and washed with 10 ml of
10 mM NaCl, 10 mM MgSO4 Æ 7H2O, 100 mM CaCl2 [9]. Samples
were illuminated at 100 W/m2 intensity through the short wave cutoff
filter (>440 nm, Sigma Koki SCF-50S-44Y, Japan) in combination
with focusing convex lens and heat-protecting (CuSO4) filter and the
pH values were monitored by Horiba pH meter F-51.
2.6. Laser-induced absorption difference spectroscopy
Flash-induced absorbance changes were measured on RSM 1000

(Olis, USA) spectrometer. The actinic flash was from an Nd-YAG
pulse laser (Continuum, MinilightII, 532 nm, 6 ns, 25 mJ). Nine to
36 signals were averaged for measuring the rate of formation and de-
cay of the photointermediates. Purified membranes were incorporated
into 7% polyacrylamide gels, which were soaked in 50 mM Tris,
150 mM NaCl at pH 9.0 [17].
Table 1
The absorption maxima, the pKas of the Schiff base counterion, the photocy

Name kmax (pH 4) kmax (pH 7) kmax (pH 10) pKa M d

NPR1 549 525 517 7.5 8
NPR2 551 540 521 7.5 ND
NPR3 533 529 505 7.1 30
NPR4 528 523 513 7.7 44
NPR5 533 528 519 7.1 44
NPR6 528 523 502 7.2 35
NPR7 517 514 498 8.1 53
NPR8 530 528 507 7.6 36
NPR9 525 522 507 8.2 56
NPR10 523 517 513 7.5 213
NPR11 539 521 517 6.5 1.4
NPR12 551 546 524 7.8 2.6
NPR13 548 532 522 6.8 10
NPR14 555 538 529 7.7 9
DPR1 542 537 509 7.7 45
DPR2 546 523 519 7.4 21
DPR3 524 524 506 7.9 ND
DPR4 547 532 520 7.8 15
BPR 531 499 489 7.4 ND

The M decays were fitted using single exponential functions. The O decays we
the fit are shown. The last column indicates the presence of the Y200N repl
aProton pumping rate = D[H +] (mol)/amount of PR (mol)/s.
3. Results

3.1. Proteorhodopsin variants from the Arctic Ocean share many

residues with MBP

In total, 18 PR variants were isolated from the genomic DNA

of the Arctic Ocean. Fourteen PR variants found by non-

degenerate primers were named NPR and four variants found

by degenerate primers were named DPR (Table 1). PR genes

from the Arctic Ocean can be divided into two groups: the first

group has high homology with MBP (Fig. 1). While the second

group (DPR2 and 4, sequences not shown) is more similar to

Mediterranean PRs. NPR1 exhibited exactly the same amino

acid sequences as MBP which was the first reported proteorho-

dopsin reported in the literature [2]. The amino acid sequence

alignment shows that 16 PRs of the 1st group differ from each

other at 23 positions out of 249 positions (Fig. 1). Among these,

11 positions were located in the helices E and F, and three posi-

tions are in the retinal binding pocket. Interestingly, Tyr200 of

the retinal binding site in the helix F is replaced with Asn in 10

out of the 16 PRs of the first group.

3.2. All PR isolates from the Arctic region absorb mainly green

light

The surface water around the Korean Arctic Research Sta-

tion where the cells were collected has the pH of 7.8 and the

temperature of 4.5 �C [18]. The absorption maxima of all the

PR isolates were between 517 and 546 nm at pH 7 (Table 1),

which falls into the green light region. NPR1 absorbs light

maximally at 549 and 517 nm, at pH 4 and 10, respectively

(Fig. 2). The most blue-shifted PR variant, NPR7, displayed

kmax = 517 at pH 4 and 498 nm at pH 10 (Fig. 2) while for

NPR14, the most red-shifted PR variant, the corresponding

kmax values were 555 and 529 nm, respectively (Fig. 2). The

emitted colors of these three PR isolates at neutral pH are

illustrated in Fig. 2. NPR7 seems to be unstable at high pH,

probably due to the additional mutation N220D in the helix

G. Overall, NPR14 has five residues different from those in

NPR1. At pH 10, nine PRs are more blue-shifted compared

to GPR and seven PRs are red-shifted (Table 1). Interestingly,
cle rates and the proton pumping activities of PRs

ecay (ms) O decay (ms) Pumping rate (10�3)a Mutation

46 10.0 No
82 4.5 No

860 <0.1 Yes
2240 <0.1 Yes
7521 <0.1 Yes
489 <0.1 Yes
159 <0.1 Yes

1342 <0.1 Yes
513 <0.1 Yes
564 <0.1 Yes
61 <0.1 No

112 1.9 No
53 1.0 No

140 0.7 No
1698 <0.1 Yes
108 1.6 No
497 <0.1 Yes
186 <0.1 No
136 1.0 No

re fitted to bi-exponential functions and only the major components of
acement.



Fig. 1. Amino acid sequence comparison of 16 PRs from the Arctic Ocean. Differences between the PR variants are marked in black and the 22
residues of the retinal binding pocket are marked with asterisks. Predicted helices A–G are represented with black arrows and labeled with characters.
NPR1 is identical to GPR from Monterey Bay (MBP), but was isolated from the Arctic Ocean.
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Fig. 2. Absorption spectra of NPR1, NPR7, and NPR14 at different pH values. Purified PR variants were in 50 mM Tris–HCl (pH 7.0), 150 mM
NaCl, and 0.02% DM. NPR7 has the most blue-shifted absorption maximum and NPR14 has the most red-shifted absorption maximum.
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Fig. 3. The relationship between the pumping activity and rate of the photochemical reactions. The left six panels show proton transporting activities
of PRs and the right six panels show photochemical reactions of PRs. On the left panel, >440 nm illumination was applied to spheroplasts for 60 s
after 60 s in the dark period and this cycle was repeated three times. Initial pH values were adjusted to 7.8 to mimic the native environment. On the
right six panels, the O formation and decay, return to the ground state, and the M decay were measured at 600, 520, and 400 nm, respectively.
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the nine PRs blue-shifted at pH 10 have the 200th residue, the

retinal binding site Tyr homologous to Tyr185 of bacteriorho-

dopsin, replaced by Asn. The PR variants were titrated to

determine the pKa of the major spectral transition correspond-

ing to the deprotonation of the Schiff base counterion, and

only a major pKa is shown in Table 1. The titration of

NPR1 fits well to a single pKa of 7.5 (Table 1); however, a sec-

ond minor component was also present in the NPR4, NPR6,

DPR2, DPR3, and DPR4 variants (data not shown).

3.3. Many Arctic PRs have the photocycle rate slower than that

in BPR

Although GPR exhibits fast O decay (<50 ms), 14 green

absorbing PRs from the Arctic Ocean have slower O decay

than that in BPR. Three PRs have fast O decay which is similar

to GPR (Table 1). PRs with the relatively fast photocycling

rate (NPR1, 2, 12, 13, 14, and DPR2) have ability to translo-

cate protons in E. coli spheroplast upon illumination (Fig. 3).

The proton efflux values for the rest of PRs (having relatively

slow O decay) were not detected.

3.4. DPR2 and DPR4 are similar to other Arctic PRs

The absorption maxima of DPR2 and DPR4 at pH 10 are

more similar to that of GPR, although their slow photocycle

is more characteristic of BPR. According to the previously re-

ports, GPRs on the surface waters have fast photocycles and

BPRs in deeper waters have slow photocycles [3,9]. However,

14 PRs from the cold Arctic surface water have been identified

in this study with slow rate of photocycling, suggesting that the

photochemical properties of PR depend not only on the depth

but also on the environmental temperature.

3.5. Comparing temperature dependencies of the photocycle

rates of the Y200N variant, GPR, and BPR

We compared temperature dependency of the O decay rate

of NPR8 (bearing Y200N replacement) with NPR1 (GPR)

and BPR. There are subtle differences among the GPR,

BPR, and Y200N variants. GPR shows somewhat lower
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Fig. 4. Temperature dependence of the rate of the O decay in GPR,
BPR, and NPR8. The half lives for the O decay were measured at 5, 15,
25, and 35 �C, and the logarithms of the rates (the reciprocal of the half
lives of O decay) were plotted against the reciprocal of the temper-
ature. The data were fitted to a linear least squares lines, and the
correlation coefficients were calculated; R2 for each plot >0.99.
dependency of the photocycle turnover rate on the temperature

than BPR, as judged from the slopes of the Arrhenius plots

(Fig. 4). NPR8 presents the dependency intermediate between

those of GPR and BPR. The slope (DH/R) for NPR8 (�5082)

is in the middle between those for GPR (�4430) and BPR

(�5433). Also, the O decay in the Y200N variant has smaller

DS of activation than in BPR and larger DS than in GPR.

The NPR3 (A38V and Y200N replacements) and NPR9

(F47L and Y200N replacements) variants showed temperature

dependencies of the O decay similar to that of NPR8 (data not

shown).
4. Discussion

Until recently, proteorhodopsins from the Arctic Ocean

were not studied, although PRs in the Antarctic, the Pacific

ocean, and the Mediterranean sea are well-known in terms

of their sequences, absorption maxima, and photochemical

reactions [3,5,6,19,20]. We found that in contrast to a previous

report that PalE6 in the Antarctic Ocean absorbs blue light

(kmax = 490 nm, pH 7), all PR variants in the Arctic Ocean ab-

sorb in the green light region and their amino acid sequences

are similar to that of MBP [3]. While there is a relatively small

number of PRs with the fast (MBP-like) photocycle in the Arc-

tic Ocean, 14 out of the 18 Arctic PR variants isolated in this

study showed photochemical reactions similar to or slower

than that of BPR. Consequently, we suggest that PRs do not

have a strict positive correlation between the absorption max-

imum and photocycling rate, as 77% of our PR isolates have

very slow photocycle. It is possible that the reason for the exis-

tence of GPRs with slow photochemical kinetics in the surface

of the cold ocean is to perform a function other than proton

pumping, such as a signaling or regulatory function [9,21]. Re-

cently, putative sensory PRs were identified based on a bioin-

formatic analysis, but their function remains thus far unknown

[22,23]. Another possible reason for the presence of the ineffi-

ciently (slow) proton pumping PRs is that bacterioplankton in

the cold ocean environment does not require as much energy

production as compared with prokaryotes in warmer marine

environments because the metabolic rate in cold sea water

should be very slow.

The Y185F mutant of bacteriorhodopsin (BR), which is a

homolog of Y200 of PR is replaced, is well-studied. The amino

acid substitution Tyr-185 fi Phe increased the lifetime of the

photocycle (14-fold) [24,25], but this mutant successfully

pumps proton [26]. Similar to the Y185F replacement in BR,

the Y200N mutation (e.g., NPR8) increases the lifetime of

the photocycle. The room temperature average relaxation time

of the O intermediate for NPR8 (Y200N) is 29 times greater

than the corresponding relaxation time for MBP and the decay

time for the M intermediate is four times greater. The Y200N

replacement elevates the activation entropy and enthalpy of

the transition between the O intermediate and the ground state

that becomes more dependent on temperature than in wild-

type PR. It seems that the PR variants might modulate their

photocycle rate to control the rate of proton pumping in re-

sponse to environmental temperature changes so as to supple-

ment a shortage of energy in an emergency case. For example,

in low temperature marine environment bacteria may not need

much energy, so they have low rate of the PR photocycle turn-

over. Since we have not detected proton pumping activity in
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the Y200N variants at pH 7.8 due to either insufficient sensitiv-

ity of the method, or high pKa, of the Schiff base counterion, or

slow photocycle rate, we cannot exclude the possibility that

these proteins act as sensory rhodopsins.
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