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A B S T R A C T

Trophic-functional groupings are an important biological trait to summarize community structure in functional
space. The heterogeneity of the tropic-functional pattern of protozoan communities and its environmental dri-
vers were studied in coastal waters of the Yellow Sea during a 1-year cycle. Samples were collected using the
glass slide method at four stations within a water pollution gradient. A second-stage matrix-based analysis was
used to summarize spatial variation in the annual pattern of the functional structure. A clustering analysis
revealed significant variability in the trophic-functional pattern among the four stations during the 1-year cycle.
The heterogeneity in the trophic-functional pattern of the communities was significantly related to changes in
environmental variables, particularly ammonium-nitrogen and nitrates, alone or in combination with dissolved
oxygen. These results suggest that the heterogeneity in annual patterns of protozoan trophic-functional structure
may reflect water quality status in coastal ecosystems.

Protozoa are primary consumers in microbial communities, feeding
on bacteria and pico-/nano-algae and transferring the flux of elements
and energy to metazoa in aquatic ecosystems (Patterson et al., 1989;
Finlay and Esteban, 1998; Zhang et al., 2012). Protozoa are tradition-
ally classified into five trophic-functional groups based on feeding
strategy: bacterivores, algivores, saprotrophs, raptors, and non-selec-
tives (Pratt and Cairns, 1985). Thus, the functional structure of the
protozoan community can be summarized simply in trophic-functional
trait space (Xu et al., 2010; Zhang et al., 2012; Jiang et al., 2013; Yang
et al., 2016).

Protozoa have been widely used to assess water quality in both
freshwater and marine environments due to their simple life cycles,
easy sampling, and particular sensitivity to environmental changes re-
lative to metazoa (e.g., Norf et al., 2009; Jiang et al., 2011; Kathol et al.,
2011; Xu et al., 2014). However, a protozoan-based bioassessment is
commonly conducted in taxon space (e.g., Sheldon et al., 1972;
Kamenir et al., 2010; Jiang et al., 2011; Xu et al., 2014; Feng et al.,
2015). Changes in environmental variables may significantly affect the
trophic-functional pattern of protozoan communities (Pratt and Cairns,
1985; Norf et al., 2009). However, few reports have documented the
environmental drivers of heterogeneity in the trophic-functional pat-
tern of protozoan communities in marine ecosystems (Franklin and
Mills, 2005; Wey et al., 2009; Früh et al., 2011).

In this study, the relationship between heterogeneity in the tropic-

functional structure of protozoan communities and environmental
variables was studied in coastal waters of the Yellow Sea. Our aims
were: (1) to demonstrate heterogeneity in the spatial pattern of the
community structure in functional space; (2) to explore the relation-
ships between functional pattern and environmental conditions; and (3)
to demonstrate the potential environmental drivers of heterogeneity in
the functional structure of protozoan communities in marine ecosys-
tems.

A total of 40 samples were collected monthly, using the artificial
substratum (microscopy glass slides) method, at a depth of 1 m from
four stations within a water pollution gradient during a 1-year cycle
(August 2011–July 2012) (Xu et al., 2014) (Fig. 1).

Species were identified and individual species were enumerated
according to the methods described by Xu et al. (2014). References,
such as Song et al. (2009), were used to identify species.

Trophic-functional groupings of the ciliate species, which were
comprised of bacterivores, algivores, raptors, and non-selectives, were
performed according to Pratt and Cairns (1985), Song et al. (2009), and
direct observations.

Water temperature, salinity, pH, chemical oxygen demand, dis-
solved oxygen (DO), ammonium-nitrogen (NH4-N), nitrate-nitrogen
(NO3-N), and soluble reactive phosphate (SRP) were measured in situ or
according to the “Standard Methods for the Examination of Water and
Wastewater” (APHA, 1992).
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A multivariate approach was used to reveal spatial variations in the
functional pattern of the communities, and their relationship to changes
in environmental variables, by running the relevant routines in the
PRIMER package (ver. 7.0.12). Bray–Curtis similarity matrices were
computed among communities on fourth root transformed data, and the
Euclidean distance matrices for environmental variables were obtained
from log-transformed and normalized abiotic data (Clarke and Gorley,
2015). Metric multidimensional scaling (mMDS) ordination was used to
show the trajectory of the temporal variation in functional structure,
whereas the spatial patterns of protozoan functional structure and an-
nual pattern of water quality status were shown by the routine boot-
strap average (Clarke and Gorley, 2015). A second-stage (2STAGE)
matrix-based analysis was used to summarize spatial variations in the

Fig. 1. Sampling stations in coastal waters of the Yellow Sea,
near Qingdao, northern China. A: station A, heavily stressed
area in Jiaozhou Bay, the pollution being mainly in the form
of organic pollutants and nutrients from domestic sewage
and industrial discharge from several rivers; B: station B,
moderately polluted area Jiaozhou Bay by minor discharges
from a small river entering the bay; C: station C, slightly
polluted area near the mouth of Jiaozhou Bay and relatively
distant from the rivers entering the bay; D: station D, rela-
tively clean area which was out of this bay and more distant
from the river discharges.

Table 1
Trophic-functional groupings of protozoa at the four sampling stations in coastal waters
of the Yellow Sea, near Qingdao, northern China during the 1-year cycle (August
2011–July 2012).

Grouping St A St B St C St D Total

A 45 55 46 48 66
B 30 28 31 25 36
N 15 20 19 17 26
R 13 12 15 11 16

A, algivores; B, bacterivores; N, non-selectives; R, raptors. St A–D: Stations A–D.

Fig. 2. Temporal variations in relative abun-
dance of each trophic-functional group in proto-
zoan communities during a 1-cycle at stations A
(a), B (b), C (c) and D (d).
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annual pattern of protozoan communities, and in the annual variability
of water quality conditions (Clarke and Gorley, 2015). The RELATE
routine was used to evaluate the relationships among similarity ma-
trices, and the BIOENV (biota-environment) routine was used to iden-
tify the close matches of environmental variables to spatial variations in
the protozoan functional patterns (Clarke and Gorley, 2015).

The environmental conditions at the four sampling stations are
summarized in Table S1. Of the nine environmental variables, the
average NH4-N values showed a clear decreasing trend from stations A

to D, and those of NO3-N and SRP were low at stations C and D, but high
at stations A and B (Table S1).

The species list of the total 144 protozoa identified during the study
period, and the trophic-functional groupings and occurrence at the four
stations, are shown in Table S2. The numbers of species in each trophic-
functional group at the four stations are summarized in Table 1.

The heterogeneity in the annual patterns of the functional struc-
tures, in terms of relative abundance, is shown in Fig. 2. The functional
pattern showed clear spatial variation among the four stations (Fig. 2).

Fig. 3. Metric multidimensional scaling (mMDS) ordinations for protozoan communities at four stations A (a), B (b), C (c) and D (d), showing the dynamic trajectory of the trophic-
functional structures of protozoan communities during a 1-year cycle.

Fig. 4. Bootstrapped average analyses on biotic (a) and abiotic matrices (b), and second-stage clustering analyses for annual patterns of protozoan communities in terms of trophic-
functional structure (c) and annual variations in water conditions (d), showing the spatial variations in biota and abiota among four sampling stations. St A–D: Stations A–D.
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For example, mainly functional groups of raptors and bacterivores
dominated the samples at station A (Fig. 2a), whereas the raptor, bac-
terivores, and non-selective groups dominated the communities at sta-
tion D (Fig. 2d).

The mMDS ordination analyses showed that the trajectories of
temporal variations in the functional structure differed among the four
stations (Fig. 3).

Bootstrap average analyses revealed a similar spatial pattern be-
tween the biota and abiota (Fig. 4a and b). Furthermore, the spatial
variation in the annual trophic-functional pattern was closely related to
that of the environmental variables, based on clustering analyses for
second-stage matrices of the biotic and abiotic data (Fig. 4c and d).

The RELATE analysis demonstrated a significant correlation be-
tween spatial variation in the annual distribution of protozoa and
changes in environmental variables (ρ= 0.657, P < 0.05).

The multivariate BIOENV best matching analysis showed that nu-
trients, particularly NH4-N and NO3-N, alone or in combination with
DO, were closely matched to spatial variations in the annual pattern of
the functional structure (Table 2).

The “ecological effectiveness” of trophic-functional patterns to as-
sess water quality status has not been well documented (e.g., San
Martin et al., 2006; Xu et al., 2010; Zhang et al., 2012; Wang et al.,
2016; Yang et al., 2016). In this study, we demonstrated clear spatial
variation in the functional structures of protozoan communities. Mul-
tivariate analysis revealed that the spatial pattern of the protozoa was
significantly correlated with changes in environmental conditions,
particularly nutrients alone or in combination with DO.

In summary, the annual patterns of trophic-functional structures
showed a significant difference on a spatial scale. This heterogeneity
was significantly related to water quality status. Nutrients and DO
might be potential environmental drivers that shape the functional
pattern of the protozoan community.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.marpolbul.2017.06.012.
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Summary of results from biota-environment (BIOENV) analysis showing the 10 best
matches of environmental variables with spatial variations in trophic-functional struc-
tures of the protozoa at four sampling stations in coastal waters of the Yellow Sea, near
Qingdao, northern China during the study period.

Rank Environmental variables ρ value P value

1 NH4-N 0.926 0.05
2 NH4-N, NO3-N 0.926 0.05
3 DO, NH4-N, NO3-N, NO2-N 0.915 0.05
4 DO, NH4-N, NO3-N, SRP 0.887 0.05
5 DO, NH4-N, NO3-N, NO2-N, SRP 0.886 0.05
6 NH4-N, SRP 0.881 0.05
7 DO, NH4-N, NO2-N, SRP 0.877 0.05
8 DO, NH4-N, NO3-N 0.868 0.05
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phosphate; NO3-N, nitrate nitrogen; NO2-N, nitrite nitrogen; NH4-N, ammonium nitrogen.
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