MITOGENOME ANNOUNCEMENT

The complete mitochondrial genome of the Japanese mud shrimp *Upogebia major* (Crustacea, Decapoda)

SANGHEE KIM¹, TAEHO KIM², HAN-GU CHOI¹, JOONG-KI PARK³, DONG-HA AHN⁴, & GI-SIK MIN⁴

¹Korea Polar Research Institute, Songdo Techno Park, Yeonsu-gu, Incheon 406-840, South Korea, ²Department of Plant Medicine, College of Agriculture, Life, and Environmental Sciences, Chungbuk National University, Cheongju 361-763, South Korea, ³Graduate Program in Cell Biology and Genetics, Department of Parasitology, College of Medicine, Chungbuk National University, Cheongju 361-763, South Korea, and ⁴Department of Biological Sciences, Inha University, Incheon 402-751, South Korea

(Received 26 April 2011; accepted 14 September 2011)

Abstract

We determined a full-length sequence of mitochondrial (mt) genome from *Upogebia major*. This is the first complete mt genome report for infraorder Thalassinidea in Decapoda, Crustacea. Our result showed that *U. major* generally followed a typical pancrustacean gene order but some tRNA genes showed a very unique gene arrangement such as duplication or translocation. Since none of the complete mt genome sequences in the infraorder Thalassinidea are available yet, this report will provide additional information in relation to mt genome diversity and evolution of the decapods.

Keywords: Complete mitochondrial genome, Decapoda, Japanese mud shrimp, Upogebia major

The Japanese mud shrimp, *Upogebia major* (de Haan, 1841) (Decapoda, Thalassinidea), live in burrows in the muddy intertidal flats of Korea and Japan. Recently, they have attracted increased attention in ecological studies due to their abundance and bioturbating activity and consequent effects on the benthic community structure (Mukai and Koike 1984; Dworschak 2000).

A fresh specimen of the Japanese mud shrimp was collected from the intertidal flat of Seosan, Chungcheongnam-do province, Korea, and the partial sequences of cox1 and 16S rDNA were initially determined using previously published primers for cox1 (Folmer et al. 1994) and newly designed 16S rDNA primers: Cru16S + 81 (5'-taggagatagaaaccracctgg-3') and Cru16S - 613 (5'-atgaccgtgcaaaggtagc-3'). The sequences from each gene fragment were then used to design *U. major*-specific primers for the long PCR amplification. Genomic DNA extraction, sequencing and gene annotation for the complete mtDNA were carried out following the methods described by Min and Park (2009).

The complete mtDNA sequence of *U. major* was 16,119 bp in length (accession no. JF793665) with an overall A + T content of 70.8% (Table I). The mitochondrial (mt) genome of *U. major* contained 13 protein-coding genes, two rRNAs, 23 tRNAs, and a putative control region.

The gene arrangement and the transcriptional polarity of the 13 protein-coding genes were consistent with the pancrustacea (crustacea + hexapod) ground pattern (Liu and Cui 2011). However, six genes of tRNAs (*trnI*, *trnQ*, *trnC*, *trnY*, *trnM*, and *trnW*) had a unique gene arrangement in *U. major*. The *trnC* and

Correspondence: S. Kim, Korea Polar Research Institute, Songdo Techno Park, Yeonsu-gu, Incheon 406-840, South Korea. Tel: + 82 32 260 6164. Fax: + 82 32 260 6301. E-mail: sangheekim@kopri.re.kr

Gene/region	Position		Size		Codons		
	Start	Finish	No. of nt	No. of aa	Initiation	Termination	Intergenic sequence
cox1	1	1548	1548	515	ATC	TAA	0
trnL2	1548	1615	68				-1
trnL1	1617	1681	65				1
cox2	1689	2393	705	234	ATG	TAA	7
trnK	2374	2441	68				-20
trnD	2441	2506	66				-1
atp8	2507	2665	159	52	ATG	TAA	0
atp6	2659	3333	675	224	ATG	TAA	-7
cox3	3333	4122	790	263	ATG	Т	-1
trnG	4123	4187	65				0
nad3	4188	4541	354	117	ATT	TAA	0
trnA	4540	4604	65				-2
trnR	4605	4667	63				0
trnN	4667	4737	71				-1
trnS1	4737	4805	69				-1
trnE	4806	4873	68				0
trnF	4940	4874	67				0
nad5	6669	4941	1729	576	ATG	Т	0
trnH	6734	6670	65	510		-	0
nad4	8074	6734	1341	446	ATG	TAG	- 1
nad4L	8367	8068	300	99	ATG	TAA	-7
trnT	8369	8436	68		mo	11111	1
trnP	8501	8437	65				0
nad6	8510	9019	510	169	ATT	TAA	8
cob	9019	10,153	1135	378	ATG	Т	-1
trnS2	10,154	10,221	68	510	mo	1	0
trnI	10,224	10,291	68				2
nad1	11,251	10,310	942	313	ATG	TAG	18
trnL1	11,333	11,275	59	515	mo	mo	23
rrnL	12,688	11,334	1355				0
trnV	12,758	12,689	70				0
rrnS	13,587	12,759	829				0
NCR1	13,588	13,825	238				0
trnQ	13,894	13,825	69				0
NCR2	13,894	13,820	902				0
trnC	13,895	14,790	66				0
trnC trnY	14,802	14,797	69				0
trn Y trnM	14,951		69 69				58
		15,058		222	ATT	TAA	
nad2	15,059	16,060	1002	333	ATT	IAA	0
trnW	16,059	16,113	55				-2

Table I. Organization of the mitochondrial genome of Upogebia major.

Note: The genes that are encoded on the light strand are underlined in the table.

trnY were located between trnQ and trnM, which differ from the pancrustacean ground pattern, where they are positioned between trnW and cox1. The position of trnI between trnS2 and nad1 in U. major was also very unique among all other pancrustaceans reported so far. Interestingly, U. major has an extra trnL1. One trnL1 was located between trnL2 and cox2, and another between nad1 and rrnL. Except Pagurus *longicarpus*, where *trnL1* is located between *cox1* and trnL2, the trnL1 for all other known decapods are after the nad1 gene. Therefore, the presence of trnL1 between *trnL2* and *cox2* seems to be a duplicate. The identification of extra genes in decapods is very rare and the only other case where this has been reported was for Geothelphusa dehaani (Brachyura), which also had a duplicated trnL1 (Segawa and Aotsuka 2005).

The majority of protein-coding genes (9 of 13 genes) start with ATG, whereas cox1 starts with ATC, and nad2, nad3 and nad6 start with ATT. It is also interesting to note that three of the 13 protein-coding genes were shown to terminate with an incomplete stop codon T (cox3, nad5, and cob), whereas the other 10 genes ended with a complete stop codon TAA or TAG.

The non-coding region (NCR1 and NCR2) of *U. major* mtDNA, which was separated by trnQ, was 1140 bp in length and contained a high A + T composition (85.6%).

Since none of the complete mt genome sequences in the infraorder Thalassinidea are available yet, this report will provide additional information in relation to mt genome diversity and the evolution of the decapods.

Acknowledgments

This work was supported in part by the Basic Research Program of the Korea Polar Research Institute (PE11030) for H.-G. Choi, and the Polar Academic Program (PAP), KOPRI for G.-S. Min.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

Dworschak PC. 2000. Global diversity in the Thalassinidea (Decapoda). J Crust Biol 20(Special Number 2):238–245.

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase

subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299.

- Liu Y, Cui Z. 2011. Complete mitochondrial genome of the Chinese spiny lobster *Panulirus stimpsoni* (Crustacea: Decapoda): Genome characterization and phylogenetic considerations. Mol Biol Rep 38:403–410.
- Min GS, Park JK. 2009. Eurotatorian paraphyly: Revisiting phylogenetic relationships based on the complete mitochondrial genome sequence of *Rotaria rotatoria* (Bdelloidea: Rotifera: Syndermata). BMC Genomics 10:533. doi:10.1186/1471-2164-10-533.
- Mukai H, Koike I. 1984. Behavior and respiration of the burrowing shrimps *Upogebia major* (de Haan) and *Callianassa japonica* (de Haan). J Crust Biol 4(2):191–200.
- Segawa RD, Aotsuka T. 2005. The mitochondrial genome of the Japanese freshwater crab, *Geothelphusa dehaani* (Crustacea: Brachyura): Evidence for its evolution via gene duplication. Gene 355:28–39.