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Abstract: The Arctic sea ice is an important indicator of the progress of global warming and climate 
change. Prediction of Arctic sea ice concentration has been investigated by many disciplines and 
predictions have been made using a variety of methods. Deep learning (DL) using large training 
datasets, also known as deep neural network, is a fast-growing area in machine learning that 
promises improved results when compared to traditional neural network methods. Arctic sea ice 
data, gathered since 1978 by passive microwave sensors, may be an appropriate input for training 
DL models. In this study, a large Arctic sea ice dataset was employed to train a deep neural network 
and this was then used to predict Arctic sea ice concentration, without incorporating any physical 
data. We compared the results of our methods quantitatively and qualitatively to results obtained 
using a traditional autoregressive (AR) model, and to a compilation of results from the Sea Ice 
Prediction Network, collected using a diverse set of approaches. Our DL-based prediction methods 
outperformed the AR model and yielded results comparable to those obtained with other models. 

Keywords: arctic sea ice; autoregressive model; deep learning; global warming; long and short-term 
memory; machine learning; multilayer perceptron; neural network; sea ice concentration; sea ice 
extent 

 

1. Introduction 

Global warming and climate change are terms that refer to increases in global temperatures 
primarily caused by increases in greenhouse gases such as carbon dioxide. A warming world thus 
leads to climate change, which can affect weather in various ways [1]. Changes in Arctic sea ice extent 
(SIE) are an important proxy for global warming because temperatures in the Arctic have increased 
at twice the rate of the rest of the world [2]. While the overall Antarctic SIE has increased slightly, SIE 
in the Arctic has exhibited a long-term decline [3,4]. In Figure 1 and [2], approximately half of the SIE 
values in September have decreased typically early in the period from 1979 to 1995. The nine lowest 
September SIEs have all been recorded during the past nine years, i.e., 2007–2015. The National Snow 
and Ice Data Center (NSIDC) reported that “Monthly September SIE for 1979 to 2015 shows a decline 
of 13.4% per decade relative to the 1981–2010 average.” [5] Predicting both sea ice concentrations 
(SICs) and SIEs is important for understanding the impacts of climate change, and developing ship 
navigation techniques and new Arctic shipping routes. 

Information on sea ice can be obtained using: (1) remote sensing-based acquisition methods (e.g., 
airborne or spaceborne sensors); and (2) in situ sources, such as visual observations by citizen 
scientists. Passive microwave satellite data collection has been widely used because of its extended 
coverage and temporal resolution, despite its low spatial resolution [6,7]. Satellite data is often 
processed using sea ice retrieval algorithms to determine the values of various sea ice parameters, 
such as age, concentration, extent, thickness, and others [8]. Most sea ice data products are publicly 
available online. 
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Figure 1. September Arctic sea ice extent (SIE) change from 1979 to 2015. 

Many approaches based on statistical or numerical models have been proposed in efforts to 
predict sea ice properties. Statistical models for the prediction of Arctic sea ice are constructed from 
historical observations and relationships among atmospheric conditions (e.g., temperature, sea level 
pressure, and cloud), oceanic conditions (e.g., sea surface temperature), and sea ice variables (e.g., 
concentration, extent, ice type, and thickness) [9–11]. However, statistical methods cannot take into 
account interactions between sea ice and the atmosphere [12]. Numerical models for ice–atmosphere 
interaction, ice–ocean interaction, and ice–ocean–atmosphere interaction are based on physical 
equations governing the system dynamics and thermodynamics; they use ice, atmosphere, and ocean 
properties as input variables [12,13]. Numerical models typically outperform statistical models in 
short-term forecasting [10]. Unfortunately, although inputs such as atmosphere, ocean and ice 
parameters can be obtained from remote sensing data, they must be calibrated and validated with 
spatially and temporarily well distributed in situ observations, which is both difficult and costly. 

Machine learning is a field of study in computer science and a type of artificial intelligence that 
provides the capability to learn or to predict data using computational methods. Machine learning 
has been used extensively in diverse applications such as biology, computer vision, economics, and 
remote sensing [14,15]. With recent advances in hardware, techniques, optimization skills, and data 
collection, deep learning (DL), which is rooted in artificial neural network theory, has recently 
become a major area of focus in the machine learning community because of its potential for better 
learning representations of data using multiple layers instead of a shallow architecture [16]. In the 
2000s, solutions were derived to the problems of overfitting and high computational demand that are 
typical of neural networks, permitting much larger and much deeper neural networks to be 
developed. DL has become a fast-growing subfield of machine learning. In the geosciences, the 
acquisition of large volumes of remote sensing data is accelerating because of the proliferation of 
sensing techniques and sources. These large volumes or quantities of data are often referred to as 
“big data”. For example, massive daily SIC images are the representative of big data that can be 
obtained in the Polar Regions. In the Arctic, more than 13,000 daily SIC images have been acquired 
since 1978 and images will continue to be collected. Furthermore, historical datasets contain seasonal 
SIC signals numbering in the tens of millions. Analysis of big data consisting of remote sensing 
images poses a problem in that it may be impossible to find an optimal balance between 
discriminability and robustness. DL techniques have proven to be effective in addressing this 
situation. In remote sensing fields, therefore, various studies have been undertaken using DL 
architectures for image pre-processing, classification, target recognition, and scene understanding 
[17]. 

In this study, we use a DL framework that has received considerable attention in various 
industries and multidisciplinary studies. This framework involves the use of high-temporal-
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frequency remote sensing images to forecast monthly Arctic SICs. Unlike traditional numerical or 
statistical models that couple atmospheric, ice, and ocean states to predict sea ice, the DL framework 
employed in this study uses only monthly SIC data acquired by passive microwave sensors as input 
data to a DL-based fitting model. While obtaining data on the physical parameters of the atmosphere, 
sea ice, and the ocean is costly, remote sensing data are easy to obtain over extended areas and to 
archive historically. In this study, we address: (1) the reconstruction of future SIC images using the 
proposed DL-based methods, and (2) a quantitative and qualitative comparisons of the new 
technique with existing methods. This paper is organized as follows. In the materials and methods 
section, we discuss time series forecasting, the DL framework used in this study, including 
hyperparameter tuning for the most appropriate DL models, as well as data description. In the results 
and discussions sections, the experiments that were conducted using the proposed framework and 
the results obtained are presented and discussed. The conclusions section summarizes the 
contributions of this study and outlines possible directions for future research. 

2. Materials and Methods 

2.1. Time Series Forecasting as Supervised Learning 

“A time series is a sequence of observations taken sequentially in time [18].” A time series is 
characterized by an explicit order between observations that is referred to as the “time dimension.” 
There are two goals in exploiting time series: (1) understanding or describing a dataset, which is 
referred to as “time series analysis,” and (2) making predictions, which is referred to as “time series 
forecasting.” While time series analysis improves the understanding of the underlying problems in 
observations by identifying seasonal patterns, trends, external factors, and other characteristics of the 
observations, time series forecasting makes predictions about the future using models that are fitted 
to historical data [18,19]. The SIC data used in this study is also time series data. SIC data have been 
generated daily since 1978 from data collected by passive microwave sensors and will be generated 
continuously in the future. The SIC data collected daily at each geographical location reveal seasonal 
patterns and trends in the sea ice dynamics of the Arctic and Antarctic oceans. 

Supervised learning, which has been widely used in practical machine learning applications, 
employs an algorithm to map input variables to outputs by developing learning functions. 
Supervised learning consists of two components and can be framed as a time series problem: (1) 
training the data using known inputs and outputs for the best fitted model, which is equivalent to 
“time series analysis,” and (2) predicting output variables for unknown observations, which is 
equivalent to “time series forecasting.” For example, Table 1 lists sample values for monthly Arctic 
SIC data collected from April to December. Given the SIC value for the current month ݔ, we predict 
the SIC value for the next month ݕ by phrasing a time series forecasting problem as a regression 
problem when the output variable is a real value rather than a categorical value. As Table 2 shows, 
we can develop a simple supervised learning function 	ݕ =  which is either a linear or nonlinear ,(ݔ)݂
function 	݂, to map input data ݔ to output (predicted) data 	ݕ. If ݂ is a linear function with one 
input variable, for example, it can be expressed as ݕ = ܾ + ܾଵݔ௧, where ݔ௧ is the SIC value at time ݐ, and ܾ, ܾଵ are coefficients found by minimizing fitting errors of ݂. This prediction problem can 
also be phased using multiple time steps as shown in Table 3. For instance, if we have three input 
variables, the current month ݔ௧ as well as two prior time steps ݔ௧ିଵ and 	ݔ௧ିଶ, the learning function 
can be written as 	ݕ = ܾ + ܾଵݔ௧ + ܾଶݔ௧ିଵ + ܾଷݔ௧ିଶ. In this way, time series problems can be explained 
in a supervised manner, but finding the optimal coefficients while satisfying all training data is 
complicated and difficult. 

Table 1. Samples of monthly sea ice concentration (SIC) values. 

Time	(࢚) April May June July August September October November December 

SIC(%) (ݔ) 99 91 48 0 21 43 83 93 95 
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Table 2. Input and output values of a simple supervised learning function using one prior time step. 

 Training Testݔ௧ 95 93 83 43 21 0 48 91 99 99 91 48 0 21 43 83 93 ݕ ? 

Table 3. Input and output values of supervised learning function using three prior time steps. 

 Training Test ݔ௧ 95 93 83 43 21 0 48 ݔ௧ିଵ 93 83 43 21 0 48 91 ݔ௧ିଶ 83 43 21 0 48 91 99 99 91 48 0 21 43 ݕ ? 

2.2. Deep Learning 

Deep learning is a relatively new subfield of machine learning that was inspired by artificial 
neural networks that were developed in the late 1980s. The development of faster computers and the 
growing availability of large datasets to train large neural networks, accompanied by increased 
investment in the technology, has resulted in an exponential growth into DL research [16,17,20]. As 
Figure 2 shows, perceptrons or neurons (the grey circles in Figure 2) in hidden layers, which are 
simple computational units, inter-connect weighted input (or visible) layers to output layers using 
an activation function [16,17]. The primary difference between deep neural networks and traditional 
neural networks is that deep neural networks (Figure 2b) have more than two hidden layers in the 
network, while the latter (Figure 2a) have only one hidden layer. In a deep network architecture, 
neurons in the first hidden layer make simple decisions, such as the weighting of the input variables, 
and neurons in the second hidden layer then make more complex and more abstract decisions than 
the neurons in the first hidden layer [16]. In this way, a network with multiple hidden layers can 
technically engage in more complicated decision making. 

(a) (b)

Figure 2. Network topology difference between (a) a traditional neural network and (b) a deep neural 
network. 

In this study, we used two deep learning approaches: (1) a multilayer perceptron (MLP) and (2) 
a long and short-term memory (LSTM) to predict monthly Arctic SIC values in a supervised manner. 

An MLP, also known as a “feedforward neural network”, is the most useful type of neural 
network. In an MLP, the outputs predicted by training the network with given inputs may not be 
equal to the desired values. Since there may be errors between the actual and desired outputs, the 
training algorithm uses the errors to iteratively adjust the weights in the network. Therefore, the 
network can eventually obtain the optimal results via an iterative process. The steps involved in 
implementation of an MLP can be described as follows [21]: 

1. Initialize network weights. 
2. Pass the weighted inputs through an activation function. 
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3. Calculate an error between the output of the network and the expected output. 
4. Propagate the error in Step 3 back through the network. 
5. Update the weights to minimize the overall error. 
6. Repeat Steps 2–5 until the error is smaller than a user-specified threshold or until the maximum 

number of iterations (epochs) is reached. 

Although an MLP can be applied to sequence prediction problems, there are some limitations of 
having to specify the scope of temporal dependence between observations. The LSTM is a type of 
recurrent neural network, which is a special type of neural network designed for sequence problems, 
and has promise for the analysis of time series data. The LSTM contains loops that feed the network 
states from a previous time step as inputs to the network to influence predictions at the current time 
step. Since each unit of the LSTM consists of cells with gates that contain input/forget/output 
information, it can hold long-term temporal sequence better than a standard feedforward MLP 
network [22]. The basic steps of the LSTM are similar to the MLP, but as shown in Figure 3, the LSTM 
has an additional recurrent process (i.e., blue blocks and grey pipelines in Figure 3b) to deliver 
learning status to the next learning step. Although the LSTM generally outperforms the MLP for long-
term sequence predictions, the high computational overhead is problematic. 

 
(a) (b)

Figure 3. Network topology difference between (a) a multilayer perceptron (MLP) and (b) the long 
and short-term memory (LSTM) (e.g., four layers: three hidden layers with 32 neurons (or memory 
cells), one output). 

The configuration of the parameters used in DL models is critical to obtaining good performance 
[23]. Neural networks require many parameters whose values need to be set before models are 
developed, and they are quite difficult to optimize. There are preferred configurations in practice for 
choosing some algorithms and options. For example, small random numbers for weight initialization, 
a rectifier activation function, and an Adam (Adaptive Moment Estimation) gradient descent 
optimization algorithm with a logarithmic loss function typically perform well in practice [24]. 
However, in iterative gradient descent, the batch size (the number of patterns shown to the network 
before updating of the weights), the number of epochs (the number of iterations of showing the entire 
training data set to the network during training), and the numbers of layers and neurons (or memory 
cells) used to determine network topology should be tuned for each dataset, because they depend 
greatly on which dataset is used [25]. To find the optimal combination of parameter values that 
maximize model scores, all combinations of parameters should be tested using a grid search, which 
is the traditional and common approach to performing parameter optimization [26]. Since grid 
searching may be notoriously time-consuming, parallel processing is used to identify the best 
parameter value combinations. 
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Once both DL models have been trained, they can be used to test or validate the model using a 
dataset other than the original training set, prior to the MLP being used in practice. This will provide 
a statistical measure of the performance of the model and an estimate of its performance on unseen 
data. The network topology can then be used to continuously and operationally make predictions of 
future output values. 

2.3. Data Description and Preprocessing 

Since 1978, multiple spaceborne remote sensing instruments (e.g., the Scanning Multi-channel 
Microwave Radio-meter (SMMR) on the Nimbus 7 satellite, Special Sensor Microwave/Imagers 
(SSM/Is) on the Defense Meteorological Satellite Program (DMSP)-F8, -F11, and -F13 satellites, and 
the Special Sensor Microwave Imager/Sounder (SSMIS) on the DMSP-F17 satellites) have collected 
daily images. These have been used to generate SIC images by applying the NASA (National 
Aeronautics and Space Administration) Team algorithm [6]. Due to long-term observations from 
different sensors, several techniques (e.g., mapping data onto a common grid, addressing instrument 
drift, adjusting land-to-ocean spill over, replacement of bad data) are employed to solve or reduce 
inter-sensor corrections [6]. The NSIDC provides gridded SIC data at a 25-km spatial resolution in 
the polar stereographic projection. 

In this study, we used monthly Arctic SIC data that was generated from daily data provided by 
the NSIDC (available at www.nsidc.org). Because of instrument errors, low spatial resolution, and 
sea ice movements in daily images, near-real-time (daily) data is limited for operational use, although 
it is useful for monitoring subtle changes in sea ice coverage or day-to-day shipping operations. 
Simple averaging over an entire month helps to reduce some day-to-day noise inherent in daily sea 
ice measurements. In this study, a total of 446 months of monthly Arctic SIC data, acquired from 
November 1978 to December 2015, was used. The data acquired from November 1978 to December 
2014 was used as the training dataset, and the data acquired from January 2015 to December 2015 
was used as the test dataset, as illustrated in Figure 4. Despite the use of monthly data instead of daily 
data, there are still more than 28 million monthly sequential time series. For example, if we used 12 
previous observations, there are 422 sequential time series at each pixel location from the training 
images. Since the number of effective pixels in an image is 67,884 (i.e., we excluded land areas), there 
are 28,647,048 time series. However, some regions have identical time series, such as the open sea 
areas, so we removed these redundancies, leaving roughly 12 million unique data. This is sufficient 
to apply the DL architecture for model training. 

 
Figure 4. Description of SIC datasets for model training and forecasting. 
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SIC data can contain errors from multiple sources mentioned above and errors in retrieval 
algorithms (e.g., underestimating summer SIC in the NASA Team algorithm) [6,8,27,28], but in this 
study, we assumed that the SIC data provided by the NSIDC are of enough quality.  

3. Results 

3.1. Predictions and Comparisons of Monthly Sea Ice Concentration 

A measure of the performance of a time series model is its ability to produce good forecasts. This 
ability is often tested using split-sample experiments, in which the model is fitted to the first part of 
a known data sequence and forecasts are obtained for the latter part of the series. The predicted values 
are then compared with the known observations. The goal is to minimize the foresting errors so that 
the predicted future values are as close as possible to actual future values.  

Time series forecasting is normally made only one-step prediction based on past observations, 
as shown in Table 3 and Figure 5a. To solve problems of multiple-step ahead prediction, two 
approaches are often considered: (1) a direct model re-training approach and (2) a recursive approach 
[29]. The re-training strategy re-trains the forecasting model when new predictions are made as 
shown in Figure 5b. In the case of predicting SIC for the next two months, for example, we would 
develop a model for the first month and a separate model for the second month. This approach may 
develop more fitted models and may produce unexpected results, but its extremely high 
computational overhead is problematic in practice, especially for training our massive sea ice data. 
The recursive approach uses a single prediction model multiple times. The predicted value for time 
step ݐ + 1 is used as an input for making a prediction at the following time step ݐ + 2, as shown in 
Figure 5c. The recursive approach is not computationally intensive, because it does not require a re-
training process when new predictions are entered. However, prediction errors may quickly increase 
and may be accumulated, because the prediction at ݐ + 2 is dependent on the prediction at 	ݐ + 1. 

(a) 

(b) 

(c) 

Figure 5. Architectures of forecasting approaches: (a) one-step ahead prediction, and (b) direct model 
re-training approach and (c) recursive approach for multi-step ahead prediction. 

Monthly forecasts for 2015 were made by fitting a model to the first 434 months of the time series 
and using this model to predict monthly SIC values for the last 12 months of the time series in two 
ways: (1) one-month (short-term) prediction and (2) one-year (long-term) prediction using a recursive 
approach. In one-month prediction, the sensitivity of the prediction model according to month can 
be obtained, but it can only predict one time step into the future. For long-term prediction, 
sequentially predicted SIC values are used as input values of the pre-trained single DL model. 

3.1.1. Short-Term (One-Step Ahead) Predictions of Monthly Sea Ice Concentration  

As mentioned in the previous section, we used the most popular initialization, activation and 
optimization algorithms and tuned the batch size, the numbers of epochs, the number of hidden 
layers, and the number of neurons (or memory cells for the LSTM) using a parallelized grid search to 
configure the hyperparameters for fitting the network topologies. However, if we used the network 
deep enough and had enough iterations, the DL models eventually converged to a high accuracy 
outcome. Therefore, we chose three hidden layers with 32 neurons (or memory cells for the LSTM) 
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each. The batch size and the number of epochs were set to 12 and 200, respectively. Then we 
initialized the network weights using small random values from a uniform distribution and used the 
rectifier, also known as rectified linear unit (ReLU) activation function, which has shown improved 
performance in recent studies, on each layer. Dropout layers with a rate of 0.3 were added after each 
hidden layer to prevent overfitting. The Adam optimization algorithm, which is efficient in practice, 
was chosen. Detailed network topologies for MLP and LSTM are described in Figure 3. To 
quantitatively and qualitatively evaluate the performance of the proposed DL-based prediction 
models, we used an autoregressive (AR) model, which is a simple and traditional statistics-based 
time series model. An AR model also uses observations from previous time steps as inputs to a 
regression equation to predict the value at the next time step [30–32]. Because an AR model can be 
used to solve various types of time series problems [32], it is a good baseline model for evaluating 
the performance of our proposed DL-based models. Both AR and DL-based models require that the 
number of past observations be known. Because SIC data often exhibit annual patterns, 12 previous 
observations were employed to develop all prediction models. 

We first evaluated quantitative accuracies of the models by calculating root mean square errors 
(RMSEs) between the actual and predicted values as listed in Table 4. To prevent the overall RMSE 
decreasing because of the effect on very small error values over open sea or melted areas in summer, 
we used pixels that actually contained sea ice in either observed or predicted data for RMSE 
computations. Over the course of the year, both MLP and LSTM DL-based predictions typically 
exhibited better agreement with the observed values than the AR-based predictions. The monthly 
mean RMSE of the LSTM slightly outperformed the MLP.  

RMSE values in the summer melting season, especially from July to October, were much larger 
than those in other seasons. As shown in Figure 6, which illustrates the 10-year moving mean (blue 
solid line) and variability (orange solid line) of sea ice anomalies (blue dotted line) from 1979 to 2015, 
winter and spring variability were small and did not significantly change from 1979 to 2015, but 
summer and fall variability dramatically increased in the 2000s. Therefore, it should be noted that 
there is a relationship between the high RMSE values of recent sea ice predictions and the high 
variability of sea ice anomalies in summer. The seasonal average comparisons summarized in Table 
5 show that the DL models also outperformed AR model for both freezing and melting seasons. The 
average RMSE difference between the results of the AR and DL approaches for melting season (3.64% 
for MLP; 3.94% for LSTM) was relatively large compared to the difference for freezing season (2.68% 
for MLP; 2.99% for LSTM).  

Table 4. Comparison of monthly root mean square errors (RMSE) values for the short-term 
predictions. 

Model January February March April May June July August September October November December
AR 8.95  8.66 8.95 9.67  12.39 15.82 15.77 16.97 11.78 15.16  12.50  11.58 

MLP 6.45  6.16 6.82 6.21  8.97  11.89 12.74 10.80  9.69  11.98  7.69  10.89  
LSTM 6.35  6.09 6.61 6.28  8.54  11.63 12.79 10.52  9.41  11.35  7.78  9.28  

Table 5. Comparison of seasonal and annual RMSE values for autoregressive (AR) and deep learning 
(DL) models. 

Model Freezing Season Avg.
(November–April) 

Melting Season Avg.
(May–October) 

Annual Avg. (January–
December) 

AR 10.05 14.65 12.35  
MLP 7.37  11.01  9.19  

Difference (AR-MLP) 2.68  3.64  3.16  
LSTM 7.07  10.71  8.89  

Difference (AR-LSTM) 2.99  3.94  3.46  
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Figure 6. The 10-year moving mean (blue solid line) and variability (orange solid line) of sea ice 
anomalies (SIAs; blue dotted line) from 1979 to 2015. 

As a qualitative evaluation of the models, we performed a visual inspection of the monthly 
predicted SICs by comparison with the observed images, to assess how well the forecasting models 
predicted future SICs. Figure 7 illustrates 12-month SIC sets for 2015. Each monthly set consists of 
four images: (1) the observed SIC (upper left); (2) the predicted SIC obtained using the AR model 
(upper right); (3) the predicted SIC obtained using the MLP-DL model (lower left), and; (4) the 
predicted SIC obtained using the LSTM-DL model (lower right). Brighter pixels are associated with 
higher SIC values; the grey circle centered on the North Pole indicates where the central Arctic is 
invisible to the satellite instruments used to generate these images. Figure 8 shows the spatial patterns 
of monthly residual images, highlighting the differences between the observed and predicted values. 
The image on the left in each monthly set represents the AR model error, the image on the middle 
represents the MLP-DL model error, and the image on the right represents the LSTM-DL model error. 
In Figure 8, areas with predicted ice concentration greater than the observed ice concentration 
(overestimated areas) are indicated in blue, and areas with predicted ice concentration less than the 
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observed ice concentration (underestimated areas) are indicated in red. Overall, as both Figures 7 and 
8 show, the errors in the predicted winter ice cover over the central Arctic Ocean were small. Most of 
the anomalies in the predicted SIC occurred in the North Atlantic and North Pacific Oceans, as a 
result of fluctuations in the ice edge. Greater variations occurred in the predicted summer sea ice over 
the central Arctic Ocean. Evaluation of the prediction model performance showed that the AR model 
often generated more overestimated and underestimated pixels than the DL model-based images. 
While both DL models generated quantitatively and qualitatively similar outputs, the SIC images 
predicted by the LSTM model showed slightly better agreements with the observed images than the 
MLP model-based images (i.e., geographical locations of overestimated and underestimated regions 
are similar, but the amount of the LSTM errors is slightly smaller than the MLP). A brief qualitative 
explanation for each month is presented below. The names of the locations are shown in Figure 4.  

The January and February images show that both models yielded very accurate predictions over 
the central Arctic, but some discrepancies were present on the Pacific and Atlantic margins. The AR 
model overestimated sea ice in the Sea of Okhotsk and the Bering Sea, while sea ice in the Barents Sea 
was underestimated by the AR model in comparison to the DL-based models. For March, the AR 
model predicted more sea ice areas in both the Sea of Okhotsk and the Barents Sea than the proposed 
model. The April image predicted by the AR model contained more inaccurately predicted SIC values 
in both the Atlantic and Pacific Oceans than the DL models. From January to April, both prediction 
images over the central Arctic, where SIC values are high, exhibited better agreement with the 
observed images, whereas errors were typically observed near the ice edge. For May and June, when 
sea ice melting begins, much higher residuals were observed in multiple areas (e.g., the Bering Sea, 
the Chukchi Sea, the Laptev Sea, the Barents Sea, the Baffin Bay, and the Hudson Bay) in the AR-
based prediction images than in the DL model-based images. Sea ice residuals that were often present 
near the ice edge in winter move to the central Arctic as melting progresses. For the summer melt 
season (July to September), both models predicted higher-than-observed SICs in the Arctic Ocean. 
The total amount of sea ice predicted for the Northern Hemisphere by the AR model was much larger 
than that predicted by the DL models. As mentioned in the introduction, Arctic SIE has declined, and 
the summer rate of decline has accelerated, in recent years. Large overestimations for the summer 
months were obtained with both the AR and DL models, especially in the AR-predicted images. This 
indicates that the AR model may not capture this unusual trend as well as the DL models. The AR 
predictions for October, when sea ice is freezing, exhibited large underestimations along the ice 
margin in the Chukchi, Laptev, and Barents Seas. The DL models yielded similar underestimates, but 
the underestimated areas are much smaller than those resulting from use of the AR model. Mid-
September is the sea ice minima and late-September is the onset of the freezing season. In the last few 
years, however, late-September sea ice growth has slowed down resulting in an increased October 
growth rate. In October 2015, the average SIE increased by roughly 67% compared to September (i.e., 
4.63 million square kilometers in September; 7.72 million square kilometers in October as reported 
by the NSIDC [33]). Similar to summer predictions, the prediction models, especially the AR model, 
could not properly capture this quick change. The DL models also could not capture the change, but 
they were better than the AR model. This indicates that the DL models, which can make more 
complicated decisions, may respond better to this rapid increase in sea ice than the AR model. Similar 
to other winter SIC images, for the period from November to December, the predicted images showed 
visually similar error patterns, but the images predicted by the AR model contained more dark blue 
and dark red pixels, as Figure 8 shows, indicating more significantly overestimated and 
underestimated sea ice areas, respectively, in the central Arctic area, in comparison to the DL model 
predictions.  
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Figure 7. Monthly comparisons between the actual and three predicted SICs: (a) January; (b) 
February; (c) March; (d) April; (e) May; (f) June; (g) July; (h) August; (i) September; (j) October; (k) 
November; (l) December. 
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Figure 8. Monthly residual comparisons between the actual and three predicted SICs: (a) January; (b) 
February; (c) March; (d) April; (e) May; (f) June; (g) July; (h) August; (i) September; (j) October; (k) 
November; (l) December. 

3.1.2. Long-Term (Multi-Step Ahead) Predictions of Monthly Sea Ice Concentration  

To evaluate the performance of our DL-based model for multiple-step ahead predictions, 
additional experiments were conducted using a recursive approach. The same single DL model that 
was used in the one-step ahead predictions (trained using data from 1978 to 2014) was used here; the 
predicted values were used as inputs multiple times for the long-term predictions (see Figure 5c). 
Table 6 lists the monthly prediction errors (RMSEs) of the one-year predictions with the differences 
from the results of one-step predictions in the previous section. For example, the RMSE values of the 
last column of the table indicate the December 2015 predictions, made using observations from 
December 2014, and prediction results from January to November 2015 as inputs (12-month lead 
time). For the September SIC prediction, while the RMSEs of the one-step ahead prediction using the 
MLP and the LSTM were 9.69 and 9.41, respectively, the RMSE values predicted eight months in 
advance were 17.47 and 12.44, respectively. We trained the model using data from 1978 to 2014 and 
predicted SIC values to make further predictions over the course of one year, which may have 
exacerbated errors in the long-term predictions. While both MLP and LSTM models resulted in 
statistically and visually similar outcomes for the short-term predictions as shown in the previous 
section, for the long-term prediction, the LSTM generated small and consistent prediction errors 
regardless of the lead time compared to the MLP predictions (i.e., 2.14–8.75% for MLP; 1.08–3.03% 
for LSTM).  
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Table 6. Comparison of monthly RMSE values for the long-term predictions. 

Model January February March April May June 

MLP 
6.45  

(+0.00) 
9.14  

(+2.95) 
8.98  

(+2.14) 
8.94  

(+2.80) 
12.75  

(+3.76) 
18.05  

(+5.97) 

LSTM 6.35  
(+0.00) 

7.18  
(+1.09) 

7.69  
(+1.08) 

7.86  
(+1.58) 

10.98  
(+2.44) 

14.01  
(+2.38) 

Model July August September October November December 

MLP 
18.39  

(+5.67) 
19.61  

(+8.75) 
17.47  

(+7.79) 
15.13  

(+3.23) 
11.23  

(+3.45) 
14.77  

(+3.77) 

LSTM 
15.58  

(+2.79) 
13.27  

(+2.75) 
12.44  

(+3.03) 
13.58  

(+2.23) 
10.37  

(+2.59) 
11.66  

(+2.38) 

3.2. Predictions and Comparisons of Monthly Sea Ice Extent  

The Sea Ice Outlook (SIO) is an open process that has been available since 2008 for those 
interested in Arctic sea ice to share their predictions of the September SIE. September SIE predictions 
have been published in June, July, and August of each year since 2008, based on a variety of 
perspectives, including modelling, statistical, and heuristic approaches [11]. According to all SIO 
contributions, the median SIO predictions were close to the SIE observed before 2011. However, 
prediction errors have increased since 2012. In 2012, the observed SIE was much lower than predicted, 
whereas in 2013, it was much higher. These observations show that the prediction of Arctic sea ice 
has become more difficult as global warming has progressed. 

The SIE is defined as the regions with ice concentrations exceeding a 15% threshold [34]. 
Monthly SIEs from SICs predicted using AR and DL approaches in Section 3.1.1 are calculated using 
this criterion, and we compared the observed SIEs with the predicted values. The SIE differences 
between the actual observations and the AR- and DL-based predictions are tabulated in Table 7. The 
SIE results obtained using the DL-based prediction, like the SIC results, exhibited better agreement 
with the passive microwave data throughout the year, although both approaches overestimated SIEs 
for every month. The observed increase in SIE prediction errors could be attributed to acceleration of 
the rate of decline of Arctic sea ice. The mean differences for the AR-, the MLP- and the LSTM-based 
models for the 12-month period were 7.94%, 3.12% and 2.80%, respectively. While all models 
predicted easy-to-forecast winter SIEs well, the summer predictions by the DL models outperformed 
the AR model predictions. For the most interesting September SIE prediction, the mean error of the 
DL predictions was 7.87%, whereas the error of the AR prediction was 28.66%. A comparison of the 
November and December SIEs, which may include long-term prediction noise, showed that the 
proposed DL model resulted in more accurate outcomes than the AR model. 

Table 7. Monthly Arctic SIE comparison between the actual observations and two prediction models in 
2015. 

Model January February March April May June 
NSIDC 14.00 14.94 14.96 14.31 12.78 11.01 

AR 
14.55  

(+3.93%) 
15.26  

(+2.14%) 
15.28  

(+2.14%) 
14.67  

(+2.52%) 
13.70  

(+7.20%) 
11.94  

(+8.45%) 

MLP 14.13  
(+0.93%) 

14.96  
(+0.13%) 

15.29  
(+2.21%) 

14.63  
(+2.24%) 

13.27  
(+3.83%) 

11.33  
(+2.91%) 

LSTM 
14.11  

(+0.79%) 
15.03  

(+0.60%) 
15.15  

(+1.27%) 
14.58  

(+1.89%) 
13.25  

(+3.68%) 
11.40  

(+3.54%) 
Model July August September October November December 
NSIDC 8.70 5.55 4.64 7.70 10.07 12.43 

AR 
9.68  

(+11.26%) 
6.98  

(+25.77%) 
5.97  

(+28.66%) 
9.04  

(+17.40%) 
11.24  

(+11.62%) 
13.19  

(+6.11%) 

MLP 
9.13  

(+4.94%) 
6.09  

(+9.73%) 
5.02  

(+8.19%) 
8.08  

(+4.94%) 
10.57  

(+4.97%) 
12.68  

(+2.01%) 

LSTM 
8.98  

(+3.22%) 
6.10  

(+9.91%) 
4.99  

(+7.54%) 
8.10  

(+5.19%) 
10.48  

(+4.07%) 
12.59  

(+1.54%) 

Unit: million square kilometers. 



Remote Sens. 2017, 9, 1305 15 of 18 

 

To evaluate the accuracy of our results, we compared 37 SIO contributions for the September 
SIE predictions reported for August 2015 as shown in Figure 9. The observed September 2015 Arctic 
SIE was 4.63 million square kilometers (reported by the Sea Ice Prediction Network, SIPN; 
https://www.arcus.org/sipn). However, this number varies slightly depending on the processing 
algorithm. We calculated 4.64 million square kilometers, which is the fourth lowest record since 1979. 
The September SIEs submitted by the 37 SIO contributors were predicted using statistical, dynamic, 
and heuristic methods. The median September estimate, based on the 37 contributions, was 4.8 
million square kilometers, with a quartile range of 4.2 to 5.2 million square kilometers. As Table 7 
shows, our predictions using the MLP and the LSTM models were 5.02 and 4.99 million square 
kilometers, respectively, whereas the AR model estimate was 5.97 million square kilometers for the 
September 2015 Arctic SIE.  

 
Figure 9. Distribution of Arctic Outlook values (August report) for September 2015 extent. (This figure 
is adapted from the Sea Ice Prediction Network (SIPN) and modified by adding our results.). 

4. Discussion 

In short-term (one-step ahead) predictions, both MLP and LSTM DL-based models generated 
statistically and visually improved prediction results compared to a traditional statistics-based 
model. The predictions in the freezing season were generally accurate, but during the summer 
months the predictions were less accurate. These results may be explained by the facts that sea ice 
variations during the freezing season are more stable and more predictable than in other seasons and 
that the AR model predicted sea ice in winter relatively well, compared to that in the melting season, 
although the volume of sea ice is highest in winter. We anticipate that accurate prediction of summer 
sea ice may be difficult because of high sea ice variability in melting zones and unexpectedly faster 
summer ice melting than in the past. This is a topic of interest to many researchers. As Tables 4 and 



Remote Sens. 2017, 9, 1305 16 of 18 

 

5 show, high RMSE values were obtained with both approaches for summer, which supports this 
premise. Additionally, as Figures 7 and 8 show, the visual inspection results obtained are similar to the 
statistical results; errors increased as the melting progressed and the DL methods outperformed the AR 
model. As mentioned in the results section, large overestimations and underestimations near the 
marginal ice zones occurred in both approaches at the onsets of the melting and freezing, respectively. 
A possible explanation for this overestimation and underestimation might be that all statistical 
prediction models may have a weakness for predicting dramatic or unusual changes in the volume of 
sea ice since sea ice decline has accelerated and growth has slowed down in the last few years. In long-
term (multi-step ahead) predictions, the LSTM yielded smaller and more consistent prediction errors 
than the MLP as shown in Table 6. This should be noted that the LSTM was able to remember past 
states of the time series by minimizing the impact of degradation, compared to the MLP. 

Finally, we obtained a reasonable prediction result for the September SIE by comparing the 37 
predicted September SIEs submitted to SIPN. The proposed prediction models slightly overestimated 
the September SIE in comparison to the median of the SIO contributions. Considering the difficulty 
associated with accurately predicting the September SIE because of the rapid melting rate, our 
estimate within the quartile range of 4.2 to 5.2 million square kilometers (see Figure 9) can be 
considered reasonable. There are several possible explanations for this result. First, our monthly SIEs 
were generated using monthly data, whereas the reference data produced by NSIDC and the data of 
most of the contributors were calculated on a daily basis. Second and more importantly, SIO 
contributions reflect many other factors, such as physical parameters and subjective information, 
whereas only monthly passive microwave data were used as inputs for the proposed prediction 
method. We also developed a prediction model using SIC datasets collected until 2014. Other 
contributors may or may not use data from January to August in developing their prediction models, 
but these predictions have typically been reported mostly in August. Thus, their models could reflect 
more recent environmental conditions in the Arctic. Considering all these factors, our SIE estimate 
using the DL model produced reasonable results compared to other models. 

All experiments were conducted on an Intel Xeon E5-2699 (2.20 GHz, 22 cores) with a NVIDIA 
Titan X (3584 CUDA cores). The high computational demand, which is a major limitation of neural 
network models, can now be more easily handled with such advanced machines. However, this 
approach still requires a high computational overhead compared to the AR model, which is based on 
a linear combination problem. As a result, while the AR model required roughly 1.5 h, as expected, 
deep learning models spent much more time on training. The MLP and LSTM required roughly 7 h 
and 38 h, respectively. Although DL, especially LSTM is much slower than the AR model as well as 
the MLP, it developed better predictive models. Additionally, since it is not necessary to re-train the 
prediction model every day, these limitations are somewhat alleviated, and it is certainly worthwhile 
to develop these predictive DL techniques. 

5. Conclusions 

The purpose of the present study was to use a deep neural network to predict Arctic SIC, an 
actively researched method in the machine learning community. Unlike traditional models that 
exploit various environmental or physical datasets, this study used only observed sea ice data by 
remote sensing sensors as an input. The study results show that DL-based prediction models can be 
employed successfully to fit long-term Arctic SIC datasets and to forecast monthly SICs throughout 
a year, although the prediction quality deteriorated slightly as recent summer month sea ice melting 
rates have accelerated. 

This study makes several noteworthy contributions to Arctic sea ice prediction by combining 
historical data with a state-of-the-art technique. Our proposed method statistically and visually 
outperformed a traditional AR model, especially for the summer months, for which errors in sea ice 
images predicted by the DL models were significantly lower than those predicted by the AR model. 
We could not directly reproduce predictions based on many other approaches, such as statistical and 
numerical models that rely on numerous external factors for predictions. We were, however, able to 
compare our prediction results, obtained using only remote sensing image data, with the September 
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SIO reports published by SIPN, and we obtained comparable results. Both SIC and SIE were 
overestimated, because of the recent unexpected decline in Arctic sea ice. Although a fully image-
data-driven approach that does not incorporate physical parameters may not properly capture this 
unusual trend as well as other approaches, the results of this study offer some insights into the 
prediction of Arctic sea ice. 

Further research should be carried out in several topics related to this research. (1) Although we 
assumed that the SIC data provided by NSIDC has a guaranteed data quality, it does contain 
uncertainties. Calibration with higher resolution datasets such as MODIS (Moderate Resolution 
Imaging Spectroradiometer) or use of other sensors such as the advanced microwave scanning 
radiometers (AMSRs) with various retrieval algorithms will provide improved predictive models. (2) 
The LSTM delivered on the promise of providing robust long-term predictions, but it is 
computational intensive. More intelligent approaches to remove and optimize redundant inputs 
would be worthwhile for future work. (3) Adding environmental or physical parameters to our 
model, or using our results as baseline data for other approaches, would be a fruitful area for further 
research. Finally, inclusion of our prediction results in the SIPN as a novel approach would be 
worthwhile. 
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