Biogeochemical characteristics of nutrients, dissolved and particulate organic matters in the Amundsen Sea

Jinyoung Jung1,*, Sun-Yong Ha1, Eun Jin Yang1, Kyung-Hoon Shin2, SangHoon Lee1
1Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea
2Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 425-791, Republic of Korea

Corresponding author email: jinyoungjung@kopri.re.kr

1. Introduction

• The Amundsen Sea is one of the regions where ice sheet thinning is the fastest in Antarctica, which is mainly attributed to the intrusion of Circumpolar Deep Water (CDW) through deep troughs onto the Antarctic continental shelf. In addition, the Amundsen polynya is the most productive among those identified along the Antarctic coast. These features make the Amundsen Sea an ideal location to monitor the influence of environmental changes on marine biogeochemical cycles.

• Nevertheless, no study has been carried out over this region to investigate carbon and nitrogen biogeochemical cycles, simultaneously.

• Here, we report that biogeochemical characteristics of nutrients (NH4, NO2+NO3, PO4, and SiO2) and organic carbon and nitrogen in the Amundsen Sea, Antarctica.

2. Sampling and chemical analysis

3. Hydrographic characteristics in the Amundsen Sea

• Surface NO2+NO3 and PO4 concentrations in the open ocean station (i.e., station 1 and 2) were higher than those observed in the Amundsen polynya owing to low biological activity in these two stations. The surface NO2+NO3 and PO4 concentrations gradually decreased with increasing chlorophyll a, indicating that NO2+NO3 and PO4 were utilized by phytoplankton.

• NH4 occurs generally in the euphotic zone, where organic matter is rapidly remineralized. The results for NH4 therefore suggest that organic matters are actively remineralized in the Amundsen polynya.

4. Dissolved and particulate organic matters

• Samples were grouped into five major regions: open sea, marginal ice zone, the Amundsen polynya, the Dotson ice shelf and the Getz ice shelf.

• DOC and POC concentrations observed in the open sea were distributed homogeneously over the entire water column, and were considered background concentrations of DOC and POC.

• In the Amundsen polynya, DOC and POC concentrations sharply increased owing to high marine biological activity.

• While POC concentration in the Amundsen polynya sharply decreased with increasing depth, DOC concentration remained high in deeper layer, suggesting that DOC was remineralized by microbial activities.

• The result for uptake ratio of NO3 and PO4 showed that Phaeocystis antarctica was dominant species in our study area. Phaeocystis antarctica has been reported to allocate a significant but variable amount of photosynthetically fixed carbon to colony formation. Phaeocystis antarctica also release large amounts of DOC, and DOC is released from deteriorating colonies.