Model Inter-comparison of Gross Primary Productivity and Evapotranspiration in Alaska

Jane Lee1, 2, Youngryul Ryu2, Chongya Jiang3, Masahito Ueyama3, Kazuhito Ichii4, Yoo Kyung Lee1,*

1 Korea Polar Research Institute, 2 Seoul National University, Korea, 3 Fukushima University, Japan, 4 Osaka Prefecture University, Japan. (* yklee@kopri.re.kr)

Background

Machine-learning and process-based modeling approaches are two ways to derive regional and global scale gross primary productivity (GPP) and evapotranspiration (ET). Machine-learning approaches upscale in-situ observed fluxes to a large scale with statistical models, with satellite-detected parameters and other explanatory variables. Process-based models use a series of nonlinear equations to represent land-atmosphere system and associated fluxes. In this study, we perform model inter-comparison of gross primary productivity and evapotranspiration products from one process-based model (the Breathing Earth System Simulator) and two independent machine-learning models (Support Vector Regression, and MPI-BGC). The Breathing Earth System Simulator (BESS) is a process-based model that uses MODIS land and atmosphere products to estimate gross primary productivity (GPP) at global scales with 1km resolution. GPP is computed by a carbon-water coupled module, which incorporates a two-leaf longwave-radiative transfer model, Farquhar’s photosynthesis model and a quadratic Penman-Monteith energy balance equations. The derived instantaneous estimates of GPP and ET were temporally upscaled to 8-day mean estimated with a simple cosine function. BESS estimated products has been evaluated in agricultural, forest and savanna ecosystems, but not in arctic tundra. The Support Vector Regression (SVR) model, satellite remote sensing data, and disturbance information was combined with 21 eddy covariance towers in Alaska to upscale the estimated carbon and energy balance from 2003 to 2011. The MPI-BGC (Max Planck Institute for Biogeochemistry) is an empirical model using meteorological, satellite and FLUXNET data to estimate global atmospheric-land carbon exchange. The study area is Alaska from 72°N-52°N, 170°W-140°W, latitude and longitude, respectively. Alaska can be divided into two large regions, the arctic tundra and boreal region.

Inter-comparison with 3 independent products, SVR, BESS and MPI-BGC, to characterize the spatiotemporal patterns of GPP and ET by:

- Quantifying GPP and ET spatiotemporal variation of Alaska
- Characterizing inter-annual Variability between the 3 products

Inter-comparison with 3 independent products, SVR, BESS and MPI-BGC, to characterize the spatiotemporal patterns of GPP and ET by:

- Quantifying GPP and ET spatiotemporal variation of Alaska
- Characterizing inter-annual Variability between the 3 products

Results

Total Mean of GPP and ET from 2000 to 2011

Figure 1. The mean of GPP by a) SVR, b) BESS and c) MPI-BGC from 2001 to 2011

Figure 2. The mean of ET by a) SVR, b) BESS and c) MPI-BGC from 2001 to 2011

Coefficient of Variance of GPP and ET

Figure 3. Comparison of annual anomaly of GPP (a) and ET (b) derived from BESS, SVR and MPI-BGC products from 2001 through 2011.

Discussion

This study examines the performance of 3 independent models products of GPP and ET in Alaska from 2001 to 2011. BESS estimates GPP and ET higher than both SVR and MPI-BGC model (Figure 1). The inter-annual variation was quantified by standard deviation, indicating that there was high GPP inter-annual variation in the interior of Alaska compared in the SVR. BESS shows a larger standard deviation in the northern coastal tundra area and interior of Alaska. MPI-BGC shows higher inter-annual variation in the southern-western region of Alaska. ET estimated by BESS had a relatively higher inter-annual variation in the northern tundra regions and central Alaska compared to SVR and MPI-BGC. Comparison of the three independent models show high spatial variability in Alaska.

Conclusion

Model inter-comparison of gross primary productivity and evapotranspiration with BESS, SVR and MPI-BGC show high variability of model products.

Acknowledgement

We greatly thank Masahito Ueyama for sharing the SVR products.

We would like to acknowledge FLUXNET 2015 and MPI-BGC for providing the open source products.

This study was supported by the National Research Foundation of Korea, which is funded by the Korean Government (MSIP) (NRF-2011-0021063, 0021067) (PN16082, KOPRI).