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Abstract We report on a detailed global climatology of medium-scale (150–600 km) thermospheric
gravity wave (GW) activity using mass density observations onboard the CHAMP satellite from 2001 to
2010. Our study focuses mainly on daytime (09–18 h in local time) and midlatitude/low-latitude upper
thermosphere between 300 km and 400 km altitudes. Midlatitude GW activity is strongest in the winter
hemisphere. GW activity during June solstice adjacent to the Andes and Antarctic Peninsula is stronger
than in any other season or location. GW activity in the low-latitude summer hemisphere is stronger above
continents than above oceans: especially during December solstice and equinoxes. In terms of relative
density variation, GW activity is stronger during solar minimum than solar maximum. These results agree
well with the characteristics of stratospheric GWs, implying that the CHAMP GWs are mainly caused by GWs
from tropospheric/stratospheric processes. Using mesosphere/lower thermosphere wind observations at
a Korean Antarctic station, we investigated at which altitudes the upper thermospheric GW climatology
becomes visible. While the correlation is insignificant at z = 82–88 km, it becomes significant for most
cases at z = 90–98 km, suggesting that the upper thermospheric GW climatology may start to emerge at
z ≥ 90 km.

1. Introduction

Since the advent of microwave/infrared imagers onboard satellites, the global climatology of gravity waves
(GWs) has been intensively studied in the stratosphere (e.g., Wu and Waters [1996], Wu, [2004], Jiang et al.
[2004], Preusse et al. [2006], and John and Kumar [2013], just to name a few). On a global map the primary
maximum of GW activity appears at midlatitudes/high latitudes in the winter hemisphere, while a secondary
peak shows up at low latitudes in the summer hemisphere [e.g., Ern et al., 2011; John and Kumar, 2013].
The former has mostly been attributed to wind blocking by orography [e.g., Jiang et al., 2004], while the
latter in general originates from deep tropospheric convection [e.g., McLandress et al., 2000]. The vertical
wavelength of GWs is shorter at lower latitudes than at higher latitudes [Alexander et al., 2008; Wang and
Alexander, 2010]. As for midlatitude/high-latitude regions, the GW distribution around June solstice exhibits
one clear peak adjacent to the Andes and the Antarctic Peninsula [e.g., Wu, 2004; John and Kumar, 2013],
while the distribution near December solstice shows multiple peaks at various geographic longitude (GLON)
sectors in the Northern Hemisphere [McLandress et al., 2000; Jiang et al., 2004]. Additionally, the GW activity
around the Andes and Antarctic Peninsula during local winter is stronger than at any other location or sea-
son [McLandress et al., 2000]. The stratospheric GW momentum flux, which reflects temperature fluctuation
amplitudes normalized by the background temperature, is higher during solar minimum than during solar
maximum [Ern et al., 2011].

Several studies investigated global GW climatology at altitudes above the stratosphere. According to John
and Kumar [2012], (1) the GW climatology maintains its stratospheric morphology up to about 80 km alti-
tude, and (2) the average GW climatology between 80 km and 100 km is noticeably different from the
stratospheric counterpart: the GW activity between 80 km and 100 km is stronger in the summer hemi-
sphere than in the winter hemisphere. Similarly, Ern et al. [2011] reported that GW climatology at 70 km
altitude is already very different from that in the stratosphere. Therefore, the GW climatology seems to
undergo substantial changes in morphology between 70 and 100 km, that is, within the mesosphere/lower
thermosphere (MLT) region.
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For upper thermospheric altitudes (above 200 km) there have been only a few studies on global GW cli-
matology. Bruinsma and Forbes [2008] investigated dependences of GW climatology on geomagnetic/solar
activity, local time (LT), and latitude, while the seasonal and longitudinal variations were not addressed.
Potter et al. [1976] and Hedin and Mayr [1987] focused mainly on high-latitude regions, where strong atmo-
spheric fluctuations occur in connection with auroras, while the midlatitude/low-latitude GWs were not
discussed in detail. Although Hedin and Mayr [1987, Figure 2] show global maps of GW activity, questions
remain: (1) the contour levels at midlatitudes/low latitudes are too coarse to draw much information from
them and (2) all the seasons are mixed in one map. In this study we report, for the first time, a detailed
seasonal/geographical GW climatology in the upper thermosphere at geomagnetically midlatitudes/low lat-
itudes. We use the data from the Challenging Minisatellite Payload (CHAMP) satellite mission at an altitude
∼300–400 km from June 2001 to September 2010.

2. Observation

The CHAMP satellite was launched in July 2000 into a polar, circular orbit. The altitude was initially about
450 km, which gradually decayed until the final atmospheric reentry in September 2010. The satellite
needed about 130 days to collect data from all LT sectors. CHAMP carried an accelerometer (ACC)
[e.g., Bruinsma and Biancale, 2003] from which averaged neutral mass density is deduced every 10 s [e.g.,
Bruinsma et al., 2004; Liu et al., 2005; Doornbos et al., 2010].

This corresponds to a distance of ∼75 km (considering the orbital speed of 7.5 km/s). To extract a GW clima-
tology as reliably as possible, we use the following criteria for event selection. First, we omit nighttime ACC
data because they may contain signatures of equatorial plasma bubbles [e.g., Illés-Almár et al., 1998; Park
et al., 2010]. Further, we avoid data between 06 and 08 LT because the low background level [e.g., Liu et al.,
2005, Figure 2a], in combination with the accuracy of CHAMP/ACC density estimates (about 1×10−14 kg∕m3

[Liu et al., 2005]), can result in artificial fluctuations. This is in particular true for time around June solstice at
solar minimum. We focus on the daytime sector covering the LT range of 09–18 LT.

Figure 1 illustrates our data processing method. In Figure 1 (top) the black solid curve represents the neu-
tral mass density (𝜌) as recorded by the CHAMP/ACC. A Savitzky-Golay low-pass filter (order = 3, window
size = 11 data points) is applied to the recordings to yield a smooth background density (𝜌mean, Figure 1,
red curve). Figure 1 (middle) shows density variations (𝛿𝜌) which are differences between the black and
red curves in Figure 1 (top). The resulting passband of along-track scale length in the density variations
spans approximately 150 km to 600 km. The lower bound (150 km) represents the Nyquist limit due to the
sampling cadence while the upper bound (600 km) was chosen to reject effects of large-scale traveling iono-
spheric/atmospheric disturbances, whose horizontal wavelength is above 1000 km [e.g., Shiokawa et al.,
2005]. This horizontal wavelength range is also comparable to two of the key references, Ern et al. [2011] and
John and Kumar [2012] (𝜆h >∼200 km), which address GW activity both within and above the stratosphere.
Figure 1 (bottom) presents density variations normalized by the background density (i.e., 𝛿𝜌∕𝜌mean).

For our global climatology we divide the world map into bins of 5◦ in geographic latitude (GLAT) by 5◦ in
GLON. The bin size in GLAT approximately corresponds to six consecutive data points of the CHAMP/ACC.
Inside each bin |𝛿𝜌∕𝜌mean| is averaged to represent the GW activity level. The resultant global map is
smoothed further by a 3 by 3 median filter. Separate global maps are obtained for the three Lloyd sea-
sons: combined equinoxes, June solstice, and December solstice. For each season ∼131 days have been
considered, which are centered on the respective equinox and solstice epochs. In this way we guarantee
uniform LT coverage for each season. Note that CHAMP/ACC data during disturbed periods (Kp > 4.0) are
omitted here.

3. Results

Figure 2 shows global maps of the GW activity for the three different seasons: equinoxes, June solstice, and
December solstice. On average, there are more than 600 data points per bin. The color bar is scaled logarith-
mically, and gray represents the lowest level of the color scale. The dashed lines show geomagnetic latitudes
(MLAT). The dayside (09–18 LT) data set from 2006 to 2010 (representing solar minimum conditions) was
used for Figure 2. Note the extremely high GW activity at high latitudes, which agrees with findings of Potter
et al. [1976] and Hedin and Mayr [1987]. Density undulations due to substorms on the nightside [e.g., Ritter
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Figure 1. An illustration of our data processing method. (top) The black solid curve shows the neutral mass density as
recorded by the CHAMP/ACC, while the red curve represents background density. (middle) Density variations, which
are the differences between the black and red curves in Figure 1 (top). (bottom) Density variations normalized by the
background density.

et al., 2010] and/or from the cusp density anomalies [e.g., Lühr et al., 2004] may contribute to the
high-latitude GW signals. Our study therefore focuses on midlatitude/low-latitude regions. Notable features
in Figure 2 can be summarized as follows. First, high GW activity at midlatitudes appears in the winter hemi-
sphere. During local winter at midlatitudes GW activity shows much stronger longitudinal variations in the
Southern than the Northern Hemisphere. Second, GW activity near Andes and Antarctic Peninsula during
June solstice (Figure 2, second panel) is higher than in any other season or location. Third, GW activity in the
low-latitude (±30◦ GLAT) summer hemisphere is stronger above continents than over oceans. This trend is
clearer during December solstice and equinoxes than during June solstice.

We also constructed GW climatology maps during solar maximum (2001–2005), which are shown in Figure 3.
These show similar morphologies as during solar minimum. However, the overall relative GW amplitude
at midlatitudes/low latitudes is ∼2 times higher during solar minimum than solar maximum, which is
qualitatively consistent with Bruinsma and Forbes [2008].

4. Discussion
4.1. Comparison With Stratospheric GW Climatology
The prime objective of this study is to extend the global GW surveys to the upper thermosphere. We first
compare midlatitude regions of Figure 2 with stratospheric GW activity reported previously. For both upper
thermospheric and stratospheric GWs the primary occurrence peak appears at midlatitudes of the winter
hemisphere [e.g., Ern et al., 2011; John and Kumar, 2012]. Around June solstice the global peak is focused
near the Andes and Antarctic Peninsula, for both upper thermospheric and stratospheric GW [e.g., Wu, 2004;
Hoffmann et al., 2013]. Also, the GW activity around December solstice exhibits multiple peaks at various
GLON sectors, for both upper thermospheric and stratospheric GW [McLandress et al., 2000; Jiang et al.,
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Figure 2. Global maps of the GW activity for equinox, June solstice, and December solstice during solar minimum years.
The dashed curves represent geomagnetic latitudes.

2004]. Figure 4 presents a direct comparison between our Figure 2 and stratospheric GW climatology repro-
duced from Jiang et al. [2003, 2004]. Figure 4 (left column) represents June solstice and Figure 4 (right
column) represents December solstice while Figure 4 (top row) corresponds to stratospheric GW climatolo-
gies and Figure 4 (bottom row) corresponds to upper thermospheric GW climatologies. In Figure 4 we can
see that the GLON distribution of GW hot spots exhibits reasonable agreement with that in the stratosphere
although the distribution in the upper thermosphere is not so confined in terms of latitude/longitude as in
the stratosphere.

At the low-latitude summer hemisphere Figure 2 generally shows stronger GW activity above continents
than above oceans. This trend is quite clear during December solstice. Although this trend is not as strong
during June solstice at the low-latitude summer hemisphere, the GW activity is the lowest (highest) in the
Pacific Ocean (above the American continent).

This trend is consistent with those from the stratospheric GW climatology although the latter is more
confined latitudinally than the former [e.g., Wu and Zhang, 2004; John and Kumar, 2013]. Vadas and Liu
[2013] demonstrated that thermospheric fluctuations are spread over a much wider spatial extent than
the tropospheric source region. This may explain why the GW activity at the low-latitude (local) summer
hemisphere in our Figure 2 does not show latitudinally confined features. Though GW amplitudes are some-
what enhanced over the continents, where the low-latitude stratospheric GW activity peaks [e.g., Wu and
Zhang, 2004; Gurvich et al., 2007], the mass density variation recorded by CHAMP at low latitudes are so
small (on the order of 0.1% of the background; see Figures 2 and 3) that we cannot retrieve any details from
them. Nevertheless, the general agreement between stratospheric (z∼20–60 km) and upper thermospheric
(z ∼300–400 km) GW distributions can be regarded as good for both midlatitude and low-latitude regions.
Hence, neutral mass density fluctuations as observed by CHAMP at dayside midlatitudes/low latitudes
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Figure 3. The same as Figure 2 but for solar maximum years. Note that the color scales are different from those of
Figure 2.

appear to originate from tropospheric/stratospheric activity, via upward propagation of either original GWs
or secondary waves generated subsequently.

The GW activity is higher during solar minimum than solar maximum when we use 𝛿𝜌∕𝜌mean as GW activ-
ity proxy. Similar solar cycle dependence was found for GW momentum fluxes in the stratosphere, which is
proportional to relative temperature fluctuations [Ern et al., 2011]. For GWs satisfying the Boussinesq approx-
imation the following equation holds 𝛿𝜌∕𝜌mean = −𝛿T∕Tmean [Vadas, 2013]. Thus, results using 𝛿T∕Tmean

should be similar to those using 𝛿𝜌∕𝜌mean. However, note in Ern et al. [2011] that the connection of strato-
spheric GW with solar activity is not so straightforward (only about 15% variation is observed) [see Ern et al.,
2011, Figure 8f ]. Therefore, the very clear dependence of upper thermospheric GW on solar activity, as
shown in our Figure 2 (variation by a factor of 2), cannot be explained fully by the dependence of strato-
spheric GW on solar activity. Rather, wave dissipation/propagation between the stratosphere and upper
thermosphere, which changes significantly with solar cycle, seems to play an important role [e.g., Yiğit and
Medvedev, 2010].

4.2. Comparison With GW Climatology at MLT Altitudes
The poor correlation between stratospheric and MLT GW climatology observed by the same instruments, as
briefly reviewed in section 1, suggests that stratospheric GWs cannot directly penetrate up to upper ther-
mospheric CHAMP altitudes with their horizontal wavelength preserved. One possible explanation is that
stratospheric GWs create body forces in the MLT and thermosphere (z∼150–250 km) via wave breaking and
dissipation [e.g., Fritts et al., 2002; Vadas et al., 2003; Vadas and Liu, 2013, to name a few]. These processes
excite secondary GWs with large horizontal phase speeds, thereby allowing them to propagate much higher
into the thermosphere [Vadas, 2007]. Their initial amplitudes are small. Since their amplitudes grow nearly
exponentially with altitude, this mechanism can allow the GW climatology in the upper thermosphere to
reflect the stratospheric morphology.
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Journal of Geophysical Research: Space Physics 10.1002/2013JA019705

Figure 4. Comparison between Figure 2 and stratospheric GW climatology. (left column) June and (right column)
December solstice while (top row) stratospheric and (bottom row) thermospheric GW climatology. Reprinted from
Jiang et al. [2003, 2004] (with permission from Elsevier and John Wiley & Sons, respectively).

It is not known at what altitudes the global GW climatology (below CHAMP altitudes) starts to resemble the
stratospheric distribution. Local observations can provide at least some clues. The King Sejong Station (KSS)
is a Korean Antarctic station located at (62.221◦S, 58.781◦W), between the Andes and Antarctic Peninsula.
Daily averaged variances of MLT horizontal winds have been acquired from the meteor radar observation
since 2007 [Lee et al., 2013]. We calculate monthly mean values of the daily variances (m2/s2) during local
daytime (09–18 LT) and take the square root (m/s): hereafter, termed “KSS GW strength.” This procedure is
applied separately to different altitude ranges (between 82 km and 98 km) and different wind components
(meridional and zonal). Similarly, for every CHAMP pass over KSS at local daytime we compute the variances
of 𝛿𝜌 (within a rectangular cell of ±10◦ GLON and GLAT around the station) and calculate the square root of
the mean monthly wave power: hereafter, ‘CHAMP GW strength’.

Figure 5 presents the correlation between the KSS GW strength and the CHAMP GW strength from 2007 to
2009. The left (right) column shows zonal (meridional) MLT wind observed at KSS. Each row corresponds to a
different (MLT) altitude. The correlation coefficient (R) between the KSS and CHAMP GW strengths is shown
in each panel. Correlation coefficients are very low below 90 km altitude but increases significantly above
90 km. We have performed a Student’s t test to evaluate the significance. The number of data points in each
panel of Figure 5 is 18, which means that the degree of freedom is 16. If we set the one-tail alpha value to
0.1, the critical t value becomes 1.337. With respect to this critical t value all the correlations for z < 90 km
become insignificant (−0.60 ≤ t value ≤ 0.92), while the correlations for z ≥ 90 km are significant (1.66 ≤ t
value ≤ 4.54) except for Figure 3 (bottom right) (z = 98 km, meridional wind; t value = 1.24). The t test results
thus imply a significant change of GW climatology around the height level of z = 90 km, at least for the years
2007–2009 near the Andes/Antarctic Peninsula. Note that Lee et al. [2013, Figure 5] also show conspicuous
differences in GW climatology below and above z = 90 km, further supporting our result. The fact that the
correlation between KSS and CHAMP GW strengths peaks at 92 km (see our Figure 5) may imply GW dissipa-
tion and secondary GW generation at two different altitude regions (e.g., slightly below 90 km and around
140 km) as suggested by Vadas and Crowley [2010, Figure 14]. On the other hand, the number of meteor tails
inherently exhibits a particular height distribution. The distribution peaks at 89–92 km in general [Kim et al.,
2012] although conspicuous difference between >90 km and <90 km altitudes, as seen in our Figure 5,
does not exist [e.g., Avery et al., 1983, Figure 2]. Hence, the data quality of the KSS GW strength is expected
to be highest around 89–92 km altitude [e.g., Vincent et al., 2010], which may also affect the degree of corre-
lation between the KSS and CHAMP GW strengths. More observations with various instruments are needed
to determine (1) whether GW climatology remains nearly the same throughout the altitudes between
90 km and 300 km and (2) whether the results in our Figure 5 also hold for other geographic locations and
time periods.
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Figure 5. Correlation coefficients (R) between the KSS GW strength and the CHAMP GW strength from 2007 to 2009. The
left (right) column presents zonal (meridional) MLT wind. Each row corresponds to a different altitude range.

4.3. Effects of Background Plasma Density
Figure 6 has the same format as Figure 2 but shows bin averages of background plasma density measured
by the Planar Langmuir Probe (PLP) on board CHAMP. We can see that regions of very low plasma density
(on the order of 104 cm−3) in Figure 6 are in the winter hemisphere. Moreover, the plasma density around
the Andes and Antarctic Peninsula during June solstice is lower than that in any other location and sea-
son. These features of plasma density agree with those of midlatitude GW hot spots as shown in Figure 2. It
would be worth studying whether there is a causal relation of low plasma density regions with the common
GW hot spots in the stratosphere and upper thermosphere. Because the F region plasma is tightly bound
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Figure 6. The same as Figure 2 but for bin averages of background plasma density observed by the CHAMP/PLP.

to geomagnetic field lines, it can act as a damping obstacle for fluctuations of upper thermospheric density
due to ion/neutral collisions.

It would have been interesting to check undulations of ionospheric plasma density using the CHAMP/PLP:
a number of previous studies [e.g., Vadas and Crowley, 2010; Otsuka et al., 2013; Nishioka et al., 2013] sug-
gested that thermospheric GWs can generate undulations of ionospheric plasma density. However, plasma
density undulations around the GW hot spots in Figure 2 can fall below the sensitivity limit of the instrument
(about 103 cm−3, figure not shown). In particular, near the Antarctic Peninsula the undulations of recorded
plasma density seem to be governed by this instrument noise. We thus could not derive a reliable clima-
tology of plasma density fluctuations related to the upper thermospheric GWs. Instead we compare our
results to published climatologies of plasma density fluctuations, such as dayside medium-scale traveling
ionospheric disturbances (MSTIDs). Using ground-based observations of total electron content, Kotake et al.
[2006] and Otsuka et al. [2013] reported that dayside MSTIDs preferentially occur during local winter. These
results are consistent with the upper thermospheric GW climatology in our study, which supports their
speculation that the GWs are the source of daytime MSTIDs. However, daytime MSTIDs are not significantly
affected by solar activity [Kotake et al., 2006], and the seasonal variation amplitude near South America is not
much larger than in other GLON sectors [Kotake et al., 2006, Figure 4]. Both of these results are at odds with
ours. Hence, it is not easy to find a one-to-one correspondence between our results (the GW climatology
in the dayside upper thermosphere) and ground-based dayside MSTID climatologies published previously.
This topic should be pursued in depth by future missions with more sensitive plasma density measurements
and global coverage.

5. Summary

In this study we investigated the medium-scale (horizontal wavelength: 150–600 km) upper thermospheric
GW climatology using the CHAMP mass density observations from 2001 to 2010. Our study mainly focuses
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on the daytime (09–18 LT) and midlatitude/low-latitude upper thermosphere between 300 km and 400 km
altitudes. The main conclusions can be summarized as follows:

1. Midlatitude GW activity is strongest in the winter hemisphere.
2. GW activity during June solstice adjacent to the Andes and Antarctic Peninsula is stronger than in any

other season or location.
3. GW activity in the low-latitude summer hemisphere is stronger above continents than over oceans: espe-

cially during December solstice and equinoxes. However, density variations are so small that no detail can
be derived from CHAMP observations.

4. In terms of relative density variation (𝛿𝜌∕𝜌mean), GW activity is twice as strong during solar minimum as
during solar maximum.
These results agree reasonably well with the characteristics of stratospheric GWs. Our observations imply
that upper thermospheric GWs encountered by CHAMP mainly originate from the troposphere and/or
stratosphere, either as primary or secondary GWs.
Using MLT region wind variances at KSS (near Antarctic Peninsula) in 2007–2009, we investigated their
correlation with CHAMP data:

5. The GW recordings from 90 to 98 km altitudes agrees better with CHAMP measurements, yielding sig-
nificant correlations, than the observations from 82 to 88 km altitudes. This result supports the idea that
the dissipation/breaking of primary GWs creates secondary GWs near the MLT; some secondary GWs
can propagate into the midthermosphere/upper thermosphere because of their larger horizontal phase
speeds while primary GWs mainly dissipate below [e.g., Vadas, 2007].
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