Hydrogen isotope effect of the photolysis of formaldehyde to the molecular and radical channels

Tae Siek Rhee¹, Carl A. M. Brenninkmeijer², and Thomas Röckmann³

¹Korea Polar Research Institute, Korea, ²Max Planck Institute for Chemistry, Germany, ³University of Utrecht, The Netherlands

A series of experiments was carried out to investigate the hydrogen isotope fractionation during the photolysis of CH₂O. Deuterium content of the H₂ produced by the photolysis of CH₂O was determined by a recently developed technique with continuous-flow isotope ratio mass spectrometry. The deuterium (D) of the H₂ produced is depleted by $500(\pm 20)$ ‰ with respect to the parent CH₂O. We also observed that complete photolysis of CH₂O under tropospheric conditions produces H₂ that has virtually the same isotope ratio as that of the parent CH₂O. These findings imply that there must be a very strong concomitant isotopic enrichment in the radical channel (CH₂O + $h\nu \rightarrow$ CHO + H) as compared to the molecular channel (CH₂O + $h\nu \rightarrow$ H₂ + CO) of the photolysis of CH₂O in order to balance the relatively small isotopic fractionation in the competing reaction of CH₂O with OH. Using a 1-box photochemistry model we calculated the isotopic fractionation factor for the radical channel to be $0.22(\pm 0.08)$, which is equivalent to a $780(\pm 90)$ ‰ enrichment in D of the remaining CH₂O. This isotopic effect is significantly larger than the result obtained from the experiments in the EUPOHORE reaction chamber by *Feilberg et al.* [2007].

References

Feilberg K.L., Johnson M.S., Bacak A., Röckmann T., Nielsen C.J., Relative tropospheric photolysis rates of HCHO and HCDO measured at the European Photoreactor Facility, *J. Phys. Chem. A*, 2007, 111, 9034-9036.