O-015. Mining *Clostridium thermocellum* for Enzymatically Active Carbohydrases

D. Mead, B. Hochstein, J. Boyum, N. Magallanes, D. Desai, K. Gowda, P. Brunn; Lucigen Corp., Middleton, WI.

The efficient hydrolysis of biomass to 5 carbon and 6 carbon sugars is limited by the lack of affordable, high specific activity enzymes. Screening of genomic and metagenomic libraries for new biomass-degrading enzymes has had only limited success. We examined a number of screening strategies using *Clostridium thermocellum* (Ct) as a target-rich model organism to validate the efficiency of capturing carbohydrates that may prove useful for biomass degradation. The Ct genome has been sequenced and is predicted to have genes for over 60 potential biomass-degrading enzymes associated with the celluloseosome, and another 18 enzymes that are noncellulosomal. Two different cloning systems were used for gene expression and two different screening methods were utilized for identification of positive clones. A comparison of the methods showed large differences both in the total number of positive clones identified as well as large differences in the total number of different enzymes captured. This poster also describes the gene products that were captured by the individual screening methods, including a new cellulase that was not previously annotated.

O-016. Benzylic and aryl Hydroxylations of m-xylene by o-xylene Dioxygenase from *Rhodococcus sp.* strain DK17

M. Yoo, D. Kim; G. J. Zylstra, B. Kang; E. Kim; Yonsei Univ., Seoul, REPUBLIC OF KOREA; Polar BioCir.; KORDI, Incheon, REPUBLIC OF KOREA; Rutgers Univ., New Brunswick, NJ; Kyungpook Natl. Univ., Daegu, REPUBLIC OF KOREA.

The o-xylene dioxygenase (XDO) from *Rhodococcus sp.* strain DK17 possesses the ability to perform distinct regioselective hydroxylations with the size and position of the substitutent group determining the number and position of the dihydroxylating aromatic ring. *Ershicichia coli* cells harboring a recombinant plasmid with the DK17 XDO genes were cotransformed with the pBluescript for higher expression and stability maintenance of XDO, and then used for biocconversion of m-xylene. Gas chromatography-mass spectrometry analysis of the oxidation products detected 3-methylbenzyloxylalcohol and 2,4-dimethylphenyl as a major and a minor metabolite in a ratio of 8:2, respectively. A molecular modeling study suggests that the DK17 XDO holds xylene isomers at a kink region between 6 and 7 beta carbons of the active site in a position, so that one side of the aromatic ring is blocked by helix 66. Although the substrate-binding pocket of XDO is modeled to be spacious when a xylene isomer binds as a substrate, m-xylene is unlikely to locate at the active site with a methyl group facing the kink region because such a configuration would not fit the substrate-binding pocket. m-Xylene molecule can flip horizontally to expose the meta-position methyl group to the catalytic motif. In this configuration, 3-methylbenzyloxylalcohol could be formed as a product presumably due to the meta effect, which states that the meta methyl group of m-xylene would not allow binding and catalysis of 6-carbon hydroxylation of XDO. Alternatively, m-xylene molecule can rotate into the preferred position, which would allow the catalytic motif to hydroxylate at C-4 yielding 2,4-dimethylphenyl as a product. To our best knowledge, 2,4-dimethylphenol have not been seen before in the oxidation of m-xylene. The present work demonstrates that the DK17 o-xylene dioxygenase has an ability to oxidize m-xylene through both benzylic and aryl hydroxylation although the former is reportedly preferred.

Acknowledgments/References: This work was supported by a grant from MEST through the 21C Frontier Microbial Genomics and Applications Center Program and also by a grant from KOSEF through AEBC at POSTECH.

O-017. Biochemical Characterization of a Novel Laccase from *Trametes versicolor*

F. Martinez-Murales; R. Tinoco-Valencia; B. Bertrand; L. Serrano-Carreno; M. Trejo-Hernandez; CIBIC, UAEM, Cuautitlan, MEXICO, INCT, de Biotecnologia, UNAM, Cuautitlan, MEXICO.

Background: Laccases are versatile metacatalysts found in diverse groups such as plants, fungi, bacteria and plants. In fungi, laccases have been widely described and characterized as biotechnological tools in diverse fields including bioremediation. However, the characterization of novel laccases with improved bioconversion abilities is required in order to be used in process like bioremediation of xenobiotics. Methods: We have identified previously novel induced laccases produced by *Trametes versicolor*, a basidiomycete, induced by different sawdust substrates used to grow this fungus. In this work, we report the purification and characterization of a novel laccase (named LCI produced by *T. versicolor*). Kinetic parameters such as optimal pH, Km, substrate specificity. The enzyme was produced in liquid medium in presence of cedar sawdust and branfages extract in order to increase the amount of enzyme for biochemical studies. Results: Our results indicate that LCI laccase from *T. versicolor* present different kinetic properties compared with the constitutive laccase produced by the same fungus. Conclusion: Induced laccase CI show distinct kinetic properties compared with the constitutive laccase. These differences could account for a particular function induced by the chemical nature of the substrate used to grow this fungus.


O-018. Putative Unique Gene Approach for the Design of Species Specific Probes for *Lactobacillus plantarum*

L. M. Perez-Diaz; USDA-ARS Food Sci. Res. Unit, Raleigh, NC; North Carolina State Univ., Raleigh, NC.

The concept of utilizing putative unique genes for the design of species specific probes was tested. The abundance profile of assigned functions within the *Lactobacillus plantarum* genome was used for the identification of a putative unique gene (gchA) used as the template for PCR amplification and construction of a non-radioactive DIG labeled probe, which aided in the identification of this lactate acid bacteria from mixed cultures using Southern hybridization. This approach to species identification could be applied to any microorganism for which there are complete genomes sequences for both the target organism and some closely related organisms.

Acknowledgments/References: The author thanks Ms. Ashlee Webber at the USDA-ARS, AA Food Science Research Unit located in Raleigh, NC for technical assistance.

O-019. Biological Catalysts for Conversion of Gas to Ethanol and Methane

O. Tirado-Acosta, M. S. Chinn, A. M. Grunden; North Carolina State Univ., Raleigh, NC.

There is a need to find new and improved ways to obtain alternative fuels that do not compete with food sources. Any carbonaceous material can be converted to syngas (a mixture of CO, CO2, N2, and H2) by means of gasification. Some acetogenic bacteria are able to ferment syngas resulting in alcohols, organic acids and hydrogen as fermentation byproducts. Conversion of syngas to ethanol using microbial strains achieves high yields and is more environmentally friendly than traditional chemical catalysis. *Clostridium ljungdahlii* ferments syngas to ethanol resulting in the conversion of the CO2 and CO present in the syngas to ethanol and acetic acid. ATP synthesis resulting from acetate production skew the final liquid products to higher acetic acid production compared to ethanol. Therefore, development of a microbial fermentation system that can support the conversion of acetic acid to other fuel components, such as methane, would increase the effective yield of the gasification-fermentation process. *Methanococcus maripaludis* can convert acetic acid to methane. These acetoclastic methanogens could be used in the production of biofuels from the acetate generated by the fermentation of syngas by *C. ljungdahlii*. In addition, it is desirable to find alternative fermentation conditions that will shift product ratios towards ethanol. There have been previous studies reporting that certain acetogens can produce higher amounts of ethanol compared to acetate when oxygen was added to the cultures. For the two-step fuel production, *C. ljungdahlii* was grown anaerobically on liquid media and syngas was used in the headspace. Spent media was collected and used to grow *Methanococcus maripaludis* and ethanol, acetate and methane concentrations were quantitated. For the oxygen exposure experiments, different concentrations of oxygen were added to the culture headspace and ethanol and acetate production was quantitated. In the present study we demonstrate the use of microbial catalysts for the orchestrated production of ethanol and methane and show that the addition of oxygen to the acetogen culture improves ethanol production as well as ethanol to acetate ratios.

180/O. Antibiotics, Antimicrobials and Mycotoxins

Tuesday, 1:00 pm - Poster Hall

O-020. The Antimicrobial Compound Reuterin Mediates Bacterial Growth Inhibition by Causing Oxidative Stress

L. Schaefer, T. Autschug, R. A. Britton; Michigan State Univ., East Lansing, MI.

Reuterin (3-hydroxypropionaldelactone) is a broad-spectrum antimicrobial compound produced by many strains of probiotic *Lactobacillus reuteri*. Reuterin has been proposed to mediate, in part, the beneficial health effects of the probiotic *L. reuteri*. The goals of this study were to determine how reuterin is produced and to elucidate the mechanism of action of reuterin in mediating bacterial growth inhibition. Reuterin is derived from glycerol by the action of glycerol dehydratase and is converted to 1,3-propenediol by propionaldehyde oxidoreductase. We have created disruptions in the glyC and pdhC genes using the derived glycerol dehydratase and the large subunit of glycerol