²⁶AL-DEPLETIONS IN ANOMALOUS AND SOLAR PLAC-LIKE CAIS SUGGEST HIGH DEGREES OF PROCESSING IN THE EARLY SOLAR NEBULA

L. Kööp^{1,2,4}, A. M. Davis^{1,2,3,4}, N. T. Kita⁵, D. Nakashima^{5,6}, T. J. Tenner⁵, A. N. Krot⁷, C. Park^{7,8}, K. Nagashima⁷, and P. R. Heck^{1,2,4}. ¹Department of the Geophysical Sciences, ²Chicago Center for Cosmochemistry, ³Enrico Fermi Institute, University of Chicago, Chicago, IL, ⁴Robert A. Pritzker Center for Meteoritics and Polar Studies, Field Museum of Natural History, Chicago, IL, ⁵Department of Geoscience, University of Wisconsin, Madison, WI, ⁶Tohoku University, Sendai, Japan ⁷HIGP/SOEST, University of Hawai'i at Mānoa, Honolulu, HI, ⁸Korea Polar Research Institute, Incheon, Korea. E-mail: koeoep@uchicago.edu

Introduction: Due to their large nucleosynthetic anomalies [1], platy hibonite crystals (PLACs) are thought to be among the oldest solids that formed in the solar system. Most of them lack evidence for incorporation of ²⁶Al, suggesting formation prior to injection and/or homogenization of ²⁶Al in the solar system [1]. Our combined study of O, Ca and Ti isotopes in a large

Our combined study of O, Ca and Ti isotopes in a large number of PLACs and related CAIs (hereafter PLAC-like CAIs) revealed a correlation between Δ^{17} O, i.e., the mass-independent variation in O isotopes, and the range of large-scale anomalies in ⁴⁸Ca and ⁵⁰Ti (>100‰; [2]). Such a distribution is expected if the primordial (protosolar molecular cloud) dust was depleted in ¹⁶O relative to the inferred solar value [2,3]. In addition, we can now use this relationship to distinguish between solar (solar O, δ^{48} Ca and δ^{50} Ti ≈ 0 ‰) and anomalous PLAC-like CAIs (¹⁶O-depleted relative to solar, range of δ^{48} Ca and δ^{50} Ti).

We have studied the Al-Mg systematics in the same CAIs with the WiscSIMS Cameca IMS 1280 to investigate whether both solar and anomalous PLAC-like CAIs belong to the ²⁶Al-depleted population or whether these CAIs represent multiple generations with respect to their incorporation of ²⁶Al, in which case we would expect to find relationships between the degree of nucleosynthetic heterogeneity, O isotopes and ²⁶Al incorporation.

Results and discussion: Our results confirm that most solar and anomalous PLAC-like CAIs show no evidence for having formed in the presence of live ²⁶Al ($\delta^{26}Mg^* \approx 0\%$). Two CAIs of the anomalous population ($\delta^{48}Ca \approx -20\%$ and 80%, $\delta^{50}Ti \approx -$ 20‰ and 60‰, respectively) have slightly enhanced $\delta^{26}Mg^*$ values, which could indicate ²⁶Al-incorporation at a ²⁶Al/²⁷Al ratio of ~(1–1.5)×10⁻⁵ or that the Mg isotopic heterogeneity in the early solar system was on the order of ~15‰.

Importantly, the results show that both isotopically anomalous and solar PLAC-like CAIs are depleted in ²⁶Al and that its abundance cannot be used for a relative chronology of PLAC-like CAIs. Both solar and anomalous PLAC-like CAIs likely formed in the earliest stages of solar system history, prior to arrival of this short-lived radionuclide. In particular, the presence of ²⁶Al-free PLAC-like CAIs with solar O, Ca and Ti suggests that highly homogenized reservoir(s) had been established prior to a widespread distribution of ²⁶Al.

References: [1] Ireland T. R. 1988. *Geochimica et Cosmochimica Acta* 54:3219–3237. [2] Kööp L. et al. (2014) *Meteoritcs & Planetary Science*, 49:#5384. [3] Krot A. N. et al. 2010. *The Astrophysical Journal* 713:1159–1166.