Spatial characterization of ΔO_2/Ar and net community production in the surface waters of the East Sea, the Northwest Pacific, and the Bering Sea

한도식1, 이태식1, 박경아1, 박기홍1, 장찬주2

1한국해양환경공단 부설 극지연구소
2한국해양과학기술원

Saturation anomaly of dissolved oxygen (O_2) in surface waters of the ocean is, in general, associated with physical and biological processes. Given that argon (Ar) have similar solubility and diffusivity in seawater to those of O_2, Ar measurement can be used to isolate the O_2 saturation anomaly related to physical processes such as the changes of seawater temperature and atmospheric pressure, and bubble injections among the various processes. Remaining biological O_2 anomaly, ΔO_2/Ar ($=[O_2$/Ar]$_{\text{sample}}$/$[O_2$/Ar]$_{\text{saturation}}$−1), reflects the difference between photosynthetic production and respirational consumption of O_2 corresponding to net community production (NCP). To investigate the variability of biological productivity and its possible connection to atmospheric chemistry, we surveyed ΔO_2/Ar in the surface waters along Araon cruise track from Incheon to Nome, Alaska (July 13 − 29, 2012), using an equilibrator inlet mass spectrometer. We divided the cruise track into four regions: Yellow Sea and South Sea of Korea (YS), East Sea (ES), Northwest Pacific (NP), and Bering Sea (BS). Each of the region showed distinctive oceanographic parameters including ΔO_2/Ar. YS had ΔO_2/Ar in the range of 0 − 8% and largest average of 4.3%. To the contrary, ES is the least productivity region, with average ΔO_2/Ar of 1.5%. NP showed modest spatial variability of ΔO_2/Ar with average of 2.8%. BS was the most dynamic region: ΔO_2/Ar showed large variability from −10 to 10% in a very confined area. We will discuss the correlation of ΔO_2/Ar with other physicochemical properties and NCP estimates in the presentation.