An overview of the volatile systematics of the Lau Basin – resolving the effects of source variation, magmatic degassing and crustal contamination

Doshik Hahm^{1*}, David R. Hilton¹, Paterno R. Castillo¹, James W. Hawkins¹, Barry B. Hanan² and Erik H. Hauri³

¹Geosciences Research Division, Scripps Institution of Oceanography, UCSD ²Department of Geological Sciences, San Diego State University ³Department of Terrestrial Magnetism, Carnegie Institution of Washington *Present Address: Korea Polar Research Institute, Incheon 406-840, South Korea

The Lau Basin erupts lavas with a range of geochemical features reflecting a complex history of interaction involving different mantle sources. The Valu Fa Ridge (VFR) and Mangatolu Triple Junction (MTJ) region has lavas with arc-like characteristics, Niuafo'ou Island (NV), Peggy Ridge and Central and Eastern Lau Spreading Centers (PR, CLSC and ELSC) erupt mid-ocean ridge basalt (MORB)-like volcanics, whereas the Rochambeau Bank (RB) has features akin to ocean island basalt (OIB). To characterize the volatile systematics of these various regions, we report a comprehensive study of 39 submarine lavas from these various eruptive centers encompassing analyses of the noble gases (He, Ne, and Ar) and carbon (CO_2) – both isotopes and abundances - together with other major volatile phases (H₂O, S, Cl, and F).

Helium isotope ratios of the NV, MTJ, CLSC, and ELSC are MORB-like for the most part except for differentiated lavas that tend to have lower, more radiogenic ${}^{3}\text{He}/{}^{4}\text{He}$ values. The RB has considerably higher ${}^{3}\text{He}/{}^{4}\text{He}$ ratios (up to 23 R_A in this work) which extend as far south as the PR. The influence of 'plume-like' sources in the RB is also apparent in Ne isotopes: RB samples follow a trend similar to Hawaiian basalts in 3-isotope neon space. However, RB lavas have lower ${}^{40}\text{Ar}/{}^{36}\text{Ar}$ (300-730) and higher [${}^{36}\text{Ar}$] than CLSC and ELSC, suggesting greater air contamination. Elemental He/Ne ratios (${}^{3}\text{He}/{}^{22}\text{Ne}_{s}$ and ${}^{4}\text{He}/{}^{21}\text{Ne}^{*}$ where S = solar and * = nucleogenic) are high throughout the Lau Basin and identify the Lau mantle as one of only two high ${}^{3}\text{He}/{}^{4}\text{He}$ provinces worldwide with such an enrichment of He relative to Ne.

Magmatic CO₂ and δ^{13} C fall in the range 7 to 350 ppm and -28 to -6‰, respectively. RB lavas have less [CO₂] and slightly lower δ^{13} C than CLSC and ELSC. The lowest values are found among MTJ lavas. These lavas also have the highest [H₂O], [F], [Cl], and [S] whereas the PR, ELSC and CLSC have the lowest. RB has intermediate [H₂O]. We estimate primary [CO₂] in primary melts using [CO₂]-d¹³C relationships, and find that RB lavas have higher [CO₂] (935 ± 168 ppm) than ELSC/CLSC (638 ± 115 ppm). They also possess higher initial d¹³C values, consistent with observations at other hotspot-related localities. However, there are no discernible differences in primary CO₂/Nb ratios between mantle sources characterized by high ³He/⁴He and MORB-like ratios. On the other hand, reconstructed values are considerably higher than that envisaged for depleted MORB mantle based on olivine-hosted melt inclusions.