Antarctic and Greenland Snow and Ice Cores: Archives of the Climate and Pollution of the Atmosphere of the Earth

Claude F. Boutron

1Laboratoire de Glaciologie et Géophysique de l’Environnement du CNRS, 54, rue Molière, Domaine Universitaire, B.P. 96, 38402 Saint Martin d’Hères, France
2Unités de Formation et de Recherche de Mecanique et de Physique, Université Joseph Fourier de Grenoble (Institut Universitaire de France), B.P. 68, 38041 Grenoble, France

ABSTRACT. Antarctic and Greenland snow and ice cores have added immensely to our understanding of the history of the climate of our planet and the influence of man activities on its atmosphere. After describing rapidly the procedures which are used to collect, date and analyse these cores, we present here briefly some of the most exciting results obtained so far: the 420 000 year Vostok record of isotopic atmospheric temperature and greenhouse gases; the early pollution of the atmosphere of the Northern Hemisphere for Pb and Cu two millennia ago during Greek and Roman times; and the Greenland snow evidence of a recent hemispheric scale pollution of the atmosphere for Pt and Rh linked with the ever-increasing use of automobile catalytic converters.

Key Words: Antarctica, Greenland, ice, snow, climate, pollution

Introduction

During the last four decades, considerable effort has been devoted by various laboratories to decipher the unique atmospheric archives stored in the successive dated snow and ice layers deposited from several hundred thousand years ago to present in the large Antarctic and Greenland ice caps. They have provided a wealth of fascinating information on past and recent changes in the atmospheric environment of our planet.

In this brief review, we shall first rapidly describe the procedures used to obtain the snow and ice samples in the field, the methods developed for dating them, and the techniques used in the laboratory for the analyses. We shall then present some of the most interesting results which have been recently obtained.

*corresponding author (boutron@glaciog.grenet.fr)

Experimental Aspects

Field sampling

The longest ice core which has been obtained so far is the 5G Vostok ice core, which reached the world depth record of 3623 m in January 1998. It was obtained within a joint Russian-French-American drilling effort at Vostok Station (78°28'S, 106°48'E), a high altitude (3490 m a.s.l.) site in East Antarctica (Petit et al. 1997, 1999, Fig. 1). It is the apotheosis of several decades of drilling activities at this very interesting site which allowed to obtain a series of ice cores using thermal or/ and electro mechanical drills in fluid-filled holes. It covers more than 500 000 years.

The depth of the bedrock at Vostok is about 4000 m, but ice drilling had to be stopped well above the bedrock because of the presence of a large size sub-ice fresh water lake between the bedrock and the bottom of the ice itself (Kapitza et al. 1996).

For Greenland, the longest ice cores obtained so far are the two sister cores which were recently
drilled down to the bedrock in the Summit (72°34'N, 37°37’W) area (Fig. 2) in central Greenland as part of the European GRIP programme and the United States GISP 2 programme. The GRIP ice core is 3028 m long (Dansgaard et al. 1993). The GISP 2 one is 3054 m long (Grootes et al. 1993). Both cores cover more than 200 000 years.

Great engineering skill is necessary for such deep drilling operations which remain very risky, as illustrated by the recent failure of several deep drilling efforts both in Antarctica and Greenland.

It is not always necessary to reach such great depths, for instance when investigating the impact of human activities. For such studies on recent periods, samples can usually be obtained either by shallow drilling (see for instance Boutron et al. 1991 or Candelone et al. 1995) or from the walls of pits, trenches or shafts (see, for instance, Murozumi et al. 1969; Borbante et al. 1997; Wolff and Suttie 1994).

Ice and snow dating

This is a crucial matter, since Antarctic and Greenland ice or snow samples have no scientific value if no good quality dating is available. Various complementary approaches are generally used, as discussed in some detail for instance in Boutron (1995). One approach relies upon the counting of the successive annual layers through the determination of physical or chemical parameters with pronounced seasonal variations (Hammer 1989).

Another approach for recent snow or ice relies upon the identification of reference horizons linked with well documented events such as major volcanic eruptions or atmospheric nuclear tests. Finally, the dating of very old ice is mainly based on ice-flow modeling (Reeh 1989).

The precision of the ages so obtained depends upon various parameters. It is generally excellent for the Holocene: just to give an example, the precision is ±10 years for Summit ice dated on 4018 years ago (depth: 802 m). It becomes much less precise for very old ice, especially when getting close to the bedrock.

Preparation of the snow or ice samples for analysis

The samples obtained as cores are always more or
Fig. 3. Changes in Pb concentrations from the outside to the centre of a 498.9-499.2 m ice core section thermally drilled in a fluid filled hole at Vostok, East Antarctica. Adapted from Boutron et al. (1987).

plume and plateau of concentrations is obtained in the central parts of the core that the concentration measured in these central parts do represent the original snow or ice, Fig. 3.

Such decontamination step is often not required for shallow samples since they can be obtained using clean field procedures. This is especially the case for samples collected from the walls of pits hand dug by operators wearing clean room clothing, using ultraclean bottles or tubes (see, for instance, Barbante et al. 1997).

Analysis

A large variety of analytical techniques are used for the analysis of these very valuable samples. They include Stable Isotope Mass Spectrometry for the determination of O and H isotopes (Stievenard et al. 1994), Gas Chromatography for the determination of CO$_2$, CH$_4$, N$_2$O and CO (Chappellaz et al. 1994), Ion Chromatography (Legrand et al. 1993), Graphite Furnace Atomic Absorption Spectrometry (Hong et al. 1996a), Thermal Ionization Mass Spectrometry (Chisholm et al. 1995), Laser Excited Atomic Fluorescence Spectrometry (Bolshov et al. 1997) and Double Focusing Inductively Coupled Plasma Mass Spectrometry (Barbante et al. 1997).

Many elements or species are present at extremely low concentrations in Antarctic and Greenland snow and ice. Just to give an example, Rh concentration in Greenland snow dated from the 1970's is as low as ~0.03 pg/g (1 pg = 10$^{-12}$ g). Of prime importance for the reliable determination of such minute concentrations is the use of specially designed clean laboratories (Boutron 1990). All containers in direct contact with the samples must be made from carefully selected materials and cleaned using sophisticated cleaning procedures (Boutron 1990). Also, it is essential to be able to quantitatively determine the procedural blanks for each investigated element or species (see, for instance, Chisholm et al. 1995).

Some Recent Results

Analyses of polar ice cores have provided a wealth
of fascinating results during the recent decades, especially regarding global climate change and large scale atmospheric pollution. We shall very briefly present here only a few examples of some of the most recent ones.

The 420 000 year Vostok record of the deuterium content of ice and isotopic atmospheric temperature

Oxygen and hydrogen isotopes are amongst the key parameters which have been investigated in Antarctic and Greenland ice cores since the 1960s. They are indeed a unique tool for reconstructing changes in atmospheric temperature during the successive glacial and interglacial periods.

The longest stable isotope time series presently available from polar ice cores is that recently obtained from the analysis of the 3623 m 5G Vostok ice core (Petit et al. 1997, 1999). Figure 4 shows the Vostok deuterium profile down to 3310 m, i.e. back to 420 000 years before present. The profile shows large changes in δD values in Antarctic ice during the past 420 000 years, with a succession of warm (interglacial) and cold (glacial) periods. Figure 5 shows changes in atmospheric temperature inferred from the deuterium profile. The overall amplitude of the glacial — interglacial temperature change is ~8°C (temperature above the inversion level).

The Vostok ice core covers four complete glacial-to-interglacial climate cycles. It shows that the climate has been in a continuous state of change during the last 420 000 years, but the observed changes have been remarkably repetitive in sequence. The four transitions from glacial to warm epochs started at ~335 000, 245 000, 135 000 and 18 000 years before present, Figure 5. Time series analysis of the record shows a large ~100 000 year contribution to periodicity, along with another at ~40 000 years intervals. It gives further evidence that the astronomical forcing, linked with periodical changes in the Earth orbital parameters (eccentricity, obliquity and precession of axis), is probably the initial cause of late Quaternary glacial-interglacial cycles.

The 420 000 year Vostok record of greenhouse gases

Of special interest is the interplay between greenhouse gases, especially CO₂ and CH₄, and climate. As illustrated in Figure 5, CO₂ concentrations have been naturally fluctuating during the past 420 000 years, with low concentrations down to ~180 ppmv during the coldest stages of the glacial periods and higher concentrations up to ~280-300 ppmv during the warm interglacial periods (Petit et al. 1999).

All four climatic transitions from glacial to interglacial periods (around ~335 000, 245 000, 135 000 and 18 000 years ago) have been accompanied by an increase in atmospheric CO₂ (see Fig. 5) and CH₄. On the whole, there is an excellent correlation between the CO₂ and CH₄ records and the isotopic temperatures. It suggests that CO₂ and CH₄ could have been important amplifiers of the orbital forcing along with other parameters such as relative humidity, surface albedo (changing ice cover and vegetation) and planetary albedo (changing cloud cover).

The causes and mechanisms of CO₂ and CH₄ increase during the four transitions are still not fully understood (see, for instance, Petit et al. 1999; Fischer et al. 1999; Broecker and Henderson 1998; Chappellaz et al. 1993). For CO₂, the Southern Ocean is likely to be the main agent in regulating atmospheric CO₂ (Broecker and Henderson 1998). Possible mechanisms include changes in CO₂ solubility, phytoplankton productivity and iron fertilization. For CH₄, the observed changes could be linked with variations in the extent and activity of continental sources, mainly wetlands in the tropics and in Northern mean latitudes (Chappellaz et al. 1993).
Early pollution two millennia ago for Pb and Cu as documented in the GRIP Greenland ice core

The first clear evidence of an early large scale pollution of the atmosphere of the Northern Hemisphere for Pb and Cu have recently been obtained from the analysis of these two metals in various sections of the 3028 GRIP ice core drilled at Summit (see Fig. 2) in central Greenland (Hong et al. 1994, 1996b; Rosman et al. 1997).

Figure 6 shows changes in Pb concentrations in Greenland ice from 7760 to 470 years ago (Hong et al. 1994). The most prominent feature of the data is that Pb concentrations rose well above the natural background values during a ~ 1000 year period from ~500 BC to AD 300. In parallel, the $^{206}\text{Pb}/^{207}\text{Pb}$ isotopic ratio profile shows a clear dip (Rosman et al. 1997). It evidences an early large scale pollution of the atmosphere of the Northern Hemisphere for Pb two millennia ago, long before the Industrial Revolution. This pollution was linked with anthropogenic Pb emissions to the atmosphere from the large Pb-Ag production by Greeks and Romans. Isotopic systematics point to the mining districts in southwest and southeast Spain as the dominant sources of this lead, giving quantitative evidence of

the importance of these mining districts to the Carthaginian and Roman civilizations (Rosman et al. 1997).

The GRIP ice core also allowed to evidence an early large scale Cu pollution of the Northern Hemisphere, beginning ~2500 years ago (Hong et al. 1996b). This is illustrated in Fig. 7, which shows changes in Cu fallout flux to central Greenland from eight millennia ago to present. This pollution was attributed to emissions from the crude, highly polluting smelting technologies used for Cu production

Fig. 5. Vostok, East Antarctica: changes in isotopic temperature of the atmosphere and CO$_2$ as a function of the age of the ice for the past 420 000 years. Adapted from Petit et al. (1999).

Fig. 6. Changes in Pb concentrations in Greenland ice from 3000 to 500 years ago. Also shown is a data point for ice 7760 years old. Adapted from Hong et al. (1994).
during Roman and Medieval times, especially in Europe and China. It opens up the possibility of future quantitative studies of the history of metal production, which was a crucial factor in social and cultural development, during antiquity.

Greenland snow evidence of an hemispheric scale pollution for Pt and Rh during the last decades

The first data on the changing occurrence of Pt and Rh in Greenland ice and snow have recently been obtained by Barbante et al. (1999), Fig. 8.

Seven millennia ago, Pt and Rh concentrations were extremely low in Greenland ice, ~ 0.01 pg/g for Pt and 0.0007 pg/g for Rh. At that time, these two metals totally originated from natural sources such as extraterrestrial dust and volcanoes. In snow dated from 1969 to 1975, i.e. before the introduction of automobile catalytic converters, Pt and Rh concentrations were already respectively ~ 6 and 45 fold the natural level, indicating a large scale pollution of the atmosphere for these two metals at that time. Possible anthropogenic sources included Platinum Group Metals (PGMs) mining and smelting, especially in South Africa and Russia, and the chemical industry (where PGMs are used as catalysts for various purposes).

Much higher concentration values are observed for snow dated from 1994 and 1995. This recent increase is thought to be mainly linked with emissions from automobile catalytic converters, as confirmed by the fact the Pt/Rh ratio in the snow is very similar to the Pt/Rh ratio documented for exhausts from catalytic converters (Helmers and Mergel 1998). The fact that this pollution can be seen at a high altitude location of the remote Arctic indicates that it is certainly spread out all over the Northern Hemisphere. A major issue is then to evaluate possible related health effects and eventually to reconsider the present politically correct strategy of relying upon an ever increasing use of automobile catalytic converters to limit urban air pollution.

Conclusions

During the past few decades, Antarctic and Greenland snow and ice cores have added immensely to our knowledge of the history of the climate of our planet and man-induced pollution. The deciphering of these unique frozen atmospheric archives is however far from being achieved, and various exciting results will probably be obtained in the future.
Moreover, additional data of great importance will certainly be obtained from cold snow and ice cores from non polar areas. Such cores have indeed considerable potential to provide very interesting insights into past changes in climate and atmospheric pollution in mid latitude and tropical areas. This was recently illustrated for instance by the work of Thompson et al. (1998) on a Bolivian ice core or by the work of Van de Velde et al. (1998) on an Alpine ice core.

Acknowledgements

I wish to thank all colleagues and students who collaborated with me during the past decades, especially F. Adams, C. Barbante, M. Bolshov, J.P. Candelone, C. Ferrari, S. Hong, K. Rosman, K. Van de Velde and A. Veyssyere. I am very indebted to my late colleague Clair Patterson, whose concern for ultra trace analysis and environmental pollution will remain a continual stimulus for all of us.

References

Boutron C., Patterson C.C., Petrov V.N., and Barkov N.I. 1987. Preliminary data on changes of lead concentrations in Antarctic ice from 155,000 to 26,000 years B.P. Atmos. Environ. 21: 1197-1202.

Hong S., Candelone J.P., Turetta C., and Boutron C. 1996a. Changes in natural lead, copper, zinc and cadmium concentrations in central Greenland ice from 8250 to 149 100 years ago: their associations with climatic changes and resultant variations of dominant source contribution. Earth Planet. Sci. Lett. 143: 233-244.

Hong S., Candelone J.P., Patterson C.C., and Boutron C. 1996b. History of ancient copper smelting pollution during Roman and medieval times recorded in Greenland ice.

Received 14 July 1999
Accepted 7 October 1999