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A B S T R A C T

Satellite passive microwave (PM) sensors have observed sea ice in Polar Regions and provided sea ice con-
centration (SIC) data since the 1970s. SIC has been used as a primary data source for climate change prediction
and ship navigation. However, the accuracy of PM SIC is typically low and biased in summer. To provide more
accurate information for climatic research and ship navigation, it is necessary to evaluate quantitatively the
accuracy of PM SIC and to account for its errors. In this research, we evaluated the SIC data derived from PM
measurements using four representative sea ice algorithms: NASA Team (NT), Bootstrap (BT), Ocean and Sea Ice
Satellite Application Facility (OSISAF) hybrid, and Arctic Radiation and Turbulence Interaction STudy (ARTIST)
Sea Ice (ASI). Analyses were performed for the Chukchi Sea in summer using KOrean Multi-Purpose SATellite-5
(KOMPSAT-5) Enhanced Wide-swath synthetic aperture radar (SAR) images. Ice/water maps were generated by
binary classification of texture features in the SAR images based on Random Forest, a rule-based machine
learning approach. SIC values estimated from the sea ice algorithms showed good correlation with those cal-
culated from the KOMPSAT-5 ice/water maps, but the root mean square error was larger than 10%. SIC values
estimated from the algorithms showed different error trends according to the KOMPSAT-5 SIC range. All al-
gorithms overestimated SIC values in open drift ice zones (KOMPSAT-5 SICs ranged from 0% to 15%). In
marginal ice zones (SICs ranged from 15% to 80%), the OSISAF SIC values were the least biased compared to
those from KOMPSAT-5. The NT algorithm largely underestimated SIC values in marginal ice zones, while the BT
and ASI algorithms overestimated them considerably. All algorithms, except for BT, underestimated SIC in
consolidated pack ice zones (SICs ranged from 80% to 100%). By analyzing the correlations of biases of SIC from
the algorithms with the numerical weather prediction (NWP) data from the European Reanalysis Agency Interim
reanalysis, it was found that the overestimation of NT and ASI SICs was largely influenced by atmospheric water
vapor content, while the underestimation of NT and OSISAF SICs was owing to ice surface melting. The over-
estimation of BT SICs was not significantly correlated with the NWP data. The underestimated SIC from the BT
and ASI algorithms for high SIC regions might be compensated by the atmospheric water vapor content. The
differences in SIC values estimated from each algorithm were due to different sensitivities to atmospheric water
vapor content in the regions with KOMPSAT-5 SIC lower than 40% and to ice surface melting in the regions with
higher KOMPSAT-5 SIC.

1. Introduction

Arctic sea ice is an important factor in the global climate system.
The rapid decrease in the Arctic sea ice extent is a significant indicator
of global warming (Johannessen et al., 2004; Screen and Simmonds,
2010; Kay et al., 2011; Mahlstein and Knutti, 2012; Stroeve et al.,
2012). Moreover, the change in Arctic sea ice extent influences biolo-
gical habitats and human activities in the region (Arrigo et al., 2008;
Grebmeier et al., 2010; Ho, 2010; Kovacs et al., 2011; Inoue et al.,

2015). As the most rapid change in Arctic sea ice extent typically occurs
in summer and autumn (Holland et al., 2006; Comiso et al., 2008;
Zhang et al., 2008; Overland and Wang, 2013), it is vital to observe sea
ice during these seasons. Since the 1970s, passive microwave (PM)
sensors have made observations of Arctic and Antarctic sea ice dis-
tributions based on the distinct microwave radiation properties be-
tween sea ice and open water. These observations have provided daily
sea ice concentration (SIC) values, which are defined as the ratio of sea
ice-covered area to the total area under consideration, with a grid size
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of 3–25 km (Steffen and Schweiger, 1991; Comiso et al., 1997; Markus
and Cavalieri, 2000; Comiso et al., 2003; Andersen et al., 2007; Spreen
et al., 2008). SICs derived from PM measurements have been used for
the estimation of sea ice area and extent (Cavalieri and Parkinson,
2012; Ivanova et al., 2014), and currently serve as the primary data
source for research on global climate change (Vinnikov et al., 1999;
Vihma, 2014; Swart et al., 2015) and ship navigation (Khon et al., 2010;
Y. Kim et al., 2014).

The Special Sensor Microwave Imager/Sounder (SSMIS) onboard
the Defense Meteorological Satellite Program (DMSP) satellites (Kunkee
et al., 2008), and the Advanced Microwave Scanning Radiometer-2
(AMSR2) onboard the Global Change Observation Mission-Water
(GCOM-W) satellite (Imaoka et al., 2010; Okuyama and Imaoka, 2015)
are representative PM sensors that have been observing sea ice since
2008 and 2012, respectively. The SSMIS continues the missions of the
Special Sensor Microwave/Imager (SSM/I), while the AMSR2 is a re-
placement and successor of the Advanced Microwave Scanning Radio-
meter (AMSR) and the Advanced Microwave Scanning Radiometer-
Earth Observing System (AMSR-E), respectively. There are many algo-
rithms for the estimation of SIC from PM measurements. Among them,
the NASA Team (NT) algorithm (Cavalieri et al., 1984) and a hybrid
algorithm (Breivik et al., 2001; Tonboe et al., 2016) based on the Bristol
(Smith, 1996) and Bootstrap (BT) frequency mode (Comiso, 1986;
Comiso et al., 1997) have operationally been used for the estimation of
SIC from SSMIS measurements at the National Snow and Ice Data
Center (NSIDC) and the European Organisation for the Exploitation of
Meteorological Satellites (EUMESAT)'s Ocean and Sea Ice Satellite Ap-
plication Facility (OSISAF), respectively. For operational estimates of
SIC using AMSR2 measurements, the Japan Aerospace Exploration
Agency (JAXA) uses the BT algorithm (Comiso, 1986) as a standard
algorithm. The Institute of Environmental Physics (IUP) at the Uni-
versity of Bremen and the Integrated Climate Data Center (ICDC) at the
University of Hamburg have provided operational AMSR2 SIC products
using the Arctic Radiation and Turbulence Interaction STudy (ARTIST)
Sea Ice (ASI) algorithm (Spreen et al., 2008), which was developed
based on high frequency channels of PM sensors. The IUP has also
provided BT SIC products based on AMSR2 measurements.

Many studies have evaluated the SICs estimated from such opera-
tional sea ice algorithms using satellite optical and synthetic aperture
radar (SAR) images. The NT SICs have been typically underestimated
during the Arctic summer (Lubin et al., 1997; Belchansky and Douglas,
2002; Markus and Dokken, 2002; Meier, 2005). Although BT SIC values
are typically higher than NT SICs, they have generally been under-
estimated in the summer season compared to optical and SAR image-
derived SIC values (Belchansky and Douglas, 2002; Meier, 2005). The
OSISAF algorithm typically retrieves erroneous SIC values in summer
(Tonboe et al., 2016). The performance of SIC retrievals from the ASI
algorithm was evaluated as being similar to that of the BT algorithm
(Spreen et al., 2008), showing a negative bias in the sea ice melting
season (Ivanova et al., 2015; Zhao et al., 2015). Based on previous
studies, most sea ice algorithms used for SIC estimation from PM
measurements show significant inaccuracies in the Arctic summer. As
varied channels with different footprints and sensitivities to atmo-
spheric water content and surface emissivity are used, the algorithms
can show different SIC estimation performances (Ivanova et al., 2015).

Medium-low resolution satellite optical images such as the
Moderate Resolution Imaging Spectroradiometer (MODIS) and the
Advanced Very High-Resolution Radiometer (AVHRR) data have been
widely used to evaluate sea ice algorithms owing to their wide coverage
and low cost (Belchansky and Douglas, 2002; Meier, 2005; Cavalieri
et al., 2006; Heinrichs et al., 2006; Cavalieri et al., 2010). However, the
optical images are limited by weather conditions and sun altitude; thus,
it is very difficult to ensure a high success rate of obtaining cloud-free
images with high sun elevation. Moreover, they have a spatial resolu-
tion of 500–1000m in visible wavelengths, which cannot detect sea ice
in small sizes, especially during the peak melting summer season when

ice floes are fragmented. SAR, an active remote sensing system using
microwave, can observe sea ice regardless of weather conditions and
sun altitude (Zakhvatkina et al., 2013; Dabboor and Geldsetzer, 2014;
Leigh et al., 2014; Han et al., 2016; Han et al., 2017). Current SAR
satellites can observe wide areas of a few square kilometers with high
spatial resolution, which can supplement the limitations of the med-
ium–low resolution satellite optical images.

As Arctic sea ice extent decreases dramatically (Comiso et al., 2008;
Cavalieri and Parkinson, 2012), the necessity for research on the eva-
luation of PM SIC data around the Northern Sea Route has been em-
phasized to enable the discovery of more economical, faster, and safer
sailing routes. Sea ice in the Chukchi Sea exhibits an earlier onset of
thawing in spring and a later onset of freezing in winter, than do other
regions in the Arctic Ocean (Woodgate et al., 2010). This is because the
heat from the Pacific Ocean is continually transported to the Chukchi
Sea through the Bering Strait. This flow moves older sea ice northwards
to be replaced by newly formed ice and warms the region. Such process
has intensified in recent years and has contributed to dramatic changes
in the extent of sea ice and even to its thickness in the Chukchi Sea
(Maslanik et al., 2007; Comiso, 2012; Stroeve et al., 2012). The heat
uptake from the Pacific Ocean and warm winds from the south tend to
transport water vapor into the Chukchi Sea (Serreze et al., 2016). This
impacts brightness temperature of open water measured by the PM
sensors and causes retrieval of erroneous SIC values (Gloersen and
Cavalieri, 1986; Andersen et al., 2006; Shin et al., 2008). Meanwhile,
the warm conditions in summer in the region can promote sea ice
melting, which is a major source of SIC underestimation from PM
measurements (Cavalieri et al., 1990; Comiso and Kwok, 1996; Ivanova
et al., 2015; Kern et al., 2016). Moreover, based on the regional char-
acteristics of sea ice in the region, the Chukchi Sea is the terminus of the
Northern Sea Route, where many vessels sail in summer by laying a
route using PM SIC products retrieved from the algorithms. However,
only a few studies have evaluated SIC products in this region.

The sea ice variability in the Chukchi Sea is closely linked to local
climate change (Overland et al., 2011; Stroeve et al., 2014) and the PM
SIC products have been used as a primary data to investigate the sea ice
variability (Cavalieri et al., 2003; Comiso et al., 2008; Cavalieri and
Parkinson, 2012). Therefore, it is necessary to evaluate the accuracy of
the PM SIC products in the Chukchi to support climate research and to
benefit shipping. Furthermore, the PM SIC values derived from the al-
gorithms have accuracy that varies according to the ranges of the va-
lues. This is because of different sensitivities of the algorithms to at-
mospheric effects and to ice surface conditions by the range of SIC
values (Comiso et al., 1997; Ivanova et al., 2015). The weekly ice charts
provided by the Russian Arctic and Antarctic Research Institute (AARI)
show that the range of SIC values in the Chukchi Sea in summer
(Fig. 1a) is typically wider than in winter (Fig. 1b). Therefore, thorough
verification of the accuracy of the PM SIC is required for the various
ranges of SIC for the region in summer.

In this study, we evaluated SICs estimated from four sea ice algo-
rithms implemented for PM measurements, namely NT, BT, OSISAF,
and ASI, using high resolution ice/water maps with high accuracy de-
rived from KOrean Multi-Purpose SATellite-5 (KOMPSAT-5) SAR
images obtained in the Chukchi Sea of the Arctic Ocean in summer. SIC
values were calculated from the KOMPSAT-5 ice/water maps, which
were then compared with those from the algorithms. The differences in
SICs derived from KOMPSAT-5 and the sea ice algorithms were ana-
lyzed statistically using different ranges of SIC values. The relationships
between the biases from the algorithms and numerical weather pre-
diction data were analyzed in order to investigate influences of atmo-
spheric effects and ice surface conditions on the SIC values. Section 2
presents the data used in this research. Section 3 describes the metho-
dology for the generation of ice/water maps from the KOMPSAT-5 SAR
images and for the evaluation of the SICs estimated from the sea ice
algorithms. Section 4 presents the results and discussion, and Section 5
concludes this paper.
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2. Data

2.1. KOMPSAT-5 SAR and KOMPSAT-2 MSC images

KOMPSAT-5, launched on August 22, 2013 and operated at the
Korea Aerospace Research Institute (KARI) is South Korea's first satellite
equipped with X-band SAR (with a center frequency of 9.66 GHz).
KOMPSAT-5 acquires images in seven observation modes with different
spatial resolutions: High Resolution (HR, a spatial resolution of 2.7m at
1-look), Enhanced HR (2m), Ultra HR (0.85m), Standard (ST, 3m),
Enhanced ST (2.5m), Wide Swath (WS, 20m), and Enhanced WS (EW,
6.25m) modes. Although the revisit period of KOMPSAT-5 is 28 days, it
can observe the same area twice a day based on swath overlay. The high
resolution and standard observation modes of KOMPSAT-5 cover a
5× 5 km and 30×30 km area, respectively, which would not be suf-
ficient to observe sea ice formed over a wide area. While the wide swath
observation modes capture an area of 100×100 km, the EW observa-
tion mode provides images with a spatial resolution of 6.25m and it is
capable of mapping sea ice with high spatial resolution and high ac-
curacy.

In this study, we used a total of 78 KOMPSAT-5 EW SAR images of
the Chukchi Sea, with HH polarization, obtained from 6 August to 9
September 2015 (Fig. 2). The SAR images were acquired by tracking the
location of ARAON, an ice breaking research vehicle (IBRV) operated
by the Korea Polar Research Institute (KOPRI) that sailed in the
Chukchi Sea from 1 to 22 August 2015. To provide sea ice images
around the sailing route to ARAON rapidly, SAR images were acquired
for both ascending and descending orbits at various radar incidence
angles (29° to 55°). All the SAR images were delivered as ellipsoidal
geocoded product with a pixel spacing of 6.25m.

To investigate the ice surface conditions, we obtained three high-
resolution optical images at the regions of different SIC in the Chukchi
Sea by KOMPSAT-2 Multi Spectral Camera (MSC) on 13, 15, and 19
August 2015. KOMPSAT-2 MSC provides visible images (in red, green
and blue bands) and a near-infrared image with a spatial resolution of
4m and a panchromatic image with 1m resolution. The imaging areas
of KOMPSAT-2 MSC are indicated by white, yellow, and green boxes in
Fig. 2. We generated pan-sharpened images with a spatial resolution of
1m by combining the high-resolution detail from the panchromatic
band with the lower resolution color information from the visible
bands, and then investigated the ice surface conditions. The KOMPSAT-
2 MSC images were not obtained simultaneously with KOMPSAT-5 SAR
images. We could not obtain high-resolution satellite optical images at
the same time as the KOMPSAT-5 SAR images due to heavy cloud cover
over the study area during SAR image acquisition. The KOMPSAT-2
MSC images for the white and yellow boxes in Fig. 2 were obtained one
day before the KOMPSAT-5 SAR images were acquired for the corre-
sponding regions. The MSC image for the green box was obtained three

days after the SAR image acquisition. Nevertheless, the KOMPSAT-2
MSC images were adequate to investigate the surface conditions of sea
ice in the study area based on high-spatial resolution.

2.2. Passive microwave sea ice concentrations

The NT (Cavalieri et al., 1984), OSISAF (Breivik et al., 2001; Tonboe
et al., 2016), BT (Comiso, 1986), and ASI (Spreen et al., 2008) algo-
rithms (Table 1) have been widely used for the retrieval of SIC using
SSMIS and AMSR2 measurements, of which SIC values were evaluated
in this research. The SSMIS is composed of 24 channels with frequencies
ranging from 19 to 183 GHz (Kunkee et al., 2008), while the AMSR2 has
seven dually polarized frequencies ranging from 6.9 to 89 GHz
(Okuyama and Imaoka, 2015) (Table 2). The SSMIS and AMSR2
channels have different footprint size with various frequencies.

The NT algorithm uses the tie points of first-year ice, multi-year ice,
and open water to estimate SICs for the polarization ratio (PR) at the
19 GHz (19.0 GHz of SSMIS and 18.7 GHz of AMSR2, respectively)
horizontally (H) and vertically (V) polarized channels, and the spectral
gradient ratio (GR) of the vertically polarized channels at 19 GHz and
37 GHz (37.0 GHz of SSMIS and 36.5 GHz of AMSR2, respectively)
(Tables 1 and 2) as normalized differences of the observed brightness
temperature (TB) (Cavalieri et al., 1984). The NSIDC provides NT SIC
products with a grid spacing of 25 km based on footprint sizes of the
SSMIS channels.

The BT algorithm estimates total ice concentration using the TB
measured at the 37 H and 37 V (polarization mode) or 19 V and 37 V
(frequency mode) channels (Table 1) (Comiso, 1986). SIC values of the
consolidated pack ice regions (i.e., high Arctic area) are typically de-
termined from TB values at the 37 H and 37 V channels. Meanwhile, the
gradient difference between 19 V and 37 V channels is used for the
seasonal ice area near the ice edge and open water. The BT algorithm
assumes only two surface types: sea ice and open water. We used the BT
SIC products with a grid spacing of 12.5 km based on AMSR2 mea-
surements, provided by the IUP at the University of Bremen.

The OSISAF algorithm retrieves SIC by a combination of algorithms
based on the BT frequency mode and Bristol algorithm, in which TB
values measured at the vertically polarized channels at 19 GHz and the
dually polarized channels at 37 GHz are used (Table 1) (Breivik et al.,
2001; Tonboe et al., 2016). In the OSISAF algorithm, the BT frequency
mode is used over open water, while the Bristol algorithm is used over
sea ice. The SIC values are estimated by an average, weighted linearly
between the two algorithms at intermediate concentrations up to 40%
measured from the BT frequency mode (Tonboe et al., 2016). For the
estimation of higher SICs, only the Bristol algorithm is used in the
OSISAF algorithm. The EUMESAT provides SIC products with a grid
spacing of 10 km using the OSISAF algorithm based on the SSMIS
measurements, which are used in this study.

Fig. 1. Ranges of SIC values for the Chukchi Sea derived from the AARI weekly ice charts released on (a) 18 August 2015 (summer) and (b) 1 December 2015 (winter).
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The ASI algorithm uses the difference of dually polarized TB values
measured at high frequency channels (89 GHz of AMSR2) to retrieve
SIC values (Table 1) (Spreen et al., 2008). Sea ice shows small differ-
ences between the TB measured at 89 V and 89 H, while open water
shows large differences. Because high frequency channels are used, the
ASI algorithm is sensitive to weather conditions. It also offers SIC
products with finer spatial resolution than other algorithms employing
lower frequency channels (Table 1). Moreover, the TB values measured
at high frequency channels are potentially less influenced by the snow
layer on the ice surface than those at lower frequencies. The IUP

provides ASI SIC products with grid sizes of both 6.25 km and 3.125 km.
In this study, we used ASI SIC products with a grid size of 3.125 km
produced by the IUP.

In most sea ice algorithms, the presence of atmospheric water
content, cloud liquid water, and wind-roughened water surface are
major sources of false indications of sea ice. To remove the mis-
identification of sea ice due to atmospheric effects, the algorithms,
except for the OSISAF algorithm, use the same weather filters based on
TB values measured at the 19 V, 22 V, and 37 V channels (Gloersen and
Cavalieri, 1986; Cavalieri et al., 1995; Spreen et al., 2008). The weather
filters can reduce atmospheric effects during the retrieval of the SICs.
However, they can overestimate SIC values for regions with low SICs or
new ice, especially at the ice edge (Andersen et al., 2006). The spatial
resolutions of the 19 V, 22 V, and 37 V channels used in the weather
filters are lower than the grid size of ASI SIC product (3.125 km), which
can lead to overestimation of SIC near ice edges owing to lack of cov-
erage by weather filters (Spreen et al., 2008). The OSISAF uses in-
formation about atmospheric conditions such as atmospheric water
vapor content, cloud liquid water and air temperature derived from a
radiative transfer model to reduce weather impacts on the measured TB
values (Tonboe et al., 2016).

2.3. ERA-Interim reanalysis data

Atmospheric water vapor, cloud liquid water and wind-roughened
open water surface can increase the TB over open water, and are the
major sources of overestimation of SIC by the sea ice algorithms,
especially in regions of low SIC (Gloersen and Cavalieri, 1986;
Andersen et al., 2006). Meanwhile, ice surface melting is the main
cause of underestimation of SIC by the algorithms because it decreases
TB over sea ice (Ivanova et al., 2015). To analyze the influences of at-
mospheric effects and ice surface melting on the SIC values from the
algorithms, the total columnar water vapor (TCWV), total cloud liquid
water (TCLW), 10m wind speed, and air temperature at the 925 hPa
pressure level were used. These were part of the numerical weather
prediction (NWP) data in the European Reanalysis Agency (ERA)

Fig. 2. A mosaic of the KOMPSAT-5 EW SAR images used in this study. The yellow, white, and green boxes represent imaging areas of KOMPSAT-2 MSC on 13, 15, and 19 August 2015.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Sea ice algorithms for the sea ice concentration estimates evaluated in this study.

Name Acronym Channels used Grid size of SIC products (km)

NASA Team NT 19 H, 19 V, 37 V 25
Bootstrap BT 19 V, 37 H, 37 V 12.5
OSISAF OSISAF 19 V, 37 H, 37 V 10
ARTIST Sea Ice ASI 89 H, 89 V 3.125

Table 2
Frequencies and footprints of the SSMIS and AMSR2 channels used for
sea ice algorithms listed in Table 1.

Frequency (GHz) Footprint (km×km)

SSMIS
19.3 45× 70
22.2 40× 60
37.0 30× 38
85.5 14× 16
91.7 13× 16

AMSR2
18.7 14× 12
23.8 15× 26
36.5 7× 12
89.0 3× 5
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Interim reanalysis products (Dee et al., 2011). The ERA Interim pro-
vides multi-decadal (from 1979 to present) reanalysis fields of global
integrated and coherent climate observation by using a data assimila-
tion system, and it has been widely used to investigate the influences of
atmospheric conditions on sea ice variability (Screen and Simmonds,
2010; Cuzzone and Vavrus, 2011; Serreze et al., 2016). The grid re-
solution of the ERA Interim reanalysis data is 0.75° in latitude×0.75°
in longitude with 60 vertical pressure levels from ground to 0.1 hPa.

The TCWV and 10m wind speed was provided as 3-hourly fields
from the ERA Interim reanalysis, while the TCLW was provided as 6-
hourly fields. As daily SIC products from the sea ice algorithms were
used, the reanalysis fields were averaged daily. In summer, the use of
air temperature at 925 hPa is preferred over the surface air temperature
(i.e., 2 m air temperature provided by the ERA Interim) to investigate
ice surface conditions. This is because the surface air temperature in
summer is constant regardless of thermal energy input, while the air
temperature at 925 hPa indicates the thermal state of the lower tropo-
sphere and thus is appropriate to help assess ice surface melting
(Serreze et al., 2016). High air temperature at 925 hPa in summer
(June–August) can promote sea ice melting (Serreze et al., 2003). In
this research, the values of the air temperature at 925 hPa were aver-
aged from June to July 2015 because the KOMPSAT-5 SAR images were
obtained from August–September 2015. These were used to investigate
the influence of ice surface melting on the SIC values provided by the
algorithms. Fig. 3a and b shows the Arctic June–July mean air tem-
perature at 925 hPa from 1979 to 2014 and the June–July mean air
temperature anomalies in 2015. The anomalies were calculated with
respect to the period June–July of 1979–2014. The black dotted box in
Fig. 3 corresponds to the KOMPSAT-5 SAR imaging coverage shown in
Fig. 2. In 2015, the mean June–July air temperature over the Chukchi
Sea was 1–4 °C higher than during 1979–2014. Such positive anomalies
were potentially caused by the increasing uptake of ocean heat flux
from the Pacific Ocean by the Bering Strait and the seasonal ice/ocean
albedo feedback in spring (Woodgate et al., 2010; Serreze et al., 2016),
which could promote ice surface melting later (i.e., August and Sep-
tember).

The wind speed and air temperature measured by the meteor-
ological sensor mounted on the IBRV ARAON could not be used because
the distance between the KOMPSAT-5 SAR imaging area and the IBRV

was> 100 km, except for a few SAR images. Moreover, the KOMPSAT-
5 SAR images were acquired from 6 August to 9 September 2015 but
the voyage of the IBRV ARAON ended on 22 August 2015.

3. Methodology

This section describes the methods for generating ice/water maps
from KOMPSAT-5 EW SAR images using a machine learning-based
binary classification. The methods for statistical evaluation of SIC va-
lues estimated from the algorithms using the KOMPSAT-5 ice/water
maps are also presented. Fig. 4 shows the data processing flows for this
study.

3.1. Generation of KOMPSAT-5 ice/water maps

To retrieve SIC values from the KOMPSAT-5 EW SAR images, we
generated ice/water maps using a sea ice mapping model developed by
Han et al. (2017). The sea ice mapping model classifies a KOMPSAT-5
EW SAR image into sea ice and open water based on a binary classifi-
cation of various SAR texture features by Random Forest (RF). RF is a
rule-based machine learning approach (Breiman, 2001) that has been
widely used for various remote sensing applications including land
cover/land use classification (Hayes et al., 2014; Rhee et al., 2014;
Torbick and Corbiere, 2015), vegetation mapping (Li et al., 2013; Long
et al., 2013; Kumar and Sinha, 2014; Immitzer et al., 2016), oceano-
graphic and hydrologic studies (Y.H. Kim et al., 2014; Liu et al., 2015;
Song et al., 2015), atmospheric research (Han et al., 2015; Lee et al.,
2017), and sea ice mapping (Kim et al., 2015; Han et al., 2016; Han
et al., 2017). RF makes rule-based classification trees by generating
multiple bootstrapped samples of the original training data and creating
a series of no-pruning classification and regression trees (CART) that
are non-parametric decision trees (Breiman, 2001). Independent trees
are grown by a randomly selected subset of the training samples for
each tree and a randomly selected subset of splitting variables at each
node of the tree. These processes overcome a key limitation of CART,
which is that classification results are greatly influenced by the con-
figuration and quality of training samples. RF produces the relative
importance of input variables by the mean decrease accuracy (MDA),
which is the average increase in the misclassification rate as a

Fig. 3. (a) Arctic June–July mean air temperature at 925 hPa during 1979–2014. (b) June–July mean air temperature anomalies in 2015, which were calculated with respect to
1979–2014. The white lines represent coastline and the black lines indicate the contours of values. The black dotted box corresponds to the coverage by KOMPSAT-5 SAR images of the
Chukchi Sea.
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percentage. RF trains quickly and outperforms artificial neural net-
works when faced with a limited number of training samples and a
large number of input variables (Cracknell and Reading, 2014).

In the sea ice mapping model, a total of 12 texture features com-
puted from the KOMPSAT-5 EW SAR images—average, standard de-
viation, minimum, and maximum values of the backscattering intensity,
and energy, entropy, correlation, contrast, homogeneity, autocorrela-
tion, dissimilarity, and maximum probability of the gray-level co-oc-
currence matrix (GLCM) were used as input variables (Han et al., 2017).
The GLCM is described by

∑ ∑=
=

−

=

−

S i j P i j P i j( , ) ( , )/ ( , )d α d α
i

k

j

k

d α, ,
0

1

0

1

,
(1)

where Sd, α is an element of GLCM, Pd, α is the number of neighbor pixel
pairs separated by a pixel distance d (called the interpixel distance), k is
the number of quantized gray-levels in the image, and α is the or-
ientation of the pixel pairs (Haralick et al., 1973; Soh and Tsatsoulis,
1999; Zakhvatkina et al., 2013). Each element (i, j) of the GLCM re-
presents the probability that two pixels, separated by an interpixel
distance, have gray levels i and j. The number of rows and columns of
the GLCM is equal to the number of gray-levels. The optimal number of
gray-levels typically used is 16, which is efficient for the calculation
time of texture features and sufficient to represent textures for classi-
fication (Soh and Tsatsoulis, 1999; Zakhvatkina et al., 2013). Averaging
the GLCM for four directions (α of 0°, 45°, 90°, and 135°) is preferred for
recognizing the position and possible rotation of the sea ice (Clausi,
2002). Table 3 shows the formulas of the GLCM texture features (Soh

and Tsatsoulis, 1999) used in this study.
The texture features derived from SAR intensity and the GLCM have

been widely used for sea ice detection from SAR images because they

Fig. 4. Processing flow of the evaluation of SIC estimated by sea ice algorithms based on the KOMPSAT-5 ice/water maps.

Table 3
Formulas of the GLCM texture features (Soh and Tsatsoulis, 1999).
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contain information on the spatial distribution of backscattering, which
differs substantially between sea ice and open water (Soh and
Tsatsoulis, 1999; Clausi, 2001; Zakhvatkina et al., 2013; Leigh et al.,
2014; Ressel et al., 2015; Han et al., 2016; Han et al., 2017). KOMPSAT-
5 EW SAR images were acquired at various incidence angles, so that the
values of texture features over sea ice and open water computed from
the backscattering intensity itself could vary as a function of the in-
cidence angle (Mäkynen and Hallikainen, 2004; Ressel et al., 2015;
Pogson et al., 2017). In particular, open water can show similar or
higher backscattering than sea ice under strong wind conditions, which
is noticeable at low incidence angle (Ressel et al., 2015; Pogson et al.,
2017). In C-band HH-polarized SAR image, open water can show higher
backscattering than sea ice at incidence angle below 35° under strong
wind condition (Pogson et al., 2017). The KOMPSAT-5 SAR is in X-
band, which has shorter wavelength than the C-band, and the observed
backscattering is more sensitive to the surface roughness. However, the
wind conditions have little effects on the backscattering in X-band at
high incidence angles (> 30°) (Ressel et al., 2015). As the KOMPSAT-5
SAR images were acquired at the incidence angle higher than 29°, we
computed the texture features from the normalized SAR intensity values
by assuming that the backscattering of sea ice is typically stronger than
that of open water, regardless of the incidence angle. Prior to the
computation of texture features, a 2×2 block averaging of the nor-
malized SAR images was performed to reduce speckle noise.

Han et al.'s (2017) sea ice mapping model adopted texture features
computed using a 10×10 non-overlapping pixel window and a d value
of 1. A total of 84,000 samples (i.e., elements of a texture) were ex-
tracted by visual inspection from the SAR images (42,000 samples for
sea ice and 42,000 samples for open water). Seventy percent of the total
samples were randomly extracted and used as a training dataset, while
the remaining samples were used as a test dataset to validate the sea ice
mapping model. The non-overlapping and even-numbered (10× 10)
pixel window used by Han et al. (2017) has a disadvantage in spatial
resolution of the resulting ice/water maps compared to an odd-num-
bered sliding pixel window. Nevertheless, it contributed to efficiency in
the computational costs of texture features from the SAR images, and
the accuracy of the resulting maps was very high. In this study, we
generated ice/water maps using the same KOMPSAT-5 EW SAR images,
data processing flow, and RF-based sea ice mapping model presented in
Han et al. (2017). The KOMPSAT-5 ice/water map has a grid size of
125m, which inherits the grid size of texture features determined by a
10×10 non-overlapping pixel window for the 2×2 block averaged
SAR intensities with a grid spacing of 6.25m. As we used the same SAR
images and sea ice mapping model as Han et al. (2017), the ice/water
maps have the same accuracy in sea ice mapping as reported in that
study (Table 4). The ice/water maps showed very high overall accuracy
and Kappa coefficient (99.24% and 98.48%, respectively). The user's
and producer's accuracies for sea ice (99.64% and 98.83%, respec-
tively) and for open water (98.84% and 99.64%, respectively) were
found to be very high, as well. Such high performance in the sea ice and
open water mapping is due to the superior classification strategy of RF
and to the striking differences in the texture features of ice and water

(Han et al., 2016; Han et al., 2017). Han et al. (2017) evaluated the
performance of the sea ice and open water classification from the sea
ice mapping model by comparing the SICs of the model-derived ice/
water maps with those of the AARI weekly ice charts. They reported
that the SICs derived from the sea ice mapping model showed a mean
difference of −8.6% with a standard deviation of 11.6% (range of the
difference: −35.8% to 30.1%) from SIC values in the ice charts. Such
difference was mainly attributed to the uncertainty of the SICs in the ice
charts, which are typically provided as a range of values that can span
up to 20% and possibly occurring at times different from the KOMPSAT-
5 SAR image acquisition. As the ice charts are weekly products, the
maximum difference in time between the ice charts and the KOMPSAT-
5 SAR image acquisitions was 3.5 days. Therefore, SIC values derived
from the KOMPSAT-5 ice/water maps can be used as reliable validation
data for the SICs from the sea ice algorithms implemented for PM
measurements.

3.2. Statistical evaluation of PM SICs

The SIC data products from the four sea ice algorithms have dif-
ferent grid sizes. The BT, OSISAF, and ASI SIC data were resampled to
25 km using the nearest-neighbor scheme to match the grid size of the
NT SIC product. From the KOMPSAT-5 ice/water maps, SIC was cal-
culated in a 20× 20 pixel window corresponding to a grid size of
25× 25 km where the area overlapped with the PM SIC. Values of the
correlation coefficient (R), mean bias (mean error), standard deviation
of errors (SE), and root mean square error (RMSE) of SICs from the
algorithms were computed by comparing with the SICs from the
KOMPSAT-5 ice/water maps. Errors in the SICs from the algorithms
were calculated by subtracting the corresponding values from the ice/
water map. We also performed a paired sample t-test at the 95% con-
fidence level to investigate whether there were statistically significant
differences between the SIC values retrieved from the sea ice algorithms
and from the KOMPSAT-5 ice/water maps.

The sea ice algorithms can retrieve different values from varied
ranges of SIC values owing to the use of different channels and indices
for SIC estimation. In this study, we defined three sea ice regions based
on different SIC thresholds computed from the KOMPSAT-5 ice/water
maps: an open drift ice zone (ODIZ) corresponding to KOMPSAT-5 SICs
ranging from 0% to 15%, a marginal ice zone (MIZ) corresponding to
KOMPSAT-5 SICs ranging from 15% to 80%, and a consolidated pack
ice zone (CPIZ) corresponding to KOMPSAT-5 SICs ranging from 80% to
100% (Stroeve et al., 2016). Statistical analyses of the SIC values esti-
mated by the algorithms were performed for four cases: one for all SIC
ranges, the second for the ODIZ, the third for the MIZ, and the last for
the CPIZ. We also compared the SICs estimated from the algorithms for
all SIC ranges, the ODIZ, the MIZ, and the CPIZ.

A positive bias of SIC from the algorithms means that the open
water concentration (OWC) was underestimated compared to that de-
rived from the KOMPSAT-5 SAR. Meanwhile, a negative bias from the
algorithms suggests that SIC was underestimated. In this research, the
false negative ratio of open water (FNROW) and sea ice (FNRSI) was
considered for investigating the influences of atmospheric effects and
ice surface conditions on the biases of PM SICs. The FNROW is the ratio
of underestimated PM OWC to KOMPSAT-5 OWC, while FNRSI is the
ratio of underestimated PM SIC to KOMPSAT-5 SIC. The terms FNROW

and FNRSI are computed as

= − <FNR (PM SIC K5SIC)/K5OWC for K5SIC PM SICOW (2)

= − >FNR (K5SIC PM SIC)/K5SIC for K5SIC PM SICSI (3)

where K5 SIC and K5 OWC are the SIC and OWC computed from the
KOMPSAT-5 ice/water maps, respectively. The FNROW and FNRSI have
values ranging from 0 to 1. The calculated value of FNROW (or FNRSI) is
1 when the algorithm detects open water (or sea ice) correctly, and the
calculated value is 0 if open water (or sea ice) is completely

Table 4
Accuracy assessment of the KOMPSAT-5 sea ice mapping model based on Random Forest
(Han et al., 2017).

Classified as Reference

Sea ice Open water Row total User's accuracy (%)

Sea ice 12,453 44 12,497 99.64
Open water 147 12,556 12,703 98.84
Column total 12,600 12,600 25,200
Producer's accuracy (%) 98.83 99.65
Overall accuracy (%) 99.24
Kappa coefficient (%) 98.48
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misinterpreted (as its opposite) in the algorithm. The values of FNROW

and FNRSI from the algorithms were compared with the daily averaged
TCWV, TCLW and 10m wind speed on the same day and location as the
PM SICs, and with the June–July 2015 mean air temperature at 925 hPa
at the same location as the grids of the PM SICs.

4. Results and discussion

Ice/water maps were generated from the KOMPSAT-5 EW SAR
images using the RF-based sea ice mapping model. Examples of the ice/
water maps are shown in Fig. 5. The wind speeds presented in Fig. 5
were measured by a meteorological sensor mounted on the IBRV
ARAON. The IBRV ARAON was not captured in the SAR images and was
located about 50 km away from the imaging regions. The location of
IBRV ARAON was 77° 0′ 46″ N, 179° 58′ 53″ W and 75° 54′ 29″ N, 168°
55′ 33″ W at the acquisition time of Fig. 5a and b, respectively.
Nevertheless, the wind speed measured at the IBRV ARAON could be
used to account for ocean surface conditions in the SAR images because
the spatial variation of wind speed would be insignificant. The 10m
wind speed predicted by the ERA Interim data was 4.8m s−1 and

5.2 m s−1 for the center location at the closest time of the SAR image
acquisitions, which is a large deviating from the wind speed measured
at the IBRV ARAON. The SAR image acquisition time for Fig. 5a and b
was 17:29 UTC and 15:46 UTC, respectively, on the same day. As the
10m wind speed from the ERA Interim is provided in 3-hourly fields,
there was a time difference longer than 30min between the SAR image
acquisitions and the wind speed predictions. The temporal variation of
wind speed is expected to be larger than its spatial variation. Therefore,
the wind speed measured at the IBRV ARAON would be more suitable
for explaining the ocean surface conditions in the target areas. The ice/
water maps could discriminate between the sea ice and open water,
even for the SAR image including wind-induced rough water in regions
with low SICs (Fig. 5c and d). This is because of the distinct texture
features of sea ice and open water, and the excellent classification
performance by RF (Han et al., 2017). Sea ice areas below 125× 125m
were misclassified as open water in the ice/water maps because the ice
floes were not large enough to compute texture features indicating sea
ice. Therefore, SIC values derived from the KOMPSAT-5 ice/water maps
were slightly underestimated compared to visual observations of the
SAR images, especially for the ODIZ, where very small ice fragments are

Fig. 5. Examples of (a and b) KOMPSAT-5 EW SAR images and (c and d) corresponding ice/water maps under different wind conditions. The wind speed was measured by a meteor-
ological sensor mounted on IBRV ARAON, which sailed near the SAR imaging area (but was not captured in the images) at the image acquisition time.
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common. The KOMPSAT-2 MSC image, with a spatial resolution of 1m,
obtained for the ODIZ on 19 August 2015 (Fig. 6a and d) shows that the
area of sea ice in this region was very small.

A total of 631 SIC values were derived from the KOMPSAT-5 ice/
water maps. Fig. 7 shows the distribution of the values computed from
the ice/water maps, for which the ODIZ, MIZ, and CPIZ are represented
in blue, green, and red colors, respectively. Approximately 90% of the
KOMPSAT-5 SIC values were extracted for the ODIZ (310 values) and
MIZ (262 values). The number of SIC values for the CPIZ was 59, far less
than that for the ODIZ and MIZ. The required number of SIC values for
both parametric and nonparametric tests for comparing two paired

samples was determined to be> 35 by power analysis conducted in
G*Power (Faul et al., 2007) using an effect size of 0.5, an alpha of 0.05
and a power of 0.8. Therefore, the number of SIC values for the CPIZ
was sufficient to statistically evaluate the values retrieved from the sea
ice algorithms for the Chukchi Sea in summer.

4.1. Summary statistics of the PM SIC evaluation

Prior to statistical evaluation of the SIC values from the sea ice al-
gorithms, we investigated the normality of SIC values from the algo-
rithms and KOMPSAT-5 ice/water maps for the cases in all the SIC

Fig. 6. KOMPSAT-2 MSC images obtained for (a) the ODIZ on 19 August 2015, for (b) the MIZ on 15 August 2015, and for (c) the CPIZ on 13 August 2015. (d, e and f) Enlarged images
corresponding to the red box in (a), (b) and (c), respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Distributions of KOMPSAT-5 SIC values. Those corresponding to the OPIZ, MIZ, and CPIZ are shown in blue, green, and red, respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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regions, ODIZ, MIZ, and CPIZ based on the Kolmogorov–Smirnov (K–S)
test (Lilliefors, 1967) at a probability level of 95%. SIC values from all
algorithms and KOMPSAT-5 for all cases, except SIC values for the CPIZ
estimated from the ASI algorithm, showed p-values lower than 0.05 and
did not follow a normal distribution (Table 5). This means that the SIC
values should be evaluated by non-parametric statistical analyses.
Therefore, we computed the Spearman correlation coefficient (Pirie,
2006) and performed a Wilcoxon signed rank test (a nonparametric
statistical hypothesis test used when comparing two paired samples)
(Wilcoxon, 1945). The SIC values retrieved from the sea ice algorithms
and KOMPSAT-5 showed vastly different descriptive statistics such as
mean, median, maximum value, standard deviation, skewness, and
kurtosis (Table 5).

Comparisons of SIC values estimated from the algorithms and
KOMPSAT-5 for all SIC ranges are shown in Fig. 8. The vertical lines in
each scatter plot correspond to KOMPSAT-5 SIC values of 15% and
80%, respectively, which were the thresholds used for separating ice
regions into the ODIZ, MIZ, and CPIZ. The Z-statistic and p-value, which
determine whether there is a statistically significant difference between
the given two datasets in each scatter plot, were derived from the
Wilcoxon signed rank test at a confidence level of 95%. The critical
values of the Z-statistic to determine the difference between two data-
sets varies depending on the number of samples. Meanwhile, p-values
below 0.05 mean that there is a statistically significant difference be-
tween the two datasets at a confidence level of 95%. All algorithms
estimated a strong correlation between SIC values and KOMPSAT-5 SIC
values (R values higher than 0.8). However, the results of the Wilcoxon
signed rank test indicated statistically significant differences between
the SIC values retrieved from the algorithms and those from KOMPSAT-
5. The values of SE and RMSE were higher than 10% for all algorithm-
retrieved SIC values, which were positively biased compared to the SIC
values from KOMPSAT-5 (i.e., overestimation of SIC), except for the NT
SIC values, which were slightly negatively biased (Fig. 8a).

SIC values retrieved from the BT algorithm and KOMPSAT-5 showed
the highest correlation coefficient (0.91), while BT SIC values had the
largest positive bias (12.64%) and showed the largest RMSE (17.93%)
(Fig. 8b). Meanwhile, the comparison between the OSISAF and
KOMPSAT-5 SIC values showed the lowest RMSE and bias (11.22% and
1.82%, respectively) (Fig. 8c). SIC values retrieved from the ASI algo-
rithm showed the second highest R value (0.90%) (Fig. 8d). However,
they showed the second largest RMSE (15.17%) and the largest SE

(13.70%), which was due to the large deviation in SIC values from
KOMPSAT-5 within an SIC range from 10% to 60%.

The scatter plots of Fig. 8 and the descriptive statistics of Table 5
intuitively show that SIC values retrieved from the sea ice algorithms
have different biases and errors according to the range of SIC values.
This is mainly attributed to different channels and principles for iden-
tifying sea ice and open water in the algorithms and to the different
surface emissivity for different SIC ranges. Moreover, the algorithms
can show different performance of SIC retrieval due to the presence of
melt ponds, leads, thin ice, and surface effects on ice and water. In the
following section, we present and discuss the different performance of
the algorithms for different ranges of SIC.

4.2. Evaluation of PM SICs according to KOMPSAT-5 SIC range

In this section, we report the results of statistical comparisons of SIC
values from the KOMPSAT-5 ice/water maps with those from the sea ice
algorithms for the ODIZ, MIZ and CPIZ, respectively. The biases of the
algorithms were investigated. The contributions of atmospheric condi-
tions expected to affect the biases and differences in the PM SICs are
discussed in Section 4.3.

4.2.1. Open drift ice zone
The SIC values retrieved from all sea ice algorithms in the ODIZ

were positively biased and significantly different from the KOMPSAT-5
SIC values (Table 6). The values of BT SIC showed the greatest bias
(10.14%) and the largest value of RMSE (15.64%) compared to the
KOMPSAT-5 SIC values. The second largest value of RMSE was com-
puted between the ASI and KOMPSAT-5 SIC values (11.03%). The NT
and OSISAF algorithms-derived SIC values showed similar RMSE values
(8.44% and 8.29%, respectively).

The major source of the positive biases from the algorithms can be
attributed to atmospheric effects such as atmospheric water vapor,
cloud liquid water, and the wind-induced rough surface of open water
(Gloersen and Cavalieri, 1986; Andersen et al., 2006; Shin et al., 2008).
The weather in the ODIZ is prone to short-term changes (Cavalieri et al.,
1995), especially in the Arctic summer. Atmospheric effects over open
water increase TB (Andersen et al., 2006), which is a reason for the
overestimation of SIC by the algorithms. The positive biases from all
algorithms were predominantly observed in the regions with
KOMPSAT-5 SIC lower than 40% (Fig. 8), which could be mainly

Table 5
Descriptive statistics of SIC values from KOMPSAT-5 and sea ice algorithms for all SIC ranges, as well as for the ODIZ, MIZ, and CPIZ.

SIC data Mean (%) Median (%) CV Min. (%) Max. (%) Skewness Kurtosis K–S

All SIC ranges KOMPSAT-5 25.63 15.81 1.04 1.02 99.97 1.37 0.95 ns

NT 23.58 19.2 0.81 0.00 86.25 1.07 0.78 ns

BT 38.23 37.47 0.76 0.00 100.00 0.53 −0.54 ns

OSISAF 27.45 20.66 0.89 0.00 100.00 1.48 1.59 ns

ASI 32.16 25.13 0.87 0.00 98.40 0.57 −0.91 ns

ODIZ KOMPSAT-5 6.18 5.20 0.65 1.02 14.92 0.52 −0.95 ns

NT 10.77 11.00 0.77 0.00 42.00 0.37 −0.85 ns

BT 16.31 13.00 0.88 0.00 56.14 0.55 −0.80 ns

OSISAF 11.60 10.83 0.67 0.00 53.32 0.89 1.95 ns

ASI 10.54 6.43 1.17 0.00 69.97 1.78 3.51 ns

MIZ KOMPSAT-5 35.81 30.12 0.47 15.21 79.54 0.76 −0.53 ns

NT 30.31 28.80 0.42 0.00 68.00 0.38 0.07 ns

BT 53.25 50.17 0.36 0.00 100.00 0.34 0.68 ns

OSISAF 35.18 31.17 0.53 1.53 97.81 1.29 1.90 ns

ASI 47.44 48.09 0.41 2.87 87.44 −0.03 −1.01 ns

CPIZ KOMPSAT-5 93.44 95.93 0.06 81.13 99.97 −0.78 −0.74 ns

NT 67.78 70.80 0.15 41.20 82.40 −1.15 0.60 ns

BT 94.96 98.18 0.08 77.10 100.00 −1.52 0.79 ns

OSISAF 85.85 87.31 0.17 46.89 100.00 −1.01 0.25 ns

ASI 84.91 84.64 0.09 68.88 98.40 0.01 −0.63 *

CV: coefficient of variation; K–S: Kolmogorov–Smirnov test (p=0.05), where (*) indicates that the dataset fits a normal distribution while (ns) indicates that the dataset significantly
deviates from a normal distribution.
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caused by atmospheric effects over open water. The algorithms using 19
H and 37 H channels, such as the NT and OSISAF algorithms, are more
sensitive to atmospheric effects than those using 19 V and 37 V chan-
nels, such as the BT frequency mode (Andersen et al., 2006). For the SIC
estimation in the ODIZ, the frequency mode is applied for the BT al-
gorithm. However, the BT algorithm overestimated SIC more than other
algorithms.

The overestimation of SIC by the algorithms may be a result of in-
accuracy of the KOMPSAT-5 ice/water maps. Some drift ice smaller
than a grid size of the ice/water maps could be classified as open water
(Han et al., 2017) but is already recognized in the PM measurements.
Some SIC values from the algorithms were estimated as 0% for low
values of KOMPSAT-5 SIC. This was caused by the use of weather filters
that can lead to cut-off of low SIC values by reducing the influence of
atmospheric water content and wind on the microwave emissivity of ice

and water surfaces (Beitsch et al., 2015).

4.2.2. Marginal ice zone
For the MIZ, SIC values estimated from all algorithms were well

correlated with those from KOMPSAT-5, with R values above 0.6
(Table 7). Meanwhile, statistically significant differences exist between
algorithm-derived SIC values, except for OSISAF SIC values, and
KOMPSAT-5 SIC values. The OSISAF SIC values showed the smallest
bias (−0.63%) and the second smallest value of RMSE (13.20%)
compared to the KOMPSAT-5 SIC values (Table 7). The small bias and
RMSE of OSISAF SIC values may be due to overestimation of the net ice
surface fraction (i.e., SIC excluding melt ponds) by the algorithm
(Ivanova et al., 2015), rather than accurate estimations of SICs for the
MIZ in summer. Melt ponds are a common feature on the surface of
Arctic sea ice during the summer (Perovich et al., 2002; Rösel et al.,

Fig. 8. Comparisons of SIC values estimated from KOMPSAT-5 with those from the algorithms (a) NT, (b) BT, (c) OSISAF, and (d) ASI. The vertical dotted lines in each scatter plot
correspond to KOMPSAT-5 SIC values of 15% and 80%, respectively.

Table 6
Comparison of SIC values estimated from KOMPSAT-5 with those from the sea ice algo-
rithms for the ODIZ.

Algorithm Statistic

R Bias (%) SE (%) RMSE (%) Z p

NT 0.54 4.59 7.09 8.44 −9.98 < 0.001
BT 0.69 10.14 11.93 15.64 −11.37 < 0.001
OSISAF 0.61 5.43 6.28 8.29 −12.31 < 0.001
ASI 0.74 4.37 10.14 11.03 −5.37 < 0.001

Table 7
Comparison of SIC values estimated from KOMPSAT-5 and the sea ice algorithms for the
MIZ.

Algorithm Statistic

R Bias (%) SE (%) RMSE (%) Z p

NT 0.65 −5.50 11.88 13.07 −6.76 <0.001
BT 0.78 17.44 12.43 21.41 −13.66 <0.001
OSISAF 0.68 −0.63 13.21 13.20 −1.34 0.181
ASI 0.62 11.63 15.49 19.35 −10.36 <0.001
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2012; Kim et al., 2013; Han et al., 2016). Fig. 6b and c shows the
KOMPSAT-2 pan-sharpened images for the MIZ and the CPIZ, respec-
tively, in the Chukchi Sea on 13 and 15 August 2015. We confirmed
from Fig. 6e that many melt ponds formed on the sea ice in the MIZ. The
positive anomalies in the June–July mean air temperature at 925 hPa in
2015 over the Chukchi Sea (Fig. 3b) also supported the notion that ice
surface melting occurred in the region. As the microwave radiation
characteristics of melting ice surfaces are similar to those of open water,
this is a significant source of SIC underestimation from most sea ice
algorithms for PM measurements (Cavalieri et al., 1990; Comiso and
Kwok, 1996; Ivanova et al., 2015; Kern et al., 2016). Meanwhile, the BT
frequency mode and Bristol algorithm tend to overestimate the net ice
surface fraction owing to elevated TB values of 37 V for wet snow over
ice between melt ponds (Ivanova et al., 2015; Kern et al., 2016).

The NT SIC values showed the smallest RMSE value (13.07%) and
were underestimated with a mean bias value of −5.50% (Table 7). The
underestimation of SIC occurred more frequently for regions with high
SICs (Fig. 8). For regions with lower SICs (SICs ranging from 15% to
40%), the NT SIC values were slightly overestimated, possibly owing to
atmospheric water vapor contents. However, the NT SIC values were
typically underestimated in regions with higher SICs because of the
presence of melt ponds, which are a major source of SIC under-
estimation by the NT algorithm in summer. Such ponds show a sig-
nature similar to that of open water for the NT algorithm (Comiso et al.,
1997; Agnew and Howell, 2003; Ivanova et al., 2015; Kern et al., 2016).

SIC values estimated from the BT and ASI algorithms were largely
positively biased for the MIZ compared to KOMPSAT-5 SIC values
(17.44% and 11.63%, respectively). For the ASI SICs, the over-
estimation occurred more frequently in regions with lower SICs (Fig. 8).
SIC values from the 89 GHz measurements were greatly affected by the
atmospheric water content, and were significantly overestimated. This
occurred specifically at low ice concentrations due to misinterpretation
of open water as sea ice (Spreen et al., 2008; Ivanova et al., 2015).
Although the presence of melt ponds leads to the underestimation of
SICs by the ASI algorithm (Rösel et al., 2012), the algorithm over-
estimated the values of SIC.

For the MIZ, the BT algorithm typically applies the frequency mode
over seasonal ice zones. The BT frequency mode is less sensitive to
atmospheric effects than NT and ASI algorithms, but is more sensitive to
melt ponds (Rösel et al., 2012; Ivanova et al., 2014). This can lead to
underestimation of SICs in summer. In the Chukchi Sea, however, the
BT SIC values showed the largest positive bias and RMSE values
(21.41%) compared to the KOMPSAT-5 SIC values.

Melt ponds larger than 125×125m are classified as open water in
the KOMPSAT-5 ice/water maps, which can lead to underestimation of
KOMPSAT-5 SICs and could be another reason for the positive bias in
algorithm-derived SIC values compared to KOMPSAT-5 SIC values.
However, the most common melt pond size is< 50m2 (Perovich et al.,
2002; Mäkynen et al., 2014); therefore, KOMPSAT-5 SIC values should
rarely be overestimated.

4.2.3. Consolidated pack ice zone
For the CPIZ, the SIC values estimated by the NT, OSISAF, and ASI

algorithms showed statistically significant differences from KOMPSAT-
5 SIC values, and were negatively biased (Table 8). Fig. 9 shows an
example of a visual comparison between the KOMPSAT-5 ice/water
maps, SICs from AARI weekly ice chart and each sea ice algorithm for
the CPIZ. The SICs from the ice chart well reflected well the distribution
of sea ice observed in the KOMPSAT-5 ice/water maps. However, the
SIC values from the algorithms, except for the BT algorithm, seemed to
be underestimated compared to those from the ice chart. Based on the
fact that strong positive air temperature anomalies were observed in the
region (Fig. 3b), the ice surface melting as shown in Fig. 6c could be a
reason for the negative biases in SIC estimated by the algorithms in the
CPIZ.

Despite the statistically significant difference, the ASI SIC values

showed a fairly good correlation with the KOMPSAT-5 SIC values (R
value of 0.73) but were slightly underestimated, showing a mean bias
value of −8.53% and an RMSE of 10.45%. The largest negative bias
and RMSE values of the SICs were estimated by the NT algorithm
(−25.65% and 26.72%, respectively). This is possibly owing to ice
surface melting in the CPIZ. The OSISAF SIC values showed the second
largest value of RMSE (14.84%) and the smallest value of R (0.34). The
Bristol algorithm used in the OSISAF algorithm for high SCI is less
sensitive to surface emissivity variability in regions with high SICs in
winter and it has been reported as an optimum algorithm (Ivanova
et al., 2015; Tonboe et al., 2016). However, the sensitivity of the Bristol
algorithm to surface effects is greater in summer than in winter because
the ice surface is typically more stable in winter than in summer. This
might contribute to underestimation of OSISAF SIC values for the CPIZ.
The mean bias and SE of the OSISAF SIC values in regions of the
Chukchi Sea with high SICs (i.e., the Bristol algorithm-derived values)
in summer are similar to those of other regions, with a mean bias of
−8.9% and SE of 11.5%, respectively, reported by Andersen et al.
(2007). The BT SIC values were slightly overestimated compared to the
KOMPSAT-5 SICs (a mean bias value of 1.53%) and had the smallest
RMSE (6.27%).

The PM SIC retrieval algorithms typically overestimated SICs for the
ODIZ. This suggests that the PM SIC-derived latitudes of the location of
the ice edge, defined as the 15% SIC contour (Comiso, 2006; Cavalieri
and Parkinson, 2012; Steele and Ermold, 2015), could be geo-
graphically lower than the actual locations in the Chukchi Sea in
summer. This would result in inaccurate estimation of sea ice extent,
defined as the sum of the grid area containing grids with SIC values of
at least 15% (Cavalieri and Parkinson, 2012). The erroneous retrieval of
SIC values for the MIZ and CPIZ by the algorithms led to inaccurate
estimation of summer sea ice area, defined as the sum of the product of
the grid area and the SIC value for grids with an SIC value of at least
15% (Cavalieri and Parkinson, 2012). The parameters of sea ice area
and extent are primarily used to predict climate change (Vinnikov et al.,
1999; Francis et al., 2009; Vihma, 2014), and the differences in sea ice
area and extent estimated by the sea ice algorithms predict different
trends of climate change. The age of sea ice is typically estimated by
tracking each grid cell of PM SIC products with a value of at least 15%
from year to year (Maslanik et al., 2011). Therefore, the erroneous SIC
retrievals from the algorithms in the Chukchi Sea could lead to in-
accurate estimation of the age of sea ice there, especially at the
boundary of the MIZ.

4.3. Comparison of biases from PM SICs with NWP data

4.3.1. Comparison of positive biases from PM SICs with NWP data
The relationships between the values of FNROW and FNRSI from the

algorithms and the atmospheric conditions predicted from the ERA
Interim reanalysis data were investigated. Fig. 10 shows the correla-
tions of the values of FNROW from each algorithm, along with the at-
mospheric conditions in the regions with KOMPSAT-5 SIC lower than
40%. These are where the positive biases observed from the algorithms
were predominantly. Correlation analyses were also conducted for the
ODIZ, the regions with KOMPSAT-5 SIC higher than 40% and the

Table 8
Comparison of SIC values estimated from KOMPSAT-5 with those from the sea ice algo-
rithms for the CPIZ.

Algorithm Statistic

R Bias (%) SE (%) RMSE (%) Z p

NT 0.52 −25.65 7.54 26.72 −6.03 <0.001
BT 0.37 1.53 6.10 6.23 −1.60 0.110
OSISAF 0.34 −7.59 12.89 14.84 −2.97 0.003
ASI 0.73 −8.53 6.10 10.45 −5.74 <0.001
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Fig. 9. An example of (a) KOMPSAT-5 ice/water maps for the CPIZ generated from the SAR images obtained on 18 August 2015, (b) SIC from AARI weekly ice charts released on 18
August 2015, (c) SIC products from the NT, (d) BT, (e) OSISAF, and (f) ASI algorithms. The white-dotted box in (b)–(f) correspond to the coverage of the KOMPSAT-5 ice/water maps in
(a).
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regions with all KOMPSAT-5 SIC values (Table 9). In each scatter plot of
Fig. 10 and in Table 9, the p-value below 0.05 means that the corre-
lation was statistically significant. As the values of FNROW and FNRSI

were derived from the values of SIC by the KOMPSAT-5 ice/water maps
and the sea ice algorithms, which did not follow a normal distribution,
the Spearman correlation coefficient (R) was computed to assess the
strength of relationships between the atmospheric conditions and the
biases from the algorithms.

For all SIC ranges, the values of FNROW from the NT and ASI algo-
rithms showed statistically significant positive correlation with the
amount of daily averaged TCWV with the R value of 0.39 and 0.38,
respectively (Table 9). Such significant positive correlations were
slightly stronger at both the regions of with KOMPSAT-5 SIC lower than
40% (0.40 with NT and 0.52 with ASI, Fig. 10a and d) and in the ODIZ
(0.43 with NT and 0.46 with ASI, Table 9). This explains that the at-
mospheric water vapor content contributed to the positive biases of the
NT and ASI algorithms. In the regions with KOMPSAT-5 SIC higher than
40%, however, the FNROW values from the NT and ASI algorithms were
not significantly correlated with the TCWV. Meanwhile, the correla-
tions analyzed at the CPIZ for the NT algorithm were unreliable due to
insufficient number of SIC values (sample size too low). The required

number of SIC values was determined to be>29 by power analysis for
a Spearman correlation conducted in G*Power (Faul et al., 2007) using
an effect size of 0.5, an alpha of 0.05 and a power of 0.8.

The increasing trend in values of FNROW from the ASI algorithm
with increasing amount of TCWV was much larger than for the NT al-
gorithm. This indicates that the misinterpretation of open water as sea
ice due to the atmospheric water vapor content is more severe in the
ASI algorithm than in the NT algorithm. The ASI algorithm using
89 GHz channels is most sensitive to atmospheric water content over
open water (Spreen et al., 2008; Ivanova et al., 2015). Moreover, the
weather filters using the channels with lower spatial resolution than
89 GHz channels might be missed at pixels of ASI SIC along the ice edge,
which could be another source of the positive bias of the ASI algorithm
in low SIC regions (Spreen et al., 2008).

The R values between the values of FNROW from the BT and OSISAF
algorithms, and the daily averaged TCWV, were not statistically sig-
nificant (p-values > 0.05), except for the regions with KOMPSAT-5 SIC
higher than 40% (Table 9). The effects of the water vapor content on
the positive bias from the algorithms for the low SIC regions could not
be analyzed. For the regions with KOMPSAT-5 SIC higher than 40%, the
values of FNROW from the BT and OSISAF algorithms were significantly

Fig. 10. Correlations of values of FNROW from the NT, BT, OSISAF, and ASI algorithm with (a)–(d) daily averaged total columnar water vapor (TCWV), (e)–(h) daily averaged total cloud
liquid water (TCLW), (i)–(l) daily averaged 10m wind speed, and (m)–(p) June–July 2015 mean air temperature at 925 hPa level at the regions with KOMPSAT-5 SIC lower than 40%. In
each scatter plot, N represents the number of values used for the correlation analysis.
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negatively correlated with the amount of TCWV, with R values of
−0.39 and−0.38, respectively (Table 9). The algorithms were strongly
negatively correlated with the June–July mean air temperature at
925 hPa (R value of −0.53 and −0.68, respectively, Table 9), which
suggests that overestimation of SIC by the algorithms might be com-
pensated by decreased TB due to ice surface melting. These results could
be due to the lower sensitivity of algorithms to water vapor content
over sea ice, but more sensitive to ice surface melting than in other
algorithms (Rösel et al., 2012; Ivanova et al., 2014).

For all SIC ranges, the values of FNROW from the NT and ASI algo-
rithms shows statistically significant, but weak positive correlations
with the daily averaged TCLW with the R value of 0.16 and 0.23, re-
spectively (Table 9). Meanwhile, statistically significant negative cor-
relations were observed between the values of FNROW from the BT al-
gorithm and the TCLW, and the values of FNROW from the OSISAF
algorithm and the TCLW (Table 9). The FNROW from all algorithms and
the daily averaged wind speed at 10m also showed significantly ne-
gative correlations (Fig. 10i to l, Table 9). These are contrary to the
expectation that the misinterpretation of open water to sea ice is greater
with increasing wind speed and amount of cloud liquid water. Both the
weak correlations and the negative correlations can be attributed to
temporally rapid variations of atmospheric conditions during a day
(Cavalieri et al., 1995). Fig. 11 shows a boxplot of the coefficient of
variation (CV) of the daily TCWV, TCLW and 10m wind speed pre-
dicted from the ERA Interim reanalysis data for the locations and dates
of the PM SICs. While most of the values of the CV for TCWV were
below 0.1, with a mean value of 0.06, the TCLW and 10m wind speed
showed large variations in a day (mean value of CV of 0.29 and 0.22,
respectively). This was probably due to continuous changes in the
winds and movements of clouds. Therefore, the values of the daily
averaged TCLW and 10m wind speed are considered unreliable and
difficult to use for finding reasonable correlations with the values of
FNROW and FNRSI from the algorithms.

The correlations of values of FNROW from the algorithms and the
June–July mean air temperature at 925 hPa were not significant for the
ODIZ. They were very weak for other regions, even if they were sig-
nificant, except for the regions with KOMPSAT-5 SIC higher than 40%
for the BT and OSISAF algorithm. This could be because overestimation

by the algorithms of the low SIC regions might be more sensitive to
other atmospheric effects such as atmospheric water vapor. This makes
it difficult to interpret the relationship between the FNROW and the
mean air temperature in such regions.

We could not find the influences of the atmospheric effects on the
positive biases for low SIC regions from the BT and OSISAF algorithms.
A possible reason for the positive bias from the BT algorithm is that the
tie points of open water in Arctic seasonal ice zones might result in

Table 9
Correlations of FNROW from the algorithms with atmospheric conditions from the ERA Interim reanalysis at ODIZ, the regions with KOMPSAT-5 (K5) SIC higher than 40% and the regions
with all K5 SIC values. N represents the number of values used for the correlation analysis.

Algorithm Statistic

ODIZ Regions with K5 SIC higher than 40% Regions with all K5 SIC values

N R p N R p N R p

Correlation of FNROW with daily averaged TCWV
NT 216 0.43 <0.001 9 0.17 0.668 304 0.39 < 0.001
BT 218 0.01 0.914 114 −0.39 < 0.001 501 −0.06 0.222
OSISAF 249 0.10 0.166 51 −0.38 0.014 394 0.02 0.760
ASI 172 0.46 <0.001 61 −0.03 0.806 372 0.38 < 0.001

Correlation of FNROW with daily averaged total TCLW
NT 216 0.14 0.054 9 0.03 0.932 304 0.16 0.010
BT 218 −0.24 0.001 114 −0.57 < 0.001 501 −0.26 < 0.001
OSISAF 249 −0.08 0.291 51 −0.57 < 0.001 394 −0.09 0.017
ASI 172 0.27 0.001 61 −0.07 0.568 372 0.23 < 0.001

Correlation of FNROW with daily averaged 10m wind speed
NT 216 −0.15 0.035 9 −0.07 0.865 304 −0.14 0.022
BT 218 −0.01 0.847 114 −0.48 < 0.001 501 −0.22 < 0.001
OSISAF 249 −0.16 0.028 51 −0.41 < 0.001 394 −0.28 < 0.001
ASI 172 −0.12 0.153 61 0.03 0.845 372 −0.20 < 0.001

Correlation of FNROW with June–July mean air temperature at 925 hPa
NT 216 −0.05 0.471 9 0.13 0.731 304 −0.12 0.045
BT 218 0.11 0.142 114 −0.53 < 0.001 501 0.07 0.133
OSISAF 249 −0.10 0.181 51 −0.68 < 0.001 394 −0.28 < 0.001
ASI 172 0.19 0.013 61 −0.02 0.889 372 0.08 0.137

Fig. 11. Boxplots of the coefficient of variation for daily total columnar water vapor,
daily total cloud liquid water, and daily 10m wind speed predicted from the ERA Interim
reanalysis data. Colored boxes represent the interquartile range of the samples, and a line
inside the box indicates the median value of the samples. The vertical lines above and
below the box represent 1.5-times the interquartile range beyond the lower and upper
quartiles. The circles and asterisks represent the outliers (samples between 1.5 and 3
interquartile ranges from the box) and extreme outliers (samples > 3 interquartile
ranges from the box), respectively. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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significantly erroneous SIC values in summer, even though they were
defined by regions and modified as time passed (Comiso, 1995; Ivanova
et al., 2015). The positive biases in low SIC regions from the OSISAF
algorithm may be because the atmospheric effect induced noise in TB
over open water might not be well corrected by NWP data (Tonboe
et al., 2016). By correlation analyses, we found that the SIC values from
the NT and ASI algorithm in the low SIC regions were caused by the
atmospheric water vapor content. The Chukchi Sea is the one of the
regions in the Arctic where the amount of atmospheric water vapor
content in summer and early autumn has increased dramatically. This
trend exceeds 1.5mm per decade (Serreze et al., 2012). This increasing
water vapor content was predominantly observed over open water. This
means that the SIC values from the sea ice algorithms could have more
positive bias in low SIC regions in the Chukchi Sea than in other regions
of the Arctic in summer, due to the atmospheric water vapor content.

The positive bias of SIC estimated by the NT, BT, and OSISAF al-
gorithms in low SIC regions may also be due to different footprint sizes
of the 19 GHz and 37 GHz channels (Table 1), which affect SIC esti-
mation in the algorithms (Ivanova et al., 2014). Moreover, the footprint
sizes larger than the grid size in the SIC products can include TB in-
formation from the ice pack, which could be another source of SIC
overestimation at the ice edge (Meier, 2005). The footprint size of the
89 GHz channels of AMSR2 is sufficient (3× 5 km) (Table 2) and
should not have an influence on the positive bias of ASI SIC values. The
overestimation of SIC values by the ASI algorithm for low SIC regions
could be mainly due to misinterpretation of open water as sea ice in the
89 GHz measurements (Spreen et al., 2008; Ivanova et al., 2015).

4.3.2. Comparison of negative biases from PM SICs with NWP data
Fig. 12 shows the relationships between the values of FNRSI from the

algorithms and the June–July 2015 mean air temperature at 925 hPa
level, and the FNRSI from the algorithms and the daily averaged TCWV
at the regions with KOMPSAT-5 SIC higher than 40% where the positive
biases from the algorithm were predominantly observed. The correla-
tions for the regions with KOMPSAT-5 SIC lower than 40%, KOMPSAT-
5 SIC from 40% to 80% (i.e., the regions where positive biases were
predominantly observed in MIZ) and CPIZ are listed in Table 10. The
analyses of the relationships between the values of FNRSI and daily
averaged TCLW, and the values of FNRSI and daily averaged 10m wind
speed were not performed due to large variability in the atmospheric
conditions over a day (Fig. 11). In the regions with KOMPSAT-5 SIC
lower than 40%, the results from all the algorithms were not

significantly correlated with the mean air temperature (Table 10) be-
cause other atmospheric influences had greater effects on the values of
SIC from the algorithm in the low SIC regions.

In the regions with KOMPSAT-5 SIC higher than 40%, strong posi-
tive correlations were observed between the values of FNRSI from the
NT and OSISAF algorithm, with the June–July 2015 mean air tem-
perature at 925 hPa (R value of 0.50 with NT and 0.55 with OSISAF)
(Fig. 12a and c). The values of FNRSI from the algorithms computed for
the regions with KOMPSAT-5 SIC of 40%–80%, and in CPIZ, were also
strongly, positively correlated with the June–July mean air temperature
(R values ranging from 0.43 to 0.58). This supports the notion that the
underestimation of SIC from the algorithms in MIZ and CPIZ was due to
variability in the surface emissivity caused by ice surface melting and
the presence of melt ponds (Andersen et al., 2007; Ivanova et al., 2015).
For the CPIZ, the largest negative bias (−25.65%) and RMSE (26.72%)
values were estimated by the NT algorithm (Table 8). The bias of the NT
SICs in Baffin Bay, Barents Sea, Beaufort Sea, Lincoln Sea, and Green-
land Sea with high SICs has been reported as approximately −15% in
summer (Andersen et al., 2007; Meier, 2005). This is much smaller than
that for the Chukchi Sea in this study. Unfortunately, we cannot con-
firm the exact surface conditions of the sea ice investigated in the
previous research. However, it is known that sea ice melting in the
Chukchi Sea in summer can be more serious than in other regions owing
to the oceanic heat flux transportation from the Pacific Ocean, warm
southerly winds and increasing water vapor content (Serreze et al.,
2012; Stroeve et al., 2012; Serreze et al., 2016). Therefore, the worse
performance of SIC retrieval from the NT algorithm in regions of high in
the Chukchi Sea in summer was probably because of more severe ice
surface melting there. The Bristol algorithm used in the OSISAF algo-
rithm for high SCI regions is less sensitive to surface emissivity varia-
bility in winter and has been reported as an optimum algorithm
(Ivanova et al., 2015; Tonboe et al., 2016). However, the sensitivity of
the Bristol algorithm to variability in the surface emissivity is greater in
summer than in winter because the ice surface is typically more stable
in winter than in summer. This might contribute to underestimation of
OSISAF SIC values for the CPIZ. However, the correlation analysis for
the OSISAF algorithm at CPIZ could be unreliable because the number
of SIC values used was insufficient.

The BT SIC showed the largest positive biases (Fig. 8). Only a few
values of SIC from the BT algorithm were underestimated in the regions
with KOMPSAT-5 SIC higher than 40%, of which the values of FNRSI did
not show a statistically significant correlation with the June–July mean

Fig. 12. Correlations of values of FNRSI from the NT, BT, OSISAF, and ASI algorithm with (a)–(d) June–July 2015 mean air temperature at 925 hPa level and (e)–(h) daily averaged total
columnar water vapor (TCWV) at the regions with KOMPSAT-5 SIC higher than 40%. In each scatter plot, N represents the number of values used for the correlation analysis.
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air temperature (Fig. 12b and Table 10). This result might be unreliable
due to insufficient number of values used in the analysis. A possible
reason that the BT algorithm showed the largest overestimation of SICs
is that the tie points of sea ice and open water in Arctic seasonal ice
zones from August–September used in the algorithm might estimate
significantly different regional SIC values. This may be due to regional
variation in the atmospheric and surface effects on PM measurements.
The values of FNRSI from the ASI algorithm and the June–July 2015
mean air temperature did not show a significant correlation, except
when considering the CPIZ only (Fig. 12d and Table 10). Surprisingly,
the values of FNRSI from the ASI algorithm in CPIZ showed a statisti-
cally significant negative correlation with the June–July 2015 mean air
temperature at 925 hPa level (R values of −0.34).

We compared the values of FNRSI from the algorithms with the daily
averaged total columnar water vapor. The correlations of the values of
FNRSI from the OSISAF algorithm with the daily averaged TCWV were
not statistically significant regardless of the ranges of SIC values
(Fig. 12g and Table 10). Meanwhile, the values of FNRSI from the BT
and ASI algorithms were significantly negatively correlated with the
TCWV in the regions with KOMPSAT-5 SIC higher than 40% (R values
of −0.45 with BT and −0.37 with ASI). Such significant negative
correlation became stronger for the CPIZ (R values of −0.51 with BT
and −0.48 with ASI). This might argue that underestimation of ASI SIC
in high SIC regions could be strongly compensated by the mis-
interpretation of open water for sea ice owing to the water vapor
content. However, this is contrary to the claims of previous researches
that, in regions with high SIC, the atmospheric effects on SIC estimation
by the ASI algorithm is less than in regions with low SICs (Spreen et al.,
2008; Ivanova et al., 2015). For the BT algorithm, however, the cor-
relation might be unreliable due to the small sample size, as stated
above. Nevertheless, considering the statistically significant correlation,
the underestimation of BT SIC in high SIC regions may be compensated
by the water vapor content, as for the ASI algorithm.

4.3.3. Comparison of differences in PM SICs with NWP data
The differences in SIC values from the algorithms would be due to

different sensitivities to atmospheric effects and to ice surface melting.
Table 11 shows the correlation of the values of standard deviation (SD)
of SIC values from each algorithm with the daily averaged TCWV and
the June–July 2015 mean air temperature at the 925 hPa pressure level.
The daily averaged TCLW and 10m wind speed were not considered
because of the large temporal variation during a day. For the ODIZ, the
SD values and the daily averaged TCWV showed a statistically sig-
nificant positive R value (0.12), but the SD values were not significantly
correlated with the mean air temperature (Table 11). The low R value
between the SD values and the daily averaged TCWV at ODIZ would be
because other atmospheric effects such as wind speed and cloud liquid

water might affect differences in the PM SICs as well. At both MIZ and
CPIZ, the SD values were strongly positively correlated with the Ju-
ne–July 2015 mean air temperature (R value of 0.38 and 0.36, re-
spectively) but not significantly correlated with the daily averaged
TCWV (Table 11).

When the SIC regions were separated into two regions, where the
positive and negative bias from the algorithms was predominantly ob-
served using a threshold of KOMPSAT-5 SIC of 40%, the SD values from
the algorithms were significantly positively correlated with the daily
averaged TCWV for the lower SIC regions (R value of 0.14) and with the
mean air temperature at the higher SIC regions (R value of 0.41)
(Fig. 13). The SD values were not significantly correlated with the daily
averaged TCWV at the higher SIC regions and the mean air temperature
at the lower SIC regions, respectively. These results support the idea
that the differences in SIC values from the algorithms are attributable to
different sensitivities to atmospheric water vapor content in the low SIC
regions and to ice surface melting in high SIC regions.

The differences between the SICs for the Chukchi Sea derived from
the sea ice algorithms and KOMPSAT-5 ice/water maps were analyzed
for the summer season. This provided invaluable findings about the
performance of different sea ice algorithms for the Chukchi Sea in
summer according to the range of SIC. However, the factors influencing
the SIC values of the algorithms, such as ice type, ice thickness, snow
properties, and melt pond fraction, cannot be analyzed together due to
the lack of in situ data, which is a limitation of this research. If suffi-
cient in situ data of sea ice physical properties were obtained, a more
accurate analysis of SIC estimation errors from sea ice algorithms im-
plemented for PM measurements would be possible.

Table 10
Correlations of FNROW from the algorithms with atmospheric conditions from the ERA Interim reanalysis data in the regions with KOMPSAT-5 (K5) SIC lower than 40%, the regions with
K5 SIC from 40% to 80%, and the CPIZ. N represents the number of values used for the correlation analysis.

Algorithm Statistic

Regions with K5 SIC lower than 40% Regions with K5 SIC from 40% to 80% CPIZ

N R p N R p N R p

Correlation of FNRSI with June–July mean air temperature at 925 hPa
NT 196 0.01 0.905 83 0.58 <0.001 48 0.50 <0.001
BT 103 0.02 0.915 8 0.38 0.352 19 0.89 0.092
OSISAF 148 −0.07 0.510 63 0.53 <0.001 26 0.43 0.027
ASI 180 −0.01 0.906 33 0.08 0.677 46 −0.34 0.020

Correlation of FNRSI with daily averaged TCWV
NT 196 −0.14 0.142 83 −0.06 0.620 48 0.25 0.090
BT 103 −0.24 0.268 8 0.17 0.693 19 −0.51 0.023
OSISAF 148 −0.19 0.073 63 −0.05 0.675 26 −0.18 0.393
ASI 180 −0.28 0.009 33 −0.17 0.357 46 −0.48 0.002

Table 11
Correlation of the standard deviation (SD) of SIC from all algorithms with the atmo-
spheric conditions from the ERA Interim reanalysis data.

Regions Correlation of SD of PM SICs
with daily averaged TCWV

Correlation of SD of PM SICs with
June–July mean air temperature at
925 hPa

Statistic

R p R p

ODIZ 0.12 0.032 0.06 0.239
MIZ 0.05 0.483 0.38 < 0.001
CPIZ −0.09 0.553 0.36 0.012
All SIC

ranges
0.04 0.303 −0.05 0.202
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5. Conclusion

We evaluated values of the sea ice concentration (SIC) estimated by
the NT, BT, OSISAF, and ASI algorithms for the Chukchi Sea in summer
using KOMPSAT-5 SAR images obtained in EW mode, along with nu-
merical weather prediction data from the ERA Interim reanalysis. Ice/
water maps were generated using the binary classification of texture
features in the SAR images based on the Random Forest learning ap-
proach, which were accurate enough to calculate SIC values for eva-
luation of sea ice algorithm-derived SIC values. The SIC values esti-
mated by the algorithms showed a good correlation with those from
KOMPSAT-5 ice/water maps, but had RMSE values over 10%.
Considering all SIC ranges, the OSISAF and ASI algorithms slightly
overestimated SIC values, but NT and BT algorithms largely under-
estimated and overestimated SIC values, respectively. The SIC values
estimated by the algorithms showed different error trends for different
ranges of SIC. For the ODIZ, where the range of SICs was 0% to 15%, all
algorithms largely underestimated SIC values compared to the
KOMPSAT-5 SIC values. The OSISAF SIC values were slightly biased
compared to those from KOMPSAT-5 ice/water maps for the MIZ,
where the SIC values ranged from 15% to 80%, but showed large RMSE
values. SIC values estimated for the MIZ by three other algorithms
showed high bias and RMSE compared to KOMPSAT-5 SIC. The NT
algorithm largely underestimated SIC, and the BT and ASI algorithms
greatly overestimated it. All sea ice algorithms, except the BT algo-
rithm, typically underestimated SIC values for the CPIZ where SICs
exceeded 80%. The positive bias from the NT and ASI algorithms was
influenced by atmospheric water vapor content, while the negative bias
from the NT and OSISAF algorithms was due to ice surface melting. The
underestimates of SIC by the BT and ASI algorithms in high SIC regions

might be compensated by the effect of the atmospheric water vapor
content. Errors in the SIC values estimated by the algorithms would
lead to inaccurate estimation of ice edge location, sea ice area, and sea
ice extent in the Chukchi Sea in summer using PM SIC products. The
differences in SIC values estimated by the algorithms are likely caused
by different sensitivities to atmospheric water vapor content in low SIC
regions and to ice surface melting in high SIC regions.

This study statistically and quantitatively evaluated PM SIC pro-
ducts for the Chukchi Sea in summer using accurate ice/water maps
generated from KOMPSAT-5 SAR images. However, factors affecting
SIC estimation by the sea ice algorithms, such as ice type, ice thickness,
surface properties, melt pond fractions, and atmospheric water content,
were not considered. Field observations to provide such factors could
help evaluate the sea ice algorithms more accurately. In future research,
we will obtain various in situ data of sea ice and atmospheric char-
acteristics from the annual summer Arctic expedition of ARAON. This
will enable a more accurate evaluation of SICs estimated from various
SIC retrieval algorithms using PM measurements, and allow us to in-
vestigate the influence of ice and atmospheric properties on errors in
the PM SIC products.
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Fig. 13. Correlations of SD values of SIC from the NT, BT, OSISAF, and ASI algorithm with daily averaged total columnar water vapor (TCWV) and the June–July 2015 mean air
temperature at 925 hPa level (a and b) at the regions with KOMPSAT-5 SIC lower than 40% and (c and d) the regions with KOMPSAT-5 SIC higher than 40%, respectively. In each scatter
plot, N represents the number of values used for the correlation analysis.
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